ТЕПЛОЕМКОСТЬ: ЭКСПЕРИМЕНТ И РАСЧЕТ

УДК 544.31.031

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ТВЕРДОГО РАСТВОРА Dy₂O₃·2HfO₂ И АНОМАЛИЯ ШОТТКИ

© 2022 г. А. В. Гуськов^{*a*}, П. Г. Гагарин^{*a*}, В. Н. Гуськов^{*a*,*}, А. В. Тюрин^{*a*}, К. С. Гавричев^{*a*}

^аИнститут общей и неорганической химии им. Н.С. Курнакова РАН, 119991, Москва, Россия

*e-mail: guskov@igic.ras.ru Поступила в редакцию 11.02.2022 г. После доработки 11.02.2022 г. Принята к публикации 25.02.2022 г.

Представлены результаты измерения молярной теплоемкости твердого раствора Dy_2O_3 ·2HfO₂ в интервале 2.5–346 К и с учетом литературных данных рассчитаны энтропия, приращение энтальпии и приведенная энергия Гиббса при T = 2.5-1350 К. Определен общий вид аномалии Шоттки.

Ключевые слова: твердый раствор Dy_2O_3 ·2HfO₂, теплоемкость, термодинамические функции, аномалия Шоттки

DOI: 10.31857/S004445372209014X

Взаимодействие оксидов диспрозия и гафния приводит к возникновению непрерывного ряда кубических твердых растворов широкой концентрационной протяженности (0-60 мол. % Dy₂O₃ при 2700 К). Образование твердых растворов структурного типа дефектного флюорита на основе кубического диоксида гафния происходит замещением ионов Hf^{4+} ионами Dy^{3+} с сохранением координационного окружения, а уменьшение заряда компенсируется появлением кислородной вакансии [1, 2]. Твердые растворы двойных оксидов диспрозия и гафния имеют структурный тип дефектного флюорита (Fm3m), характеризуются высокими температурами плавления (2700-3100 К) и отсутствием структурных превращений во всем температурном интервале существования. Серединой твердого раствора следует считать стехиометрическое соотношение металлов 1:1, соответствующее химической формуле Dy₂O₃·2HfO₂. При таком соотношении оксидов легких лантаноидов (Ln = La - Tb) и диоксида гафния в результате упорядочения образуются соединения Ln₂Hf₂O₇ структурного типа пирохлора (Fd3m) с относительно узкими областями гомогенности. Существование пирохлоров ограничено кристаллохимическим соотношением $r_{1n^{3+}}/r_{Hf^{4+}} > 1.45-1.46$ [3], в то время как для $Dy_2O_3 \cdot 2HfO_2$ за счет лантаноидного сжатия это соотношение меньше 1.45, хотя очень часто в литературе твердый раствор Dy₂O₃·2HfO₂ записывают как Dy₂Hf₂O₇. Вопросы синтеза и формирования кристаллической структуры твердого раствора Dy_2O_3 ·2HfO₂, а также возможного существования

перехода флюорит↔пирохлор рассматривали в работах [4–8], где подтвердили отсутствие существования двойного оксида Dy₂Hf₂O₇ структурно-го типа пирохлора даже в нанодоменной форме.

Твердые растворы оксидов лантаноидов и гафния считаются перспективными веществами для применения в атомной. аэрокосмической промышленности и энергетике [5, 8]. Особое внимание следует обратить на возможность использования твердых растворов в качестве термобарьер-(ТВС) и защитных (ЕВС) покрытий ных ответственных деталей энергетических установок, что позволит не только повысить рабочие температуры и ресурс, но и улучшить экологические параметры газотурбинного оборудования [9, 10]. Однако, в этом случае необходимо подтвердить высокую химическую стойкость твердых растворов, особенно в перспективе перехода на новые, более экологичные, в том числе водородсодержащие, виды энергоносителей. В практическом плане требуемые для решения этой проблемы исследования достаточно трудоемки и затратны, но термодинамическое моделирование высокотемпературных процессов способно существенно сократить их объем. Важный фактор моделирования равновесных состояний – элиминирование кинетических особенностей деградации материала в экстремальных условиях. Для проведения модельных расчетов необходимы достоверные данные по температурным зависимостям термодинамических функций, которые могут быть рассчитаны из экспериментальных измерений теплоемкости, а также энтальпии образования.

1231

Молярную теплоемкость твердого раствора Dy_2O_3 ·2HfO₂ в температурном интервале 373-1073 К измеряли методом дифференциальной сканирующей калориметрии (ДСК) [11]. В работе [12] также были выполнены измерения теплоемкости Dy₂O₃·2HfO₂ в интервале температур 320-1300 К и показано, что результаты [11] сильно завышены по причине использования гелия в качестве инертной атмосферы. Авторы [13] также сообщали об измерениях теплоемкости Dy₂O₃·2HfO₂ методом ДСК при 298-800 К, однако параметр кристаллической решетки использованного для измерений образца a = 5.194 Å не соответствует приведенному в базе данных [14] значению (a == 5.218 Å) и, скорее всего, не отвечает твердому раствору Dy₂O₃·2HfO₂. Сообщений об измерениях молярной теплоемкости Dy₂O₃·2HfO₂ в области низких (<320 К) температур в литературе не найлено.

Цель настоящей работы — измерение молярной теплоемкости твердого раствора $Dy_2O_3 \cdot 2HfO_2$ при температурах 0—346 K, анализ особенностей поведения теплоемкости в области низких температур и расчет термодинамических функций в интервале 0—1300 K.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Твердый раствор Dy₂O₃·2HfO₂ синтезировали методом соосаждения гидроксидов в растворе аммиака с последующим обезвоживанием и ступенчатым отжигом полученного осадка. Финальное прокаливание проводили при температуре 1773 К в течение 4 ч для формирования кристаллической структуры. Для синтеза использовали Dy₂O₃, 99.99%, и диоксид гафния HfO₂, 99.9%, (ООО "ЛАНХИТ"), предварительно растворенные в соляной кислоте (35-38 мас. %, "ос.ч." 20-4, ООО "Химмед"). Моляльную концентрацию растворов определяли весовым методом. Растворы смешивали в стехиометрическом соотношении и по каплям при интенсивном перемешивании добавляли в раствор аммиака (25-28 мас. % NH₄OH, "ос.ч.", ООО "Химмед"). Осадок отмывали от ионов хлора и подвергали температурной обработке. Соотношение Dy и Hf определяли химическим анализом (оптико-эмиссионный спектрометр с индуктивно-связанной плазмой Agilent 725). Дифракционные исследования проводили на порошковом дифрактометре Bruker D8 Advance Diffractometer (Cu K_{α} -излучение, $\lambda = 1.5418$ Å). Морфологию образца и его чистоту исследовали с помощью электронного микроскопа Gross Beam Zeiss NVision 40. Измерения теплоемкости проводили методом релаксационной калориметрии в области температур 2.4-35 К на автоматизированном комплексе для измерения физических свойств PPMS-9 Quantum Design Inc. [15]. Неопределенность метода при измерении теплоемкости составляет $\pm 5\%$. Для измерений теплоемкости методом релаксационной калориметрии порошкообразный Dy₂O₃·2HfO₂ прессовали в виде таблеток диаметром 3.0 мм, толщиной ~1 мм, которые отжигали при 1673 К в течение 4 ч. Измерения теплоемкости при температурах 6.39–346.1 К проводили методом адиабатической калориметрии на автоматической установке БКТ-3, 3AO ТЕРМИС [16]. Молярную массу Dy₂O₃·2HfO₂ принимали равной 793.9758 г/моль в соответствии с рекомендациями [17].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для синтеза был приготовлен однофазный образец структурного типа флюорита Fm3m (рис. 1) с параметром кубической ячейки a = 5.215(2) Å, который удовлетворительно соответствует литературным данным: 5.215 Å [2], 5.220 Å [5] и 5.218 Å [14].

Размеры областей когерентного рассеяния превышают 100 Å (оценка по Дебаю—Шереру), что подтверждается микросъемкой РЭМ поверхности образца (рис. 2). Таким образом, полученый Dy_2O_3 ·2HfO₂ не является наноразмерным, и внесения поправок на размерный фактор в измеренные температурные зависимости термодинамических функций не требуется. По данным химического анализа, образец имеет состав 50.0 мол. % DyO_{1.5} и 50.0 мол. % HfO₂ при неопределенности 0.2% по каждому компоненту.

Измерения молярной теплоемкости выполнены методами релаксационной калориметрии в 30 точках в интервале 2.4—35.0 К и адиабатической калориметрии в 124 точках в области 6.39— 346.1 К (табл. 1).

Высокотемпературная теплоемкость Dy₂O₃·2HfO₂ измерена ранее в работе [12] методом дифференциальной сканирующей калориметрии в интервале 320–1300 К и представлена в виде уравнения Майера–Келли [18]:

$$C_p$$
, Дж моль⁻¹ K⁻¹ = 269.03 + 0.02565688T -
- 3871954.4T⁻², $R^2 = 0.9999$. (1)

На рис. 3 приведена температурная зависимость молярной теплоемкости твердого раствора Dy_2O_3 ·2HfO₂ по результатам измерений тремя методами: релаксационной и адиабатической калориметрии, а также ДСК из ранее опубликованной работы [12]. Как видно из врезок рис. За и 36, результаты, полученные разными методами, удовлетворительно согласуются между собой в пересекающихся интервалах температуры. На температурной зависимости теплоемкости отсутствуют

Рис. 1. Дифрактограмма образца твердого раствора Dy_2O_3 ·2HfO₂, структурный тип *Fm3m*, a = 5.215(2) Å, Cu K_{α} -излучение, $\lambda = 1.5418$ Å.

аномалии, соответствующие структурным превращениям, что подтверждает сохранение структурного типа флюорита во всем изученном диапазоне температур.

Особенность температурной зависимости теплоемкости твердого раствора $Dy_2O_3 \cdot 2HfO_2$ — наличие минимума при $T \approx 8$ К и ее существенное возрастание при дальнейшем понижении температуры (рис. 4). Такое поведение $C_p(T)$ свидетельствует о существовании фазового превращения с максимумом при температуре T < 2.5 К, которое может иметь магнитную природу. Магнитные переходы различного типа в области низких температур характерны для соединений лантаноидов с частично заполненной 4f-электронной оболочкой [19].

Данные по теплоемкости и магнитным измерениям твердого раствора Dy₂O₃·2HfO₂ вблизи 0 К в литературе отсутствуют, но в работе [20] представлены результаты изучения теплоемкости Dy₂O₃·2ZrO₂ в интервале температур 0.06-25 К (отметим, что в работе [20] твердый раствор Dy₂O₃·2ZrO₂, имеющий структуру флюорита, представлен как соединение $Dy_2Zr_2O_7$, что не соответствует фазовой диаграмме [1] и кристаллохимическим принципам [3] образования соединений структурного типа пирохлора). Авторами [20] обнаружен максимум теплоемкости при $T \approx$ ≈ 1.5 К и показано, что в отличие от $Dy_2Ti_2O_7$, имеющего структурный тип пирохлора, магнитное упорядочение в котором представляется спиновым льдом [21], превращение Dy₂O₃·2ZrO₂ является антиферромагнитным. Этот факт имеет важное значение для учета энтропии магнитного превращения, которая для спинового льда равна $2R(\ln 2 - \ln 3/2) \approx 8.14$ Дж моль⁻¹ К⁻¹, тогда как для антиферромагнитного перехода составит несколько большую величину $2R\ln 2$ ≈ 11.52 Дж моль⁻¹ K^{-1} . Мы полагаем, что магнитповедение Dy_2O_3 ·2HfO₂ ное аналогично Dy₂O₃·2ZrO₂, и энтропия его антиферромагнитного превращения составляет $2R \ln 2$, а величины приращения энтальпии $H^{\circ}(2.5 \text{ K}) - H^{\circ}(0)$ для этих двух твердых растворов примерно одинаковы и равны 11.7 Дж моль⁻¹ (рассчитано из графических

Рис. 2. Микрофотография поверхности образца Dy_2O_3 ·2HfO₂.

<i>Т</i> , К	C_{p}	Т, К	C_{p}	Т, К	C_{p}	<i>Т</i> , К	$C_{\rm p}$	Т, К	C_{p}	Т, К	$C_{\rm p}$
Релаксационная калориметрия, $m = 0.02119$ г											
2.441	3.935	3.859	2.252	6.101	1.241	9.730	1.099	15.347	2.816	24.201	9.449
2.675	3.575	4.230	1.987	6.701	1.132	10.664	1.234	16.819	3.647	26.501	12.01
2.932	3.202	4.635	1.744	7.342	1.064	11.674	1.438	18.422	4.705	29.023	15.59
3.214	2.859	5.100	1.530	8.074	1.021	12.789	1.757	20.177	6.089	31.937	18.98
3.522	2.563	5.564	1.377	8.857	1.040	14.017	2.206	22.125	7.799	35.012	23.40
		•	Ади	абатичес	кая калор	иметрия,	m = 3.427	99 г		•	
6.39	1.320	27.52	13.76	61.85	59.84	103.66	109.9	172.68	171.1	252.51	216.5
6.88	1.270	29.11	15.72	63.50	62.07	106.98	113.5	176.27	173.7	256.71	218.3
7.67	1.200	30.71	17.77	65.16	64.20	110.31	117.0	179.78	176.2	260.90	220.0
8.61	1.170	32.32	19.88	66.82	66.24	113.64	120.5	183.30	178.7	265.04	221.6
9.54	1.220	33.93	21.95	68.47	68.34	116.90	123.9	186.83	181.1	269.19	223.2
10.44	1.343	35.55	24.01	70.13	70.36	116.98	124.5	190.37	183.4	273.29	224.7
11.33	1.524	37.17	26.36	71.99	72.68	119.34	125.8	193.89	185.7	277.39	226.2
12.20	1.759	38.80	28.61	74.05	75.21	122.96	129.3	197.41	187.9	281.42	227.6
13.06	2.056	40.43	30.80	76.11	77.89	126.51	132.6	200.95	190.1	285.45	229.0
13.93	2.337	42.07	33.01	78.17	80.61	130.06	135.9	204.91	192.5	289.43	230.3
14.80	2.665	43.70	35.29	80.23	83.18	133.60	139.2	209.30	195.1	293.33	231.6
15.66	3.040	45.35	37.55	82.30	85.46	137.15	142.3	213.67	197.5	297.19	232.8
16.51	3.466	47.00	39.85	84.37	87.53	140.69	145.5	218.06	200.0	300.78	233.9
17.35	3.935	48.64	42.13	86.44	90.10	144.26	148.5	222.35	202.2	304.96	235.1
18.19	4.490	50.29	44.40	88.50	93.07	147.79	151.5	226.68	204.3	311.22	236.9
19.02	5.097	51.94	46.67	90.57	95.33	151.31	154.5	230.97	206.1	318.38	238.9
19.90	5.804	53.59	48.91	92.65	97.61	154.83	157.4	235.41	208.2	325.44	240.7
21.21	6.898	55.24	51.07	94.72	99.91	158.39	160.2	239.74	210.3	332.42	242.4
22.79	8.443	56.89	53.28	96.80	102.2	161.91	163.0	244.02	212.4	339.34	244.1
24.35	10.13	58.54	55.45	98.88	104.5	165.45	165.7	248.28	214.6	346.06	245.6
25.93	11.91	60.19	57.63	100.96	106.8	168.99	168.4				

Таблица 1. Экспериментальные значения теплоемкости $Dy_2O_3 \cdot 2HfO_2$ (C_p , Дж моль⁻¹ K⁻¹), M = 793.6758 г моль⁻¹, P = 101.3 кПа

данных работы [20]). Такая оценка находится в пределах доверительных интервалов для приращения энтальпии и приведенной энергии Гиббса при 298.15 К.

Как и другие лантаноиды, имеющие электроны на незаполненной 4f-электронной оболочке, теплоемкость твердого раствора Dy_2O_3 ·2HfO₂ характеризуется наличием двух типов аномалий — магнитной в области самых низких температур и аномалии Шоттки, представляющей результат взаимодействия 4*f*-электронов с кристаллическим полем твердого раствора. В отличие от магнитного превращения, аномалия Шоттки проявляется во всем температурном интервале существования твердого раствора и имеет сложную форму. В общем виде, при отсутствии структур-

Рис. 3. Экспериментальная теплоемкость твердого раствора Dy_2O_3 ·2HfO₂ в области температур 2.4–1350 К по результатам измерений методами: *1* – релаксационной, *2* – адиабатической и *3* – дифференциальной сканирующей калориметрии [12]; а – область температуры 0–27 К; б – интервал 325–350 К.

Рис. 4. Молярная теплоемкость твердого раствора $Dy_2O_3 \cdot 2HfO_2$ при температурах 0–35 К по данным: *1* – релаксационной и *2* – адиабатической калориметрии, *3* – расчет решеточной теплоемкости C_{lat} по уравнению (3). На врезке зависимость $C_p/T = f(T^2)$ по уравнению (4).

ных превращений теплоемкость кристаллического вещества можно представить в виде суммы решеточной $C_{\rm lat}$ и электронной $C_{\rm el}$ теплоемкостей, причем последняя также является суммой двух разных составляющих — магнитной C_{mag} и аномалии Шоттки C_{Sch} [22, 23]:

$$C_{\rm p} = C_{\rm lat} + C_{\rm el} = C_{\rm lat} + C_{\rm mag} + C_{\rm Sch}.$$
 (2)
ласти низких температур решеточная тепло-

В области низких температур решеточная тепло емкость C_{lat} описывается уравнением Дебая:

$$C_{\rm lat} = AT^3, \qquad (3)$$

в том случае, если зависимость

$$C_{\rm p}/T = f(T^2) \tag{4}$$

носит линейный характер.

Линейный участок уравнения (4) для теплоемкости твердого раствора $Dy_2O_3 \cdot 2HfO_2$ найден в области 16–25 К при значении коэффициента A == 0.000719 Дж моль⁻¹ К⁻⁴ (рис. 4, врезка). Это означает, что заметный вклад магнитного превращения C_{mag} в теплоемкость наблюдается при температурах ниже 16 К, тогда как значимый вклад аномалии Шоттки C_{Sch} начинается выше 25 К. Расчет энтропийного вклада решеточной теплоемкости при 20 К может быть выполнен по уравнению:

$$S_{\text{lat}} = \int_{0}^{20} AT^2 dT = 1.92 \ \text{Дж моль}^{-1} \ \text{K}^{-1}.$$
 (5)

С учетом вклада магнитного превращения $S_{mag} = 2R \ln 2$ общее значение энтропии при 20 К составит

$$S^{\circ}(20 \text{ K}) = S_{\text{lat}} + S_{\text{mag}} = 13.44 \ \text{Дж моль}^{-1} \text{ K}^{-1}.$$
 (6)

Именно эту величину учитывали при расчете энтропии и приведенной энергии Гиббса твердого раствора Dy₂O₃·2HfO₂.

Выполнить сглаживание экспериментальных значений теплоемкости Dy₂O₃·2HfO₂ единым способом не удалось из-за аномального роста теплоемкости при низких температурах, поэтому температурный диапазон 2.5–1350 К был разбит на два интервала. Экспериментальные данные в интервале 2.5–35 К сглажены суммой полиномов:

$$C_{\rm p} = \sum_{i=1}^{6} A_i T^i, \tag{7}$$

а в диапазоне и 30–1350 К – с помощью программы CpFit [24, 25]:

$$C_{\rm p} = \sum_{i=1}^{k} \alpha_i C_{En} \left(\frac{\theta_i}{T} \right), \tag{8}$$

где $C_{En}(T) = 3Rx^2 \frac{\exp(x)}{\left[\exp(x) - 1\right]^2}$ и $x = \frac{\theta}{T}, k -$ число

членов разложения.

Найденные коэффициенты уравнений (7) и (8) приведены в табл. 2.

Таблица 2. Коэффициенты аппроксимирующих уравнений (7) и (8)

$C_{\rm p} = \sum A_i T^i$, 0–35 K							
i	A _i						
0			8.25	54 ± 0.411			
1			-2.67	77 ± 0.048			
2			0.379	93 ± 0.0045			
3			-0.0272	27 ± 0.0002	1		
4	0.001111 ± 0.0000049						
5	$-0.00002231 \pm 0.00000049$						
6	$0.0000001728 \pm 0.00000044$						
$C_{\rm p} = \sum_{i=1}^{k} \alpha_i C_{En} \left(\frac{\theta_i}{T}\right), 30 - 1350 \text{ K}$							
i	α	Δα	$S(\alpha)^*$	θ	$\Delta(\theta)$	$S(\theta)^*$	
1	1.872799	0.16	0.08	110.3495	4.267	2.164	
2	4.427454	0.12	0.06	285.7164	11.30	5.73	

S-	стандартное	отклонение
----	-------------	------------

0.43

0.17

0.225

0.085

5212.719

713.3665

580.8

13.92

294.6

7.06

1.79843

5.338894

3

4

По сглаженным значениям молярной теплоемкости рассчитаны термодинамические функции твердого раствора Dy_2O_3 ·2HfO₂: энтропия, приращение энтальпии и приведенная энергия Гиббса (табл. 3).

Сглаженные значения температурной зависимости молярной теплоемкости твердого раствора $Dy_2O_3 \cdot 2HfO_2$ позволяют оценить общий вид вклада аномалии Шоттки. К сожалению, выполнить оценку решеточного вклада в теплоемкость по модели, предложенной Веструмом [22, 23] невозможно, так как твердый раствор $Dy_2O_3 \cdot 2HfO_2$ имеет структуру разупорядоченного флюорита, а гафнаты лантана и гадолиния — пирохлора. Поэтому оценка аномального вклада выполнена по разности:

$$\Delta C_{\rm p}(T) = C_{\rm p}(\mathrm{Dy}_2\mathrm{O}_3\cdot 2\mathrm{HfO}_2) - C_{\rm p}(\mathrm{Lu}_2\mathrm{O}_3\cdot 2\mathrm{HfO}_2), (9)$$

так как оба твердых раствора имеют одинаковую структуру, а теплоемкость диамагнитного твердого раствора $Lu_2O_3 \cdot 2HfO_2$ не содержит вклада аномалии Шоттки и определяется, в основном, решеточной теплоемкостью C_{lat} во всем температурном интервале 0—1350 К.

Для расчета разности (9) использовали опубликованные в работе [26] данные по молярной

Таблица 3. Сглаженные значения молярной теплоемкости C(T) твердого раствора $Dy_2O_3 \cdot 2HfO_2$, энтропия S(T), приращение энтальпии H(T) - H(0) и приведенная энергия Гиббса $\Phi(T)$ в интервале температур 2.5–1350 K, $P = 101.3 \text{ к} \Pi a$

Т, К	<i>C(T)</i> , Дж моль ⁻¹ К ⁻¹	<i>S</i> (<i>T</i>), Дж моль ⁻¹ К ⁻¹	<i>H</i> (<i>T</i>) — <i>H</i> (0), Дж моль ⁻¹	Ф(<i>T</i>), Дж моль ⁻¹ К ⁻¹
2.5	3.548	9.030	11.70	4.35
3	2.986	9.625	13.33	5.18
4	2.133	10.36	15.86	6.40
5	1.571	10.77	17.69	7.23
6	1.232	11.02	19.07	7.84
7	1.061	11.20	20.21	8.31
8	1.017	11.34	21.24	8.69
9	1.070	11.46	22.27	8.99
10	1.197	11.58	23.40	9.24
12	1.630	11.83	26.19	9.65
14	2.274	12.13	30.06	9.98
16	3.143	12.49	35.44	10.28
18	4.276	12.92	42.81	10.54
20	5.707	13.44	52.74	10.80
22	7.453	14.06	65.85	11.07
24	9.497	14.80	82.75	11.35
26	11.79	15.65	104.0	11.65
28	14.27	16.61	130.1	11.96
30	17.18	17.68	161.2	12.31
35	23.49	23.93	364.5	13.52
40	30.14	27.51	499.2	15.03
45	36.77	31.44	666.4	16.63
50	43.60	35.67	867.2	18.33
60	57.42	44.84	1373	21.96
70	70.78	54.71	2014	25.94
80	83.31	64.98	2785	30.17
90	94.98	75.48	3678	34.61
100	105.9	86.06	4683	39.23
110	116.3	96.65	5794	43.98
120	126.2	107.2	7008	48.80
130	135.7	117.7	8318	53.72
140	144.7	128.1	9720	58.67
150	153.4	138.4	11 210	63.67
160	161.5	148.5	12790	68.56
170	169.2	158.5	14440	73.56

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 9 2022

Таблица 3. Окончание

Т, К	<i>C(T)</i> , Дж моль ⁻¹ К ⁻¹	<i>S</i> (<i>T</i>), Дж моль ⁻¹ К ⁻¹	<i>H</i> (<i>T</i>) — <i>H</i> (0), Дж моль ⁻¹	Ф(<i>T</i>), Дж моль ⁻¹ К ⁻¹
180	176.5	168.4	16 170	78.57
190	183.3	178.1	17970	83.52
200	189.6	187.7	19830	88.55
210	195.6	197.1	21760	93.48
220	201.1	206.3	23740	98.39
230	206.3	215.4	25780	103.3
240	211.1	224.3	27870	108.2
250	215.5	233.0	30 000	113.0
260	219.6	241.5	32 180	117.7
270	223.5	249.9	34390	122.5
280	227.1	258.1	36650	127.2
290	230.4	266.1	38 930	131.9
298.15	232.9 ± 1.2	272.5 ± 2.9	40820 ± 240	135.6 ± 1.3
300	233.5	274.0	41 2 50	136.5
310	236.4	281.7	43600	141.1
320	239.1	289.2	45980	145.5
330	241.6	296.6	48380	150.0
340	243.9	303.9	50810	154.5
350	246.1	311.0	53260	158.8
400	255.1	344.4	65800	179.9
500	266.9	402.7	91 960	218.8
600	274.1	452.1	119000	253.8
700	279.2	494.7	146700	285.1
800	283.4	532.3	174800	313.8
900	287.2	565.9	203400	339.9
1000	290.7	596.3	232300	364.0
1100	294.1	624.2	261 500	386.5
1200	297.2	649.9	291 100	407.3
1300	300.1	673.8	320900	427.0
1350	301.5	685.2	336000	436.3

Курсивом выделены расчетные значения.

теплоемкости Lu₂O₃·2HfO₂. Как видно из рис. 5, где приведена температурная зависимость разности $\Delta C_p(T)$, она имеет сложный вид и характеризуется наличием максимума в области 150–220 К. Представляет интерес описать полученную зависимость с помощью известных формул для расчета аномальной теплоемкости Шоттки [23]:

$$\Delta C_{\rm el} = Q^{-2} R^{-1} T^{-2} \left\{ Q \sum_{i=1}^{n} g_i E_i^2 \exp\left(\frac{-E_i}{RT}\right) - \left[\sum_{i=1}^{n} g_i E_i \exp\left(-\frac{E_i}{RT}\right)\right]^2 \right\},$$
(10)

~

Рис. 5. Оценка аномального вклада в теплоемкость Dy_2O_3 ·2Hf O_2 : *1* – разность молярных теплоемкостей $\Delta C_p(T) = C_p(Dy_2O_3$ ·2Hf $O_2) - C_p(Lu_2O_3$ ·2Hf $O_2)$ в интервале температур 2.5–350 К; *2* – расчет по уравнению (10) величины $\Delta C_p(T)$, набор частот 74, 125, 261, 355 и 700 см⁻¹.

где $Q = \sum_{i=1}^{n} g_i \exp\left(\frac{E_i}{RT}\right)$ – статистическая сумма, R – универсальная газовая постоянная, T – абсолютная температура, g – степень вырождения, E_i – энергия *i*-го уровня.

В литературе имеются значения частот штарковских уровней для оксида Dy_2O_3 (74, 261, 355, 505, 602, 746, 1080 см⁻¹) [27], которые были использованы в качестве первого приближения для набора частот, удовлетворительно описывающего аномальную теплоемкость в области 20–300 К. Удовлетворительное описание температурной зависимости $\Delta C_p(T)$ (рис. 5) достигается при использовании набора частот 74, 125, 261, 355 и 700 см⁻¹. Резкое увеличение значений $\Delta C_p(T)$ ниже 20 К обусловлено переходом твердого раствора из парамагнитного в антиферромагнитное состояние.

ЗАКЛЮЧЕНИЕ

Молярная теплоемкость твердого раствора Dy_2O_3 ·2HfO₂ измерена методами релаксационной (2.5–35 K) и адиабатической (6.4–346.1 K) калориметрии на синтезированном и охарактеризованном методами РФА, РЭМ и химического анализа образце. По сглаженным значениям теплоемкости с учетом ранее полученной температурной зависимости теплоемкости (320–1350 K) в интервале 2.5–1350 K рассчитаны термодинамические функции твердого раствора Dy_2O_3 ·2HfO₂: энтропия, приращение энтальпии и приведенная

энергия Гиббса с учетом энтропийного вклада антиферромагнитного превращения при температуре <2.5 К. Проведен анализ вклада в теплоемкость аномалии Шоттки. Полученные результаты могут быть использованы для термодинамического моделирования фазовых равновесий с участием твердого раствора Dy₂O₃·2HfO₂ и разработки технологий синтеза керамических материалов на его основе.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда № 18-13-00025, https://rscf.ru/project/18-13-00025/.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Andrievskaya E.R.* // J. Europ. Ceram. Soc. 2008. V. 28. P. 2363.
 - https://doi.org/10.1016/jeurceramsoc.2008.01.009
- 2. Arseniev P.A., Glushkova V.B., Evdokimov A.A. et al. Moskva: Nauka. 1985. 261 p. (in Russian).
- Subramanian M.A., Aravamudan G., Rao Subba G.V. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
- Popov V.V., Petrunin V.F., Korovin S.A. et al. // Russ. J. Inog. Chem. 2011. V. 56. P. 1538. https://doi.org/10.1134/S0036023611100184
- Blanchard P.E.R., Liu S., Kennedy B.J. et al. // J. Phys. Chem. C. 2013. V. 117. P. 2266. https://doi.org/10.1021/jp311329q
- Popov V.V., Zubavichus Ya.V., Menushenkov A.P. et al. // Russ. J. Inog. Chem. 2015. V. 60. P. 16. https://doi.org/10.1134/S003602361501009X
- Popov V.V., Menushenkov A.P., Yaroslavtsev A.A. et al. // J. Alloys Compd. 2016. V. 689. P. 669. https://doi.org/10.1016/j.jallcom.2016.08.019
- Menushenkov A.P., Popov V.V., Zubavichus Ya.A. et al. // J. Struct. Chem. 2016. V. 57. 1450. https://doi.org/10.1134/s0022476616070210
- Cao X.Q., Vassen R., Stoever D. // J. Eur. Ceram. Soc. 2004. V. 24. P. 1–10. https://doi.org/1016/S0955-2219(03)00129-8
- Padture N.P., Hell M., Jordan E.H. // Sci. 2002. V. 296.
 P. 280. https://doi.org/ https://doi.org/10.1126/science.1068609
- López-Cota F.A., Cepeda-Sánchez N.M., Díaz-Guillén J.A. et al. // J. Am. Ceram. Soc. 2017. V. 100. P. 1994. https://doi.org/10.1111/jace.14712
- Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
- 13. Panneerselvam G., Venkarta Krishnan R., Nagarajan K., Antony M.P. // J. Therm. Anal. Calor. 2010. V. 101.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 96 № 9 2022

P. 169.

https://doi.org/10.1007/s10973-009-0430-8

- 14. Powder diffraction files (Inorganic Phases) Joint Committee on Powder diffraction Data (JCPDS). ICDD card numbers: 00-024-0360.
- 15. https://www.qdusa.com/products/ppms.html
- Ryumin M.A., Nikiforova G.E., Tyurin A.V. et al. // Inorg. Mater. 2020. V. 56. P. 97. https://doi.org/0.1134/S0020168520010148
- 17. *Wieser M.E.* //Pure Appl. Chem. 2006. V. 78. 2051. https://doi.org/10.1351/pac200678112051
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932.
 V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
- Casion J.D., Cooke A.H., Leask M.J.M. et al. // J. Mater. Sci. 1968. V. 3. P. 402. https://doi.org/10.1007/bf00550984
- Ramon J.G.A., Wang C.W., Ishida L. et al. // Phys. Rev. B. 2019. V. 99. 214442. https://doi.org/10.1103/PhysRevB.99.214442

- 21. *Ramirez A.P., Hayashi A., Cava R.J. et al.* // Nature. 1999. V. 399. P. 333. https://doi.org/10.1038/20619
- Chirico R.D., Westrum E.F., Ir. // J. Chem. Thermodyn. 1980. V. 12. P. 71. https://doi.org/10.1016/0021-9614(80)90118-4
- Westrum E.F., Ir. // J. Thermal Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/bf01914288
- 24. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- 25. *Voronin G.F., Kutsenok I.B.* // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- 26. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Dokl. Phys. Chem. 2021. V. 500. P. 105. https://doi.org/10.1134/S001250162110002X
- Gruber J.B., Chirico R.D., Westrum E.F., Jr. // J. Chem. Phys. 1982. V. 76. P. 4600. https://doi.org/10.1063/1.443538