ТЕПЛОЕМКОСТЬ: ЭКСПЕРИМЕНТ И РАСЧЕТ

УДК 544.31:547.1'128

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА СВЕРХРАЗВЕТВЛЕННОГО ПИРИДИЛФЕНИЛЕНОВОГО ПОЛИМЕРА С ФЕНИЛЕНОВОЙ МОСТИКОВОЙ ГРУППОЙ

© 2022 г. А. В. Маркин^{а,*}, Н. Н. Смирнова^{*a*}, С. С. Сологубов^{*a*}, Е. С. Чамкина^{*b*}, Н. В. Кучкина^{*b*}, З. Б. Шифрина^{*b*}

^а Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия

^bИнститут элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия

*e-mail: markin@chem.unn.ru Поступила в редакцию 01.04.2022 г. После доработки 01.04.2022 г. Принята к публикации 05.04.2022 г.

Методами прецизионной адиабатической вакуумной калориметрии и дифференциальной сканирующей калориметрии изучена температурная зависимость теплоемкости сверхразветвленного пиридилфениленового полимера с фениленовой мостиковой группой в области 6–650 К. В низкотемпературном интервале 10-18 К выявлено аномальное изменение теплоемкости (стеклоподобный *G*-переход). Начиная с T = 400 K, на кривой теплоемкости выявлен экзотермический эффект, обусловленный сшиванием макромолекул сверхразветвленного полимера. По полученным экспериментальным данным рассчитаны стандартные термодинамические функции полимера для области от $T \rightarrow 0$ до 400 K, а также стандартная энтропия его образования при T = 298.15 K.

Ключевые слова: сверхразветвленный пиридилфениленовый полимер, адиабатическая вакуумная калориметрия, дифференциальная сканирующая калориметрия, теплоемкость, термодинамические функции

DOI: 10.31857/S0044453722090230

С конца 80-х годов ХХ века исследование полимерных соединений с разветвленной архитектурой является актуальным направлением развития химической науки. Среди большого многообразия дендритных макромолекул наибольшее распространение получили сверхразветвленные полимеры [1, 2] и дендримеры [3-5], которые характеризуются высокой растворимостью, низкой вязкостью растворов, а также высокой реакционной способностью благодаря наличию большого количества концевых функциональных групп. Высокоупорядоченные монодисперсные дендримеры синтезируют поэтапно, чередуя реакции роста макромолекулы и активации функциональных групп, в то время как сверхразветвленные полимеры, имеющие нерегулярное строение, получают одностадийным методом [6]. С помошью данного подхода получены сверхразветвленные полиэфиры [7], полиуретаны [8, 9], поликарбосиланы и полисилоксаны [10, 11], полиамиды [12, 13]. В связи с этим сверхразветвленные полимеры являются предпочтительными объектами для крупнотоннажных производств и дальнейшего практического применения в катализе [14-16],

биомедицине [17–20], оптоэлектронике [21] и других областях.

Ранее методами прецизионной калориметрии нами были изучены сверхразветвленные перфторированные полифениленгерманы (ПФГ) [22, 23], а также пиридинсодержащие полифениленовые дендримеры первой-четвертой генераций [24, 25]. В данной работе исследованы термодинамические свойства сверхразветвленного пиридилфениленового полимера с фениленовой мостиковой группой, определены его теплоемкости методами прецизионной адиабатической вакуумной и дифференциальной сканирующей калориметрии в интервале температур 6-650 К; выявлены возможные физические превращения и оценены их термодинамические характеристики; рассчитаны стандартные термодинамические функции для области от $T \rightarrow 0$ до 400 K; проведен сравнительный анализ термодинамических свойств исследованного полимера и ранее изученного структурного аналога [26].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Характеристики изученного образиа. Схематическое изображение структуры исследуемого сверхразветвленного пиридилфениленового полимера с фениленовой мостиковой группой приведено на рис. 1. Образец был синтезирован в Институте элементоорганических соединений им. А.Н. Несмеянова РАН (г. Москва) по реакции циклоприсоединения Дильса-Альдера; в качестве мультифункциональных мономеров были использованы пиридинсодержащий ароматический дендример первой генерации (А₆) и ароматический бисциклопентадиенон (В₂). Синтез проводили в дифениловом эфире при температуре 160°С в течение 6.5 ч; выход полимера составил 69% [27]. Состав и структура сверхразветвленного полимера были подтверждены методами ¹Н и ¹³С ЯМР-спектроскопии и MALDI-TOF масс-спектрометрии. Молекулярная масса и индекс полидисперсности соединения (M_w = 33700 г/моль, PDI = 3.27) были определены с помощью гельпроникающей хроматографии.

Авторами работы [27] была установлена брутто-формула повторяющегося звена сверхразветвленного полимера – $[C_{177}H_{111}N_6]$. Молярная масса звена (M = 2321.79 г/моль) была определена по таблице стандартных атомных масс, рекомендованной ИЮПАК [28]. Все термодинамические характеристики полимера были рассчитаны на указанный моль структурного звена.

Аппаратура и методики измерений. Теплоемкость сверхразветвленного полимера в области температур 6–350 К была измерена с использованием высокоточного адиабатического вакуумного калориметра БКТ-3 ("Термис", Московская обл.). Конструкция установки и методика измерений подробно описаны в работах [29, 30]. В калориметрическую ампулу было помещено 0.2041 г образца полимера. Перед измерением теплоемкости ампула с исследуемым полимером при комнатной температуре заполнялась сухим гелием, служащим в качестве теплообменного газа. В качестве хладагентов были использованы жидкие гелий и азот. Скорость нагревания ампулы с веществом в калориметрическом опыте составляла 0.2 К/мин. Поверку калориметра осуществляли путем измерения теплоемкостей эталонных веществ - бензойной кислоты и синтетического сапфира (ВНИИМ им. Д.И. Менделеева, Санкт-Петербург) [31]. Установлено, что используемая калориметрическая установка позволяет определять теплоемкости веществ с относительной стандартной неопределенностью $u_{\rm r}(C_{\rm p}) = 0.02 - 0.03$ в области температур 6-15 К, $u_{\rm r}(C_{\rm p}) = 0.005$ в интервале температур 15–40 К, $u_{\rm r}(C_{\rm p}) = 0.002 - 0.003$ в температурной области 40-350 К; стандартная неопределенность u(T) = 0.01 К.

Для определения теплоемкости сверхразветвленного полимера в интервале температур 350-650 К был использован дифференциальный сканирующий калориметр DSC 204 F1 Phoenix (NETZSCH, Германия). Конструкция калориметра и методика измерений подробно описаны в работах [32, 33] и программном обеспечении NETZSCH Proteus Software. Калибровку калориметра осуществляли посредством определения теплофизических характеристик плавления индия, висмута, цинка, олова, ртути, калия, хлорида цезия и бифенила. Стандартная неопределенность u(T) = 0.5 К. Для определения теплоемкости полимера были выполнены последовательные измерения базовой линии. стандартного образца (корунда) и образца полимера. Скорость нагревания ампулы с веществом составляла 5 К/мин. Измерения проводили в атмосфере высокочистого аргона со скоростью потока газа 25 мл/мин. Установлено, что используемый калориметр позволяет определять теплоемкости веществ с относительной стандартной неопределенностью $u_r(C_p) = 0.02$ в температурной области 350-650 K.

Термогравиметрический анализ сверхразветвленного полимера был проведен с помощью термомикровесов TG 209 *F1 Iris* (NETZSCH, Германия) в температурном интервале 300—850 К в атмосфере аргона. Скорость нагревания ампулы с веществом составляла 5 К/мин. Установлено, что температура начала разложения исследуемого полимера $T \sim 700$ К.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Теплоемкость. Температурная зависимость теплоемкости сверхразветвленного полимера с фениленовой мостиковой группой представлена на рис. 2. Относительное отклонение экспериментальных значений теплоемкости от сглаженной кривой $C_p^{\circ} = f(T)$ в температурной области 6–400 К представлено на рис. 3. Теплоемкость исследуемого полимера составляла 25–30% от суммарной теплоемкости калориметрической ампулы с веществом при ее исследовании в БКТ-3. Сглаживание экспериментальных значений теплоемкости проводили с помощью логарифмических полиномиальных уравнений.

Первоначально образец сверхразветвленного полимера был охлажден от комнатной температуры до температуры начала измерений ($T \sim 7$ K). В процессе его нагревания была измерена теплоемкость (рис. 2, кривая *I*), которая плавно увеличивалась с ростом температуры вплоть до T = 400 K за исключением области T = 10-18 K, где проявлялось аномальное изменение теплоемкости, напоминающее расстеклование. При T > 400 K наблюдалось уменьшение "кажущейся теплоем-

Рис. 1. Схематическое изображение структуры исследуемого сверхразветвленного пиридилфениленового полимера с фениленовой мостиковой группой.

кости" полимера, и были получены отрицательные значения C_p . Наблюдаемое изменение теплоемкости связано с экзотермическим процессом, обусловленным сшиванием макромолекул изученного соединения. Это согласуется с повторным измерением C_p полимера после того, как он был охлажден от 650 до 310 К. Повторное измерение теплоемкости полимера было выполнено методом ДСК (рис. 2, кривая 2). Значения теплоемкости в области T = 310-400 К ниже, чем C_p первоначально загруженного образца на ~10%, что вполне логично в предположении термического сшивания исходного полимера. Известно, что теплоемкости сшитых полимеров

Рис. 2. Температурная зависимость теплоемкости сверхразветвленного пиридилфениленового полимера с фениленовой мостиковой группой; *1* и *2* – см. текст.

Рис. 3. Относительное отклонение экспериментальных значений теплоемкости сверхразветвленного пиридилфениленового полимера с фениленовой мостиковой группой от сглаженной кривой.

всегда меньше аналогичных значений для несшитых полимеров [34]. Отметим, что подобное поведение теплоемкости наблюдалось и в случае ранее исследованных сверхразветвленных дендритоподобных ПФГ [22, 23], а также пиридилфениленового структурного аналога [26].

Стандартные термодинамические характеристики аномального изменения теплоемкости в гелиевой области температур. В интервале T = 10-18 К обнаружено аномальное изменение теплоемкости сверхразветвленного полимера, напоминающее по форме G-переход. Экспериментальные значения теплоемкости в этой области представлены на рис. 4. За температуры начала и конца перехода принимали температуры начала и конца аномальной зависимости теплоемкости. Увеличение теплоемкости при G-переходе $\Delta C_p^{\circ}(T_G^{\circ}) = (53.5 \pm 0.5) \, \text{Дж/(K моль)}$ было определено графически экстраполяцией усредняющих кривых зависимости $C_p^{\circ} = f(T)$ на участках до и после перехода к температуре перехода $T_G^{\circ} = 14 \pm \pm 1 \, \text{K}$ (рис. 4). Конфигурационную энтропию $S_{\text{conf}}^{\circ} = 14 \pm 2 \, \text{Дж/(K моль)}$ рассчитывали по уравнению, предложенному в работе [35]:

$$S_{\rm conf}^{\circ} = \Delta C_{\rm p}^{\circ}(T_{\rm G}^{\circ}) \ln(T_{\rm G}^{\circ}/T_{\rm K}), \qquad (1)$$

2022

где $T_{\rm K}$ — температура Кауцманна [36]. При определении $S_{\rm conf}^{\circ}$ сверхразветвленного полимера принимали, что соотношение ($T_{\rm G}^{\circ}/T_{\rm K}$) = 1.29 [37]. Полагали, что уравнение (1) справедливо для оценки $S_{\rm conf}^{\circ}$ при G-переходе полимера.

Рис. 4. Низкотемпературная зависимость теплоемкости сверхразветвленного пиридилфениленового полимера с фениленовой мостиковой группой: T_{G}^{α} – температура G-перехода.

Необходимо отметить, что сверхразветвленные дендритоподобные ПФГ также имеют низкотемпературное превращение в этом интервале [22, 23], а также пиридилфениленового структурного аналога [26]. Природа этих превращений не ясна, поскольку их интерпретация требует дополнительных исследований в области, близкой к $T \rightarrow 0$.

Мультифрактальная обработка низкотемпературной теплоемкости. С использованием экспериментальных данных о низкотемпературной теплоемкости сверхразветвленного полимера было оценено значение фрактальной размерности *D*. Основное уравнение мультифрактальной модели обработки низкотемпературной теплоемкости [38, 39] имеет вид:

$$C_{v} = 3D(D+1)kN\gamma(D+1)\xi(D+1)(T/\Theta_{\max})^{D}, \quad (2)$$

где k — постоянная Больцмана; N — число атомов в молекуле; $\gamma(D + 1) - \gamma$ -функция; $\xi(D + 1) - \xi$ -функция Римана; Θ_{max} — характеристическая температура. Для конкретного твердого тела $D(D + 1)kN\gamma(D + 1)\xi(D + 1)(1/\Theta_{max})^{D} = A$ — постоянная величина. Тогда, логарифмируя уравнение (2), можно записать:

$$\ln C_v = \ln A + D \ln T. \tag{3}$$

Экспериментальные значения C_p° при T < 50 К можно принять равными C_v . Таким образом, с использованием соответствующих экспериментальных данных о теплоемкости сверхразветвленного полимера в интервале T = 20-50 К было получено значение D = 1.2; характеристическая температура $\Theta_{\text{max}} = 248$ К. Эти значения определены с погрешностью $\pm 0.8\%$. Полученное значение фрактальной размерности D указывает на цепочечно-слоистую топологию структуры изученного полимера. Стандартные термодинамические функции. Стандартные термодинамические функции сверхразветвленного полимера приведены в табл. 1. Для расчета термодинамических функций температурную зависимость теплоемкости экстраполировали к $T \rightarrow 0$ от температуры начала измерений по функции теплоемкости Дебая [40]:

$$C_{\rm p}^{\rm o} = n \mathbf{D}(\Theta_{\rm p}/T), \tag{4}$$

где **D** – функция теплоемкости Дебая; n = 4 и $\Theta_{\rm D} = 56.2$ К – специально подобранные параметры. Уравнение (4) воспроизводит значения $C_{\rm p}^{\circ}$ в интервале T = 7-12 К с погрешностью $\pm 1.5\%$. Расчет энтальпии [$H^{\circ}(T) - H^{\circ}(0)$] и энтропии [$S^{\circ}(T) - S^{\circ}(0)$] проводили численным интегрированием зависимостей $C_{\rm p}^{\circ} = f(T)$ и $C_{\rm p}^{\circ} = f(\ln T)$, соответственно. Расчет функции Гиббса осуществляли по уравнению Гиббса–Гельмгольца [41].

Стандартная энтропия образования $\Delta_{\rm p}S^{\circ}$ сверхразветвленного полимера при T = 298.15 К была рассчитана с использованием его энтропии при той же температуре (табл. 1) и абсолютных энтропий простых веществ: С_(гр), H_{2(г)} и N_{2(г)} [42]. Полученное значение $\Delta_{\rm p}S^{\circ}([C_{177}H_{111}N_6], 298.15) = -(6033 \pm 55)$ Дж/(К моль) соответствует уравнению реакции:

$$177C_{(rp)} + 55.5H_{2(r)} + 3N_{2(r)} \rightarrow [C_{177}H_{111}N_6]_{(amop\phi)},$$

где (гр) – графит, (г) – газ, (аморф) – аморфное состояние полимера.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Госзадание, проект № 0729-2020-0039), Программы стратегического академического лидерства "Приоритет-2030" (проект H-489-99_2021-2022) и стипендии Пре-

Таблица 1. Стандартные термодинамические функции сверхразветвленного пиридилфениленового полимера с фениленовой мостиковой группой, $M(C_{177}H_{111}N_6) = 2321.79$ г/моль, $p^\circ = 0.1$ МПа

<i>T</i> , K	$C^{\circ}(T)$	$\begin{bmatrix} \mathbf{H}^{0}(\mathbf{T}) & \mathbf{H}^{0}(0) \end{bmatrix}$	$[\mathfrak{S}(T) - \mathfrak{S}(0)]$	$\begin{bmatrix} C^{\circ}(T) & H^{\circ}(0) \end{bmatrix}$
	$C_p(I),$	$[\Pi(I) - \Pi(0)],$	[S(I) - S(0)], $\Pi_{W}/(K_{MOH})$	-[0(1) - 11(0)],
	Дж/(К моль)	кдж/ моль	Дж/(К моль)	КДЖ/ МОЛБ
5	13.7	0.0178	4.77	0.00605
10	56.4	0.190	27.0	0.080
15	145	0.669	64.6	0.300
20	229.1	1.628	119.2	0.7558
25	287.9	2.925	176.8	1.496
30	342.9	4.502	234.2	2.524
35	397.1	6.352	291.1	3.837
40	450.0	8.471	347.6	5.434
45	501.3	10.85	403.6	7.312
50	550.7	13.48	459.0	9.469
60	645.1	19.46	567.8	14.61
70	735.2	26.37	674.1	20.82
80	823.1	34.16	778.0	28.08
90	909.7	42.83	880.0	36.37
100	990.6	52.34	980.1	45.67
110	1069	62.63	1078	55.97
120	1150	73.73	1175	67.23
130	1234	85.65	1270	79.45
140	1316	98.40	1364	92.63
150	1397	112.0	1458	106.7
160	1475	126.3	1551	121.8
170	1553	141.5	1642	137.8
180	1633	157.4	1733	154.6
190	1718	174.1	1824	172.4
200	1804	191.8	1914	191.1
210	1886	210.2	2004	210.7
220	1974	229.5	2094	231.2
230	2062	249.7	2184	252.6
240	2150	270.7	2273	274.9
250	2238	292.7	2363	298.0
260	2329	315.5	2452	322.1
270	2424	339.3	2542	347.1
280	2523	364.0	2632	373.0
290	2628	389.7	2722	399.7
298.15	2716	411.5	2796	422.2
300	2736	416.6	2813	427.4
310	2846	444.5	2905	456.0
320	2956	473.5	2997	485.5
330	3064	503.6	3089	515.9
340	3171	534.8	3183	547.3
350	3279	567.0	3276	579.6
360	3356	600.1	3369	612.8
370	3442	634.1	3462	647.0
380	3518	669.0	3555	682.1
390	3572	704.4	3647	718.1
400	3600	740.3	3738	755.0

Примечание. Стандартные неопределенности u(p) = 10 кПа, u(T) = 0.01 K в области 5–350 K, u(T) = 0.5 K в интервале 350–400 K. Расширенные относительные неопределенности $U_{\rm r}(C_{\rm p}^{\circ}(T)) = 0.02, 0.005, 0.002 \text{ и } 0.02; U_{\rm r}[H^{\circ}(T) - H^{\circ}(0)] = 0.022, 0.007, 0.005 \text{ и } 0.022; U_{\rm r}[S^{\circ}(T) - S^{\circ}(0)] = 0.023, 0.008, 0.006 \text{ и } 0.023; U_{\rm r}[G^{\circ}(T) - H^{\circ}(0)] = 0.03, 0.01, 0.009 \text{ и } 0.03 \text{ в температурных интервалах } 5-15, 15-40, 40-350 \text{ и } 350-400 \text{ K}$, соответственно (уровень достоверности $0.95. k \approx 2$). зидента Российской Федерации для молодых ученых и аспирантов (СП-1369.2022.4).

СПИСОК ЛИТЕРАТУРЫ

- Hyperbranched Polymers: Synthesis, Properties, and Applications / Edited by D. Yan, C. Gao, H. Frey. John Wiley & Sons, Inc.: Hoboken, New Jersey, USA, 2011. 481 p.
- Voit B.I., Lederer A. // Chem. Rev. 2009. V. 109. P. 5924.
- 3. Tomalia D.A. // Prog. Polym. Sci. 2005. V. 30. P. 294.
- Newkome G.R., Shreiner C.D. // Polymer. 2008. V. 49. P. 1.
- Музафаров А.М., Василенко Н.Г., Татаринова Е.А. и др. // Высокомолек. соед. Сер. С. 2011. Т. 53. № 7. С. 1217.
- Zheng Y., Li S., Weng Z. et al. // Chem. Soc. Rev. 2015. V. 44. P. 4091.
- Erber M., Boye S., Hartmann T. et al. // J. Polym. Sci. Part A: Polym. Chem. 2009. V. 47. P. 5158.
- Spindler R., Fréchet J.M.J. // Macromolecules. 1993. V. 26. P. 4809.
- Kumar A., Ramakrishnan S. // J. Polym. Sci. Part A: Polym. Chem. 1996. V. 34. P. 839.
- Mathias L.J., Carothers T.W. // J. Am. Chem. Soc. 1991. V. 113. P. 4043.
- Muzafarov A.M., Tatarinova E.A., Vasilenko N.V. et al. // in Organosilicon Compounds: Experiment (Physico-Chemical Studies) and Applications (edited by V.Ya. Lee). Academic Press: Cambridge, Massachusetts, USA, 2017. P. 323.
- 12. Hobson L.J., Feast W.J. // Polymer. 1999. V. 40. P. 1279.
- Ohta Y., Kamijyo Y., Fujii S. et al. // Macromolecules. 2011. V. 44. P. 5112.
- 14. Zheng X., Oviedo I.R., Twyman L.J. // Macromolecules. 2008. V. 41. P. 7776.
- 15. *Hu N., Yin J.Y., Tang Q. et al.* // J. Polym. Sci. Part A: Polym. Chem. 2011. V. 49. P. 3826.
- Baird N., Dittmar J.W., Losovyj Y.B. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 2285.
- 17. Zhang H., Patel A., Gaharwar A.K. et al. // Biomacromolecules. 2013. V. 14. P. 1299.
- Duncan R., Vicent M.J. // Adv. Drug Deliv. Rev. 2013. V. 65. P. 60.
- Wang D., Zhao T., Zhu X. et al. // Chem. Soc. Rev. 2015. V. 44. P. 4023.

- 20. *Li S., Omi M., Cartieri F. et al.* // Biomacromolecules. 2018. V. 19. P. 3754.
- Liou G.S., Lin H.Y., Yen H.J. // J. Mater. Chem. 2009. V. 19. P. 7666.
- 22. Zakharova O.G., Smirnova N.N., Markin A.V. et al. // Thermochim. Acta. 2008. V. 468. P. 61.
- 23. Смирнова Н.Н., Захарова Ю.А., Рученин В.А. и др. // Журн. физ. химии. 2012. Т. 86. № 4. С. 617.
- 24. Смирнова Н.Н., Маркин А.В., Захарова Ю.А. и др. // Изв. АН. Сер. хим. 2011. № 1. С. 127.
- 25. Смирнова Н.Н., Захарова Ю.А., Маркин А.В. и др. // Там же. хим. 2013. № 10. С. 2258.
- Смирнова Н.Н., Маркин А.В., Сологубов С.С. и др. // Журн. физ. химии. 2020. Т. 94. № 2. С. 195.
- 27. Kuchkina N.V., Zinatullina M.S., Serkova E.S. et al. // RSC Adv. 2015. V. 5. P. 99510.
- 28. *Meija J., Coplen T.B., Berglund M. et al.* // Pure Appl. Chem. 2016. V. 88. P. 265.
- 29. *Малышев В.М., Мильнер Г.А., Соркин Е.Л. и др. //* Приборы и техника эксперим. 1985. № 6. С. 195.
- Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623.
- 31. SabbahR., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93.
- 32. *Höhne G.W.H., Hemminger W.F., Flammersheim H.-J.* Differential Scanning Calorimetry. Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2003. 310 p.
- 33. Drebushchak V.A. // J. Therm. Anal. Calorim. 2005. V. 79. № 1. P. 213.
- 34. *Вундерлих Б., Баур Г*. Теплоемкость линейных полимеров. М.: Мир, 1972. 238 с.
- 35. *Adam G., Gibbs J.H.* // J. Chem. Phys. 1965. V. 43. P. 139.
- 36. Kauzmann W. // Chem. Rev. 1948. V. 43. P. 219.
- Bestul A.B., Chang S.S. // J. Chem. Phys. 1964. V. 40. P. 3731.
- Lazarev V.B., Izotov A.D., Gavrichev K.S. et al. // Thermochim. Acta. 1995. V. 269–270. P. 109.
- 39. Шеберинева О.В., Изотов А.Д., Гавричев К.С. и др. // Неорган. материалы. 1996. Т. 32. № 1. С. 36.
- 40. Debye P. // Ann. Phys. 1912. V. 344. P. 789.
- Experimental Thermodynamics, Volume I: Calorimetry of Non-reacting Systems / Ed. by J.P. McCullough, D.W. Scott. Butterworth & Co. (Publishers) Ltd.: London, England, 1968. 626 p.
- 42. *Chase M.W.Jr.* // J. Phys. Chem. Ref. Data, Monograph No. 9. 1998. V. 1–2. P. 1.