СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ

УДК 544.344.4:546.657'43'73'72

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СВОЙСТВА СЛОЖНЫХ ОКСИДОВ (Nd,Ba)(Co,Fe)O_{3-δ}

© 2023 г. Т. В. Аксенова^{*a*,*}, Н. Е. Волкова^{*a*}, В. С. Легонькова^{*a*}, В. А. Черепанов^{*a*}

^аУральский федеральный университет им. первого Президента России Б.Н. Ельцина, Екатеринбург, 620002 Россия *e-mail: TV.Aksenova@urfu.ru

Поступила в редакцию 16.05.2022 г. После доработки 16.05.2022 г. Принята к публикации 25.05.2022 г.

Определены области гомогенности и кристаллическая структура твердых растворов состава $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$. В зависимости от концентрации введенного бария оксиды $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ кристаллизуются в орторомбически искаженной (x = 0.05, пр. гр. *Pbnm*), кубической ($0.6 \le x \le 0.9$, пр. гр. *Pm-3m*) структуре перовскита или структуре двойного слоистого перовскита NdBaCo_{2-x}Fe_xO_{5+ $\delta}} (<math>0.0 \le x \le 1.4$, пр. гр. *P4/mmm*). Построены зависимости параметров элементарных ячеек от состава твердых растворов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$. Показано, что величина кислородной нестехиометрии $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$, определенная методом термогравиметрического анализа в интервале 298–1373 К на воздухе, увеличивается с ростом содержания бария и кобальта. Средние значения коэффициентов термического расширения оксидов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ ($0.8 \le x \le 0.9$ и $0.7 \le y \le 0.9$) заметно увеличиваются с ростом температуры от (13.5-14.5) × 10^{-6} K⁻¹ в интервале 300–700 K до (23.2-26.2) × 10^{-6} K⁻¹ в интервале 700–1373 K.</sub>

Ключевые слова: сложные оксиды, рентгенофазовый анализ, кристаллическая структура, термогравиметрия, кислородная нестехиометрия, термическое расширение **DOI:** 10.31857/S0044453722120020, **EDN:** BAJSQT

Неослабевающий интерес к оксидным материалам со структурой типа перовскита на основе $LnMeO_{3-\delta}$ ($Ln = P3\Im/Ш3\Im$, Me = Mn, Fe, Co, Ni) ставит задачи по изучению их термодинамической стабильности, кристаллической структуры, кислородной нестехиометрии, термических и электрических свойств. Частичное замещение катионов в А- и/или В-подрешетках позволяет существенно изменять физико-химические свойства оксидов, требуемые для практического использования.

Для кобальтитов с Ln = Pr–Но ранее было показано, что введение бария в позицию РЗЭ не приводит к образованию твердых растворов Ln_{1-x}Ba_xCoO_{3-δ}, а при x = 0.5 формируется слоистая структура LnBaCo₂O_{5+δ} (так называемая 112фаза), в которой наблюдается упорядоченное расположение катионов Ln и Ba вдоль оси *c* [1–4]. Широкая область гомогенности по кислороду $0.0 \le \delta < 1.0$ реализуется путем преимущественной локализации вакансий кислорода в слоях (LnO_δ), в то время как слои (BaO) остаются комплектными. Такие особенности структуры обеспечивают высокую электронно-ионную проводимость, что

делает эти материалы перспективными для использования в качестве катодов среднетемпературных твердооксидных топливных элементов (ТОТЭ) [5-9]. Хотя аналогичные двойные слоистые ферриты (типа 112) LnBaFe₂O_{5+δ} получаются лишь при достаточно низком парциальном давлении кислорода ($P_{\mathrm{O}_2} \approx 10^{-15}$ атм) [10, 11] было показано, что структура двойных слоистых перовскитов сохраняется на воздухе при частичном замещении кобальта на железо LnBaCo_{2-x}Fe_xO₅₊₆ (Ln = Nd, Sm, Gd) [12-15]. Область гомогенности твердого раствора NdBaCo_{2-x}Fe_xO_{5+ δ} со слоистой тетрагональной структурой $(a_p \times a_p \times 2a_p)$ при 1373 К на воздухе ограничивается x = 1.4 [15]. Структура оксидов NdBaCo_{2-x}Fe_xO_{5+ δ} с большим содержанием железа (x = 1.5 и 2.0), полученных при 1473 К и отожженных в течение 6 ч при 1173 К была кубической [12]. Увеличение содержания железа в NdBaCo_{2-x}Fe_xO_{5+δ} приводит к увеличению содержания кислорода $(5 + \delta)$ и уменьшению значений коэффициентов термического расширения [12, 15].

Ведение бария в А-подрешетку ферритов LnFeO_{3- δ} в условиях воздуха ($P_{O_2} = 0.21$ атм), в случае крупных РЗЭ (Ln = La, Pr) приводит к образованию твердых растворов Ln_{1-x}Ba_xFeO_{3-δ} со статистически распределенными катионами Ln и Ва в А-подрешетке [16–19], а в случае РЗЭ меньших радиусов – к формированию упорядоченных слоистых структур. Для Ln = Sm установлено образование упорядоченной пятислойной структуры, которая может быть представлена формулой $Sm_{2-\epsilon}Ba_{3+\epsilon}Fe_5O_{15-\delta}$ с $\epsilon = 0.125$ (или $Sm_{0.375}Ba_{0.625}$ FeO_{2 85} при пересчете на простой перовскит) [20]. В отличие от двойного перовскита типа 112, в пятислойном наблюдается чередование и слоев, содержащих только атомы РЗЭ или бария, и также смешанных слоев РЗЭ и бария вдоль оси с в последовательности: Ln-Ba-(Ln,Ba)-(Ln,Ba)-Ba-Ln. Кроме того, было показано, что вакансии кислорода преимущественно концентрируются в слоях $FeO_{2-\delta}$, расположенных между смешанными (Sm/Ba) слоями. Для Ln = Nd, имеющего радиус, промежуточный между Pr и Sm, формирование упорядоченной пятислойной структуры реализуется при $\varepsilon = 0$ (Nd_{0.4}Ba_{0.6}FeO_{3- δ}) и $\varepsilon = 0.25$ $(Nd_{0.35}Ba_{0.65}FeO_{3-\delta})$, однако только в ограниченных микродоменах, распределенных в матрице с неупорядоченным распределением катионов в Апозициях, в то время как в $Nd_{0.3}Ba_{0.7}FeO_{3-\delta}$ подобных доменов не наблюдалось [18, 19]. Таким образом, ферриты неодима и бария занимают промежуточное положение между неупорядоченными и упорядоченными слоистыми ферритами. Во всех случаях частичное замещение железа на кобальт стабилизировало формирование пятислойной упорядоченной структуры, а в случае Ln = Eu являлось непременным условием [21].

Области гомогенности в ряду Nd_{1-x}Ba_xFeO_{3-δ} при 1373 K на воздухе $0.0 \le x \le 0.05$ (пр. гр. *Рпта*) и $0.6 \le x \le 0.7$ (пр. гр. *Рт-3т*) были определены в нашей недавней работе [22]. Для двойных перовскитов (типа 112) была показана возможность варьирования соотношения РЗЭ и бария, по крайней мере, для Pr_{1+x}Ba_{1-x}Co₂O_{5+δ} [23], или наличие дефицита катионов в А-положении (Ln_{1-x}Ba Co₂O_{5+δ} или LnBa_{1-x}Co₂O_{5+δ}) [24–28].

Таким образом, одновременное варьирование соотношения Nd/Ba в A-подрешетке и Fe/Co в B-подрешетке может существенным образом влиять на кристаллическую структуру, а, следовательно, и свойства образующихся оксидов. Настоящая работа посвящена изучению влияния степени замещения на область гомогенности, кристаллическую структуру, кислородную нестехиометрию и термические свойства оксидов Nd_{1-x} Ba_xCo_{1-v} Fe_vO_{3-δ}.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Поликристаллические образцы с составами, соответствующими формуле $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$, готовили по глицерин-нитратной технологии. В качестве исходных компонентов использовали оксид неодима Nd₂O₃ (НО-Л), карбонат бария ВаСО₃ ("ос.ч."), предварительно прокаленные для удаления адсорбированной влаги и газов при 1373 К в течение 12 ч и при 773 К в течение 5 ч, соответственно, оксалат железа FeC₂O₄·2H₂O ("ч.д.а.") и металлический кобальт. Металлический Со получали восстановлением Со₃О₄ при 673-973 К в потоке водорода. Заключительный отжиг проводили при 1373 К на воздухе в течение 60-80 ч с промежуточными перетираниями в среде этилового спирта и последующим медленным охлаждением образцов от 1373 К до комнатной температуры со скоростью 1 К/мин на воздухе.

Фазовый состав исследуемых оксидов контролировали методом рентгеновской порошковой дифракции с использованием дифрактометров Inel Equinox 3000 с позиционно-чувствительным детектором в Cu K_{α} -излучении (интервал углов $10^{\circ} \le 2\Theta \le 80^{\circ}$, выдержка 60 мин) и Shimadzu XRD 7000 в Cu K_{α} - излучении с применением монохроматора из пиролитического графита (интервал углов $10^{\circ} \le 2\Theta \le 80^{\circ}$, шаг 0.02°, выдержка в точке 2 с). Структурные параметры уточняли методом полнопрофильного анализа Ритвелда в программе "Fullprof".

Термогравиметрические исследования проводили на приборе STA 409 PC Luxx, позволяющем фиксировать изменения массы образца в зависимости от *T* и P_{O_2} , в динамическом режиме со скоростью нагрева/охлаждения 2 К/мин в температурном интервале 298–1373 К на воздухе. Для определения абсолютного содержания кислорода в исследуемых оксидах использовали метод полного восстановления образцов водородом (5% N₂ + + 95% H₂) при 1423 К в термогравиметрической установке до оксидов Nd₂O₃, BaO и металлических кобальта Co и железа Fe по реакции:

$$Nd_{1-x}Ba_{x}Co_{1-y}Fe_{y}O_{3-\delta} + \frac{1}{2}(3-2\delta+x)H_{2} \rightarrow$$
$$\rightarrow \frac{1-x}{2}Nd_{2}O_{3} + xBaO + (1-y)Co +$$
$$+ yFe + \frac{1}{2}(3-2\delta+x)H_{2}O.$$

Измерения относительного расширения керамических брусков при изменении температуры на воздухе проводили на дилатометре DIL 402 С в интервале 298–1373 К со скоростью нагрева/охлаждения 3 К/мин. Для этого порошки оксидов Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-δ} прессовали в бруски размером 4 × 4 × 25 мм и спекали при 1473 К на воздухе

Таблица 1. Области гомогенности и кристаллическая структура твердых растворов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ (0.1 $\leq x \leq 0.9$ и 0.0 $\leq y \leq 0.9$), медленно охлажденных с 1373 К до комнатной температуры на воздухе

x	У	Структура	Литература
0.0	0.0-1.0	орторомбическая	[29]
0.05	0.7 - 1.0	(пр. гр. <i>Pbnm</i>)	Настоящая работа
0.5	0.0 - 0.7	тетрагональная	[15]
		(пр. гр. <i>Р</i> 4/ <i>mmm</i>)	
0.6	0.9-1.0	кубическая	Настоящая работа
0.7	0.7 - 1.0	(пр. гр. <i>Рт-3m</i>)	
0.8	0.5-0.9		
0.9	0.3-0.9		

в течение 24 ч, с последующим медленным охлаждением до комнатной температуры со скоростью 1 К/мин. Относительная плотность керамических образцов составляла 90–93% от теоретически возможной. Погрешность измерения изменения длины образца не превышала 0.01 мкм.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Область гомогенности и структура твердых растворов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$

Для установления области гомогенности и кристаллической структуры твердых растворов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ было приготовлено 52 образца с различным соотношением металлических

компонентов. По результатам РФА установлено, что кристаллическая структура оксидов $Nd_{1-x}Ba_x$ $Co_{1-y}Fe_yO_{3-\delta}$ существенно зависит от содержания бария (*x*) (см. табл. 1).

Дифрактограммы однофазных оксидов Nd_{1-x} $Ba_xCo_{1-y}Fe_yO_{3-\delta}$ с x = 0.05 и $0.7 \le y \le 1.0$, подобно ферриту $Nd_{0.95}Ba_{0.05}FeO_{3-\delta}$ [22], были проиндексированы в рамках орторомбически искаженной перовскитоподобной ячейки (пр. гр. *Pbnm*). На рис. 1а в качестве примера представлена дифрактограмма $Nd_{0.95}Ba_{0.05}Co_{0.1}Fe_{0.9}O_{3-\delta}$, обработанная по методу полнопрофильного анализа Ритвелда, уточненные параметры элементарных ячеек $Nd_{0.95}Ba_{0.05}Co_{1-y}Fe_yO_{3-\delta}$ (0.7 $\le y \le 1.0$) приведены в табл. 2.

Известно, что ионы Fe³⁺ в ферритах РЗЭ при комнатной температуре находятся в высоко-спиновом (HS) состоянии, тогда как спиновое состояние ионов Co³⁺ может варьироваться в зависимости от природы РЗЭ. При 298 К в LaCoO_{3-δ} ионы кобальта в низко-спиновом (LS) и высоко-спиновом (HS) состояниях сосуществуют, однако при уменьшении радиуса РЗЭ переход (LS) \rightarrow (HS) смещается в область более высоких температур [30– 32]. Линейное увеличение параметров и объема элементарных ячеек Nd_{0.95}Ba_{0.05}Co_{1-y} Fe_yO_{3-δ} при увеличении содержания железа (рис. 2) соответствует большему радиусу ионов железа ($r_{Fe^{3+}}$ (HS) = = 0.645 Å, к.ч. = 6) по сравнению с радиусом ионов кобальта ($r_{Co^{3+}}$ (LS) = 0.545 Å, $r_{Co^{3+}}$ (HS) = = 0.61 Å, к.ч. = 6) [33]. Для того, чтобы сопоста-

Таблица 2. Структурные параметры твердых растворов $Nd_{0.95}Ba_{0.05}Co_{1-y}Fe_yO_{3-\delta}$ (0.7 $\leq y \leq 1.0$), медленно охлажденных с 1373 К до комнатной температуры на воздухе (пр.гр. *Pbnm*)

	Nd/Ba (<i>x</i> ; <i>y</i> ; 0.25)	O1 (<i>x</i> ; <i>y</i> ; 0.25)	O2 (<i>x</i> ; <i>y</i> ; <i>z</i>)	Fe/Co (0.5; 0; 0)
У	0.7	0.8	0.9	1.0
<i>a</i> , Å	5.426(1)	5.441(1)	5.449(1)	5.462(1)
<i>b</i> , Å	5.500(1)	5.526(1)	5.548(1)	5.568(1)
$c, \mathrm{\AA}$	7.703(1)	7.729(1)	7.746(1)	7.765(1)
$V, (Å)^3$	229.92(2)	232.40(2)	234.20(2)	236.21(2)
x (Nd/Ba)	-0.0095(5)	-0.0089(3)	-0.0094(3)	-0.0091(3)
y (Nd/Ba)	0.0415(3)	0.0421(2)	0.0435(2)	0.0430(2)
<i>x</i> (O1)	0.056(6)	0.075(3)	0.069(3)	0.069(3)
y (O1)	0.485(3)	0.484(2)	0.477(2)	0.477(2)
<i>x</i> (O2)	0.281(4)	0.282(2)	0.283(2)	0.280(2)
y (O2)	0.288(3)	0.291(2)	0.273(2)	0.274(2)
z (O2)	0.044(2)	0.041(1)	0.049(1)	0.045(1)
<i>R_{Br}</i> , %	7.99	5.60	4.27	5.46
$R_f, \%$	6.53	5.17	5.48	5.84
$R_p, \%$	12.7	8.26	7.99	8.21

Рис. 1. Рентгенографические данные для $Nd_{1-x}Ba_xCo_{1-y}Fe_yOc x = 0.05$ и y = 0.9 (а) и x = 0.2 и y = 0.9 (б), обработанные по методу Ритвелда. Точки – данные эксперимента, 1 – теоретический спектр; 2 – местоположение максимумов с разрешенным набором индексов Миллера (*hkl*); 3 – разница между экспериментальными данными и теоретической кривой.

вить изменение параметров элементарной ячейки при изменении отношения Co/Fe с расчетными значениями, при использовании ион-

Рис. 2. Концентрационные зависимости параметров элементарных ячеек твердых растворов $Nd_{0.95}Ba_{0.05}Co_{1-\nu}Fe_{\nu}O_{3-\delta}$ (0.7 $\leq y \leq$ 1.0).

ных радиусов кобальта в различных спиновых состояниях, экспериментально определенные значения были преобразованы к псевдокубической ячейке. Изменение параметра псевдокубической ячейки при уменьшении содержания кобальта ($\Delta a = a_{\text{псевдоку6}}(\text{Nd}_{0.95}\text{Ba}_{0.05}\text{Co}_{1-y}\text{Fe}_y\text{O}_{3-\delta}) - a_{\text{псевдоку6}}(\text{Nd}_{0.95}\text{Ba}_{0.05}\text{FeO}_{3-\delta}))$, полученные из экспериментальных данных, в сравнении с расчетными зависимостями приведены на рис. 3. За точку отсчета взят параметр псевдокубической ячейки феррита $\text{Nd}_{0.95}\text{Ba}_{0.05}\text{FeO}_{3-\delta}$. Из рисунка видно, что в твердом растворе, обогащенном железом $\text{Nd}_{0.95}\text{Ba}_{0.05}\text{Co}_{1-y}\text{Fe}_y\text{O}_{3-\delta}$ ($y \ge 0.7$), кобальт, по-видимому, имеет смешанное спиновое состояние.

На рентгенограммах образцов $Nd_{1-x}Ba_xCo_{1-y}$ $Fe_yO_{3-\delta}$, состав которых находится за пределами области гомогенности ($0.1 \le x \le 0.4 \le 0.9 \le 0.9$) зафиксированы рефлексы второй фазы – твердого раствора на основе слоистого кобальтита Nd-BaCo₂O_{5+ δ} с тетрагональной структурой пр. гр. *P*4/*mmm* (рис. 16). Область существования твердых растворов Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3- δ} с орторомбической структурой существенно меньше, чем у определенной для аналогичных оксидов в системе с празеодимом $\Pr_{1-x} \operatorname{Ba}_x \operatorname{Co}_{1-y} \operatorname{Fe}_y \operatorname{O}_{3-\delta}$ [34]. Это можно объяснить большей разностью радиусов неодима ($r_{\operatorname{Nd}^{3+}} = 1.27$ Å, к.ч. = 12) и бария ($r_{\operatorname{Ba}^{2+}} =$ = 1.61 Å, к.ч. = 12) [33] по сравнению с разностью радиусов между празеодимом и барием и, следовательно, невозможностью образования протяженных рядов твердых растворов Nd_{1-x} Ba_xMeO_{3-δ} (Me = Fe, Co) [22, 35].

Увеличение содержания бария в А-подрешетке до x = 0.6 вновь приводит к образованию однофазных оксидов $Nd_{1-x}Ba_xCo_{1-x}Fe_yO_{3-\delta}$ (см. табл. 1). Ранее методом просвечивающей электронной микроскопии для оксидов Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-δ} (x = 0.6, y = 0.7 и 0.6) показана возможность формирования пятислойной структуры $a_p \times a_p \times 5a_p$ с последовательным чередованием вдоль оси с слоев Nd-Ba-(Nd,Ba)-(Nd,Ba)-Ba-Nd [18, 19], по крайней мере, в отдельных микродоменах. Из-за эффекта двойникования кристаллитов в ортогональных направлениях зафиксировать образование этой сверхструктуры методом РФА не представляется возможным. Дифрактограммы обогащенных барием оксидов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ с $0.6 \le x \le 0.9$ были проиндексированы в рамках кубической решетки (пр. гр. Рт-3т), что согласуется с результатами работы [34]. В качестве примера, на рис. 4а приведены рентгенографические данные для $Nd_{0.2}Ba_{0.8}Co_{0.2}Fe_{0.8}O_{3-\delta}$, обработанные по методу полнопрофильного анализа Ритвелда.

Уточненные методом Ле-Бейла параметры элементарных ячеек твердых растворов $Nd_{1-x}Ba_x$ $Co_{1-y}Fe_yO_{3-\delta}$ ($0.6 \le x \le 0.9$) приведены в табл. 3. Замещение ионов Nd^{3+} (r = 1.27 Å) [33] большими по размеру ионами Ba^{2+} (r = 1.61 Å) [33] приводит к значительному увеличению параметров и объема элементарных ячеек оксидов $Nd_{1-x}Ba_xCo_{1-y}$ $Fe_yO_{3-\delta}$ ($0.6 \le x \le 0.9$) (рис. 5). Введение железа в позицию кобальта способствует уменьшению параметров решетки в большей степени для составов с x = 0.9 (рис. 5). Как будет рассмотрено ниже, с увеличением содержания железа возрастает доля ионов Fe^{4+} (r = 0.585 Å) [33], что приводит к уменьшению параметров элементарных ячеек.

Области стабильности различных типов твердых растворов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$, медленно охлажденных с 1373 К на воздухе до комнатной температуры, представлены на рис. 6. Границы области гомогенности кобальтитов $NdBaCo_{2-x}$ $Fe_xO_{5+\delta}$ ранее определены в нашей работе [15]. Частично замещенные железом кобальтиты NdBa $Co_{2-x}Fe_xO_{5+\delta}$ образуются в интервале составов $0.0 \le x \le 1.4$ и кристаллизуются в тетрагональной

Рис. 3. Изменение параметра псевдокубической ячейки, рассчитанные из экспериментальных данных (\blacksquare) и ионных радиусов [33] железа и кобальта (\bullet) от состава твердого раствора $Nd_{0.95}Ba_{0.05}Co_{1-y}Fe_yO_{3-\delta}$ (0.7 $\leq y \leq 1.0$).

ячейке $a_p \times a_p \times 2a_p$ (пр. гр. *P*4/*mmm*) [15]. Фазовые равновесия в квазибинарных разрезах Nd- $MeO_{3-\delta}$ -BaMeO_{3-\delta} (Me = Fe, Co), NdCoO_{3-\delta}-Nd-FeO_{3-δ} и BaCoO_{3-δ}-BaFeO_{3-δ}, представляющих собой сечение $NdCoO_{3-\delta}-NdFeO_{3-\delta}-BaCoO_{3-\delta}-$ ВаFeO₃₋₆ диаграммы состояния в форме квадрата, подробно изучены нами ранее [22, 29, 34, 35]. С учетом информации о возможности отклонений от стехиометрии в А-подрешетке при сохранении структуры двойного перовскита Pr_{1+x}Ba_{1−x}Co₂O_{5+δ} (*x* = 0.0−0.3) [23] нами дополнительно исследована возможность образования нестехиометричных по А-подрешетке твердых растворов на основе слоистого перовскита NdBa- $Co_2O_{5+\delta}$. Для этого были приготовлены образцы с номинальными составами Nd_{0 96}Ba_{1 04}Co₂O_{5+δ} $(Nd_{0.48}Ba_{0.52}CoO_{3-\delta})$ $Nd_{1.04}Ba_{0.96}Co_2O_{5+\delta}$ И (Nd_{0.52}Ba_{0.48}CoO_{3-δ}). Рентгенограммы гомогенизированных образцов показали, что помимо основной фазы двойного перовскита NdBaCo₂O_{5+δ} в первом присутствовало небольшое, но фиксируемое количество $BaCoO_{3-\delta}$, а во втором – Nd-СоО₃₋₈. Такой результат свидетельствует о том, что, если нарушение стехиометрического состава NdBaCo₂O_{5+ δ} по неодиму и барию возможно, то область гомогенности очень узка.

Поскольку шаг по составам при изучении системы $BaCoO_{3-\delta}$ — $BaFeO_{3-\delta}$ в предыдущей работе [34] был достаточно широкий, то для проверки границ области гомогенности кубических оксидов $BaCo_{1-\nu}Fe_{\nu}O_{3-\delta}$ были приготовлены образцы с

Рис. 4. Рентгенографические данные для $Nd_{1-x} Ba_x Co_{1-y} Fe_y O c x = 0.8$ и y = 0.8 (а) и x = 0.7 и y = 0.3 (б), обработанные по методу Ритвелда. Точки – данные эксперимента, 1 – теоретический спектр; 2 – местоположение максимумов с разрешенным набором индексов Миллера (*hkl*); 3 – разница между экспериментальными данными и теоретической кривой.

y = 0.55 и 0.85. Согласно данным РФА, оба гомогенизированных образца были двухфазными; их фазовый состав соответствовал результатам, представленным в [34]. Значения областей гомогенности и тип структуры оксидов, образующих-

Рис. 5. Концентрационные зависимости параметров элементарных ячеек твердых растворов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$.

ся в рассмотренных рядах, приведены в табл. 4. Из рис. 6 видно, что уменьшение концентрации неодима от 0.4 до 0.1 приводит к увеличению растворимости кобальта вследствие взаимного влияния изменения содержания кислорода и средней степени окисления 3*d*-металлов в оксидах.

Кислородная нестехиометрия оксидов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$

На рис. 7 демонстрируются температурные зависимости содержания кислорода в твердых растворах $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta} c \ 0.7 \le x \le 0.9$ и y = 0.7 и x = 0.8 и $0.5 \le y \le 0.9$. Отметим, что при фиксированном содержании железа (y = 0.7) и постепенном замещении неодима на барий содержание кислорода в образцах существенно уменышается (табл. 5). Это связано с тем, что внедряемый в А-подрешетку перовскита Ba^{2+} становится акцептором электронов (Ba'_{Nd} по номенклатуре Крёгера—Винка), что способствует образованию дополнительного количества положительно заря-

женных кислородных вакансий ($V_0^{\bullet\bullet}$) и/или электронных дырок (h), компенсирующих избыточный отрицательный заряд акцепторных дефектов. При постоянной концентрации неодима (1 –

x	у	<i>a</i> , Å	<i>V</i> , Å ³	<i>R</i> -факторы, %		
				R _{Br}	R_{f}	R _p
0.6	0.9	3.934(1)	60.88(2)	0.291	0.203	8.00
0.7	0.9	3.951(1)	61.69(1)	0.237	0.213	8.27
	0.8	3.949(1)	61.58(1)	0.476	0.48	7.85
	0.7	3.949(1)	61.59(1)	1.21	0.898	9.7
0.8	0.9	3.981(1)	63.09(1)	0.536	0.597	6.30
	0.8	3.982(1)	63.14(1)	0.80	0.486	12.6
	0.7	3.983(1)	63.21(1)	1.49	1.32	8.05
	0.6	3.985(1)	63.32(1)	0.79	0.547	12.5
	0.5	3.988(1)	63.45(1)	0.75	0.797	7.71
0.9	0.9	4.014(1)	64.69(1)	1.26	1.25	10.2
	0.8	4.016(1)	64.78(1)	2.18	2.25	6.71
	0.7	4.020(1)	65.00(1)	0.94	0.924	10.2
	0.6	4.025(1)	65.22(1)	1.42	1.06	10.9
	0.5	4.029(1)	65.42(1)	0.785	0.561	7.55
	0.3	4.037(1)	65.80(1)	0.806	0.536	6.85

Таблица 3. Параметры элементарных ячеек твердых растворов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ (0.6 $\leq x \leq$ 0.9), медленно охлажденных с 1373 К до комнатной температуры на воздухе (пр.гр. *Pm*-3*m*)

x = 0.2) и увеличении содержания железа содержание кислорода в оксидах возрастает. Это связано с тем, что железо как более электроположительный элемент по сравнению с кобальтом

 $(\Im O_{Fe} = 1.64; \Im O_{Co} = 1.7 [36])$ служит донором электронов (Fe^{\bullet}_{Co}) и, следовательно, препятствует образованию вакансий кислорода в структуре оксида. Поскольку средняя степень окисления

Рис. 6. Области стабильности твердых растворов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 1 2023

АКСЕНОВА и др.

Система	Формула	Симметрия	Ссылка
NdCoO _{3-δ} -BaCoO _{3-δ}	$NdBaCo_2O_{5+\delta}$	Тетрагональная пр. гр. <i>Р</i> 4/ <i>mmm</i>	[35]
$NdFeO_{3-\delta}-BaFeO_{3-\delta}$	$\mathrm{Nd}_{1-x}\mathrm{Ba}_{x}\mathrm{FeO}_{3-\delta} \mathrm{c}\ 0.0 \leq x \leq 0.5$	Орторомбическая пр. гр. <i>Рпта</i>	[22]
	c $0.6 \le x \le 0.7$	Кубическая пр. гр. Рт-3т	
$NdCoO_{3-\delta}-NdFeO_{3-\delta}$	$NdCo_{1-y}Fe_yO_{3-\delta} c \ 0.0 \le y \le 1.0$	Орторомбическая пр. гр. <i>Рbnm</i>	[29]
$BaCoO_{3-\delta}-BaFeO_{3-\delta}$	$BaCo_{1-y}Fe_yO_{3-\delta} c x = 0.2$	5Н-гексагональная пр. гр. Р-3т1	[34]
	c $0.6 \le x \le 0.8$	Кубическая пр. гр. Рт-3т	

Таблица 4. Состав и структура стабильных оксидов, образующихся в квазидвойных системах

3d-металлов больше 3+, то часть ионов 3dметаллов (кобальта и/или железа) должна находиться в степени окисления 4+. Логично предположить, что в первую очередь степень окисления будут повышать ионы более электроположительного элемента – железа, демонстрируя переменную степень окисления Fe³⁺/Fe⁴⁺. Аналогичные выводы были сделаны при рассмотрении родственной системы $Nd_{1-x}Sr_xCo_{1-y}Fe_yO_{3-\delta}$ [37, 38]. Используя условие электронейтральности и значения содержания кислорода в твердых растворах $Nd_{1-x}Ba_x Co_{1-y}Fe_yO_{3-\delta}$ при комнатной температуре на воздухе, несложно рассчитать содержание ионов железа в различных степенях окисления Fe³⁺ и Fe⁴⁺ (табл. 5). Увеличение концентрации железа незначительно увеличивает со-

держание кислорода в твердых растворах $Nd_{0.2}Ba_{0.8}Co_{1-y}Fe_yO_{3-\delta}$, однако оказывает большее влияние на соотношение 3d-металлов в различных степенях окисления. С ростом содержания введенного железа средняя степень окисления 3d-металлов и доля ионов Fe^{4+} заметно увеличиваются.

$Tермические свойства оксидов <math>Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$

Зависимости относительного линейного расширения $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ (x = 0.8; 0.9 и y = 0.7; 0.9) от температуры в интервале 298–1373 К на воздухе, полученные в режиме нагревания и охлаждения, полностью совпадают. На рис. 8 пред-

Рис. 7. Зависимости изменения содержания кислорода в оксидах $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ от температуры на воздухе.

x	У	$3 - \delta$	z _{Me}	z _{Fe}	Формула
0.7	0.7	2.81 ± 0.01	3.32	3.46	$Nd_{0.3}Ba_{0.7}Co_{0.3}^{3+}Fe_{0.38}^{3+}Fe_{0.32}^{4+}O_{2.81}$
0.8	0.9	2.80 ± 0.01	3.40	3.44	$Nd_{0.2}Ba_{0.8}Co_{0.1}^{3+}Fe_{0.5}^{3+}Fe_{0.4}^{4+}O_{2.8}$
0.8	0.7	2.77 ± 0.01	3.34	3.48	$Nd_{0.2}Ba_{0.8}Co_{0.3}^{3+}Fe_{0.36}^{3+}Fe_{0.34}^{4+}O_{2.77}$
0.8	0.5	2.75 ± 0.01	3.30	3.60	$Nd_{0.2}Ba_{0.8}Co_{0.5}^{3+}Fe_{0.2}^{3+}Fe_{0.3}^{4+}O_{2.75}$
0.9	0.7	2.72 ± 0.01	3.34	3.48	$Nd_{0.1}Ba_{0.9}Co_{0.3}^{3+}Fe_{0.36}^{3+}Fe_{0.34}^{4+}O_{2.72}$

2023

Таблица 5. Содержание кислорода, средняя степень окисления 3d-металлов (z_{Me}), средняя степень окисления ионов железа (z_{Fe}) и химическая формула твердых растворов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ при 298 К на воздухе

ставлены кривые $\Delta L/L_0 = f(T)$, полученные в режиме охлаждения. Характер зависимостей термического расширения оксидов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$, имеет заметный изгиб вблизи 700 К и аналогичен наблюдаемому в родственных системах $Ln_{1-x}M_xCo_{1-y}Fe_yO_{3-\delta}$ (Ln = P39, Me = Sr, Ba) [15, 37, 38]. Поэтому зависимости относительного удлинения керамических брусков исследованных оксидов были обработаны двумя линейными участками. На низкотемпературном участке до 700 К содержание кислорода в оксидах $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ остается практически неизменным, и вклад в относительное удлинение образцов вносит только термическая составляющая, связанная с колебанием атомов в узлах кристаллической решетки. Дальнейшее повышение температуры приводит к значительному увеличению наклона зависимостей $\Delta L/L_0 = f(T)$, что соответствует появлению второго вклада, называемого "химическим расширением". Появление этого второго вклада связано с выходом кислорода из кристаллической решетки оксидов и, как следствие, уменьшением средней степени окисления 3d-металлов. Значения линейных коэффициентов термического расширения (ЛКТР) в двух температурных интервалах приведены в табл. 6. Отметим, что при T < 700 К значение ЛКТР в пре-

Таблица 6. Значения линейных коэффициентов термического расширения (ЛКТР) оксидов $Nd_{1-x}Ba_xCo_{1-v}Fe_vO_{3-\delta}$ на воздухе

		, , ,		
x	У	<i>Т</i> , К	$\alpha_p \times 10^6, \mathrm{K}^{-1}$	R^2
0.8	0.9	300–700 700–1373	$\begin{array}{c} 14.5 \pm 0.1 \\ 23.2 \pm 0.1 \end{array}$	0.99729 0.99995
0.8	0.7	300–700 700–1373	$\begin{array}{c} 14.4 \pm 0.1 \\ 23.8 \pm 0.1 \end{array}$	0.9957 0.99917
0.9	0.9	300–700 700–1373	14.2 ± 0.1 26.0 ± 0.1	0.99743 0.9997
0.9	0.7	300–700 700–1373	$\begin{array}{c} 13.5\pm0.1\\ 26.2\pm0.1\end{array}$	0.99809 0.99967

делах ошибки не зависит от состава твердого раствора $Nd_{1-x}Ba_{x}Co_{1-y}Fe_{y}O_{3-\delta}$ и составляет в среднем 14.2×10^{-6} K⁻¹. В высокотемпературном интервале 700-1373 К величина КТР мало зависит от содержания железа. но заметно возрастает с увеличением концентрации введенного бария от $23.2 \times \times 10^{-6} \text{ K}^{-1}$ до $26.2 \times 10^{-6} \text{ K}^{-1}$. Это хорошо коррелирует с заметно большим влиянием концентрации бария на содержание кислорода по сравнению с влиянием на него изменения соотношения кобальта и железа. В предположении того, что термическая составляющая, связанная с колебаниями атомов решетки, при T > 700 К имеет тот же линейный характер, из общих зависимостей $\Delta L/L_0$ были вычленены химические составляющие расширения $(\Delta L/L_0)_{xum}$ (см. врезку рис. 8).

ЗАКЛЮЧЕНИЕ

Сложные оксиды $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ в зависимости от содержания бария, замещающего неодим, кристаллизуются в орторомбически искаженной перовскитоподобной (x = 0.05, пр. гр. *Pbnm*), кубической (0.6 ≤ *x* ≤ 0.9, пр. гр. *Рт*-3*m*) ячейке или структуре двойного слоистого перовскита NdBaCo_{2-x}Fe_xO_{5+ δ} (0.0 \leq x \leq 1.4, пр. гр. *P*4/*mmm*). Показано, что область гомогенности, связанная с нарушением стехиометрии по Nd и Ba, в структуре двойного перовскита пренебрежимо мала. Изменения параметров элементарных ячеек кубических оксидов Nd_{1-x} Ba_xCo_{1-y} Fe_yO_{3-δ} при изменении содержания железа в большей степени связано с изменением степени окисления ионов 3d-металлов, а при изменении содержания бария – с размерным эффектом. В температурном интервале 298-1373 К на воздухе содержание кислорода в оксидах $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ уменьшается с увеличением концентрации бария и/или кобальта в образцах. Рассчитанные значения коэффициентов термического расширения $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ (0.8 $\leq x \leq 0.9$ и 0.7 $\leq y \leq 0.9$) в интервале 298-700 К на воздухе мало зависят от состава твердого раствора и существенно возрас-

Рис. 8. Зависимости относительного линейного расширения $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ от температуры на воздухе. На врезке зависимости химического расширения оксидов $Nd_{1-x}Ba_xCo_{1-y}Fe_yO_{3-\delta}$ от температуры на воздухе.

тают с увеличением концентрации бария в интервале 700—1373 К.

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (соглашение № 075-15-2019-1924).

СПИСОК ЛИТЕРАТУРЫ

- 1. Maignan A., Martin C., Pelloquin D. et al. // J. Solid State Chem. 1999. V. 142. P. 247.
- Anderson P.S., Kirk C.A., Knudsen J. et al. // Solid State Sci. 2005. V. 7. P. 1149.
- Pralong V., Caignaert V., Herbert S. et al. // Solid State Ionics. 2006. V. 177. P. 1879.
- Аксенова Т.В., Гаврилова Л.Я., Цветков Д.С. и др. // Журн. физ. химии. 2011. Т. 85. № 3. С. 493.
- Kim J.H., Manthiram A. // J. Electrochem. Soc. 2008. V. 155. P. B385.
- Jarry A., Luetkens H., Pashkevich Y.G. et al. // Phys. B. 2009. V. 404. P. 765.
- Zhao L., He B., Zhiqin X. et al. // Int. J. Hydrogen Energy. 2010. V. 35. P. 753.
- 8. *Burley J.C., Mitchel J.F., Short S. et al.* // J. Solid State Chem. 2003. V. 170. P. 339.

- 9. Donazzi A., Pelosato R., Cordaro G. et al. // Electrochim. Acta. 2015. V. 182. P. 573.
- Karen P., Woodward P.M. // J. Mater. Chem. 1999. V. 9. P. 789.
- Karen P., Woodward P.M., Santhosh P.N. et al // J. Solid State Chem. 2002. V. 167. P. 480.
- 12. *Kim Y.N., Kim J.-H., Manthiram A.* // J. Power Sources. 2010. V. 195. P. 6411.
- Tsvetkov D.S., Ivanov I.L., Zuev A.Yu. // J. Solid State Chem. 2013. V. 199. P. 154.
- 14. Volkova N.E., Gavrilova L.Ya., Cherepanov V.A. et al. // Ibid. 2013. V. 204. P. 219.
- Cherepanov V.A., Aksenova T.V., Gavrilova L.Ya. et al. // Solid State Ionics. 2011. V. 188. P. 53.
- Yan J., Jiang Sh., Song T. et al. // Biomass and Bioener. 2021. V.151. P. 106154.
- Sun L., Qin H., Wang K. et al. // Mater. Chem. Phys. 2011. V. 125. P. 305.
- Волкова Н.Е., Урусова А.С., Гаврилова Л.Я. и др. // Журн. общ. химии. 2016. Т. 86. № 8. С. 1258.
- Kundu A.K., Mychinko M.Yu., Caignaert V. et al. // J. Solid State Chem. 2015. V. 231. P. 36.
- 20. Volkova N.E., Lebedev O.I., Gavrilova L.Ya. et al. // Chem. Mater. 2014. V. 26. № 21. P. 6303.
- 21. *Kundu A.K., Lebedev O.I., Volkova N.E. et al.* // J. Mater. Chem. C. 2015. V. 3. № 21. P. 5398.
- 22. Aksenova T.V., Volkova N.E., Maignan A., Cherepanov V.A. // J. Am. Cer. Soc. 2022. V. 105. № 5. P. 3601.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 1 2023

110

- 23. *Jiang L., Li F., Wei T. et al.* // Electrochim. Acta. 2014. V. 133. P. 364.
- Sun J., Liu X., Han F. et al. // Solid State Ionics. 2016.
 V. 288. P. 54.
- 25. *Yi K., Sun L., Li Q. et al.* // Int. J. Hydrogen Energy. 2016. V. 41. P. 10228.
- Meng F., Xia T., Wang J. et al. // J. Power Sources. 2015. V. 293. P. 741.
- Jiang X., Xu Q., Shi Y. et al. // J. Power Sources. 2014.
 V. 39. P. 10817.
- 28. Dong F., Ni M., Chen Y. et al. // J. Mater. Chem. A 2014. V. 2. P. 20520.
- Аксенова Т.В., Элкалаши Ш.И., Урусова А.С., Черепанов В.А. // Журн. неорган. химии. 2017. Т. 62. № 8. С. 1092.
- Knížek K., Hejtmánek J., Jirák Z. et al. // Phys. Rev. B. 2009. V. 79. P. 134103.

- Scherrer B., Harvey A.S., Tanasescu S. et al. // Phys. Rev. B. 2011. V. 84. P. 085113.
- Raccah P.M., Goodenough J.B. // Phys. Rev. 1967.
 V. 155. № 3. P. 932.
- 33. *Shannon R.D.* // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
- Volkova N.E., Bazueva M.V., Aisarinova D.T. et al. // J. Alloys Compd. 2021. V. 860. P. 158438.
- Gavrilova L.Ya., Aksenova T.V., Volkova N.E. et al. // J. Solid State Chem. 2011. V. 184. P. 2083.
- 36. *Lide D.R.* CRC Handbook of Chemistry and Physics, 87th edition, Taylor and Francis, CRC Press, 2007.
- 37. Elkalashy Sh.I., Aksenova T.V., Urusova A.S., Cherepanov V.A. // Solid State Ionics. 2016. V. 295. P. 96.
- Elkalashy Sh.I., Gilev A.R., Aksenova T.V. et al. // Ibid. 2018. V. 316. P. 85.