_____ ХЕМОИНФОРМАТИКА И КОМЬЮТЕРНОЕ ____ МОДЕЛИРОВАНИЕ

УДК 536.4

МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЖИДКОГО ОЛОВА В СХЕМЕ МОДЕЛИ ПОГРУЖЕННОГО АТОМА

© 2023 г. Д. К. Белащенко^{а,*}

^аНациональный исследовательский технологический университет "Московский институт стали и сплавов", Москва, Россия *e-mail: dkbel75@gmail.com Поступила в редакцию 06.04.2022 г. После доработки 26.05.2022 г.

Принята к публикации 27.05.2022 г.

Проанализированы результаты расчетов свойств жидкого олова с межчастичным потенциалом EAM (Embedded Atom Model) и рассчитаны поверхностные свойства олова методом молекулярной динамики (МД). Расчеты на основе EAM дают в целом лучшее согласие с опытом для свойств жидкого олова, чем расчеты на основе MEAM. Проведена оценка точности уравнения Гиббса–Гельмгольца для связи поверхностного натяжения с поверхностной энергией.

Ключевые слова: жидкое олово, молекулярная динамика, бинодаль, ударное сжатие, EAM, MEAM **DOI:** 10.31857/S0044453722120068, **EDN:** BARDJW

введение

Свойства жидкого олова обсуждались во многих работах [1-5] в приближении парного взаимодействия. Однако значительный прогресс был достигнут при применении модели погруженного атома (Embedded Atom Model - EAM [6]), на основе которой были построены модели большого числа кристаллических и ряда жидких металлов. Для олова также были предложены потенциалы ЕАМ и рассчитаны основные свойства моделей жилкости [7–9]. ЕАМ недостаточно хороша для описания температурных зависимостей свойств [10]. Недавно была предложена модифицированная модель ЕАМ-МЕАМ, в которую включен учет возможной угловой зависимости эффективной электронной плотности, создаваемой атомом в окружающем пространстве [11]. МЕАМ была применена, в частности, для расчета свойств Li, Ga, Sn, Be, Ni и др. В исходном варианте потенциала учитывались только ближайшие соседи данного атома. Далее было предложено учитывать не только ближайших соседей, но и следующих за ними – вариант 2NN MEAM (Ni, Sn, сплавы Sn-Pb [12-15], Li [16, 17] и др.).

В случае жидкого металла угловая зависимость потенциала маловероятна из-за изотропности жидкости. По данным [17], существенная разница расчетных свойств жидкого лития в вариантах 2NN MEAM и EAM обнаружена не была. Поэтому ниже разработан более точный потенциал EAM и дано сравнение результатов EAM с MEAM [13] для жидкого олова. Потенциалы ЕАМ и МЕАМ. В модели ЕАМ потенциал модели погруженного атома имеет вид [6]:

$$U = \sum_{i} \Phi(\rho_i) + \sum_{i \le j} \varphi(r_{ij}).$$
(1)

Здесь *U* – потенциальная энергия, $\Phi(\rho_i)$ – потенциал погружения *i*-го атома, зависящий от эффективной электронной плотности ρ в месте нахождения центра атома, а вторая сумма по парам атомов содержит обычный парный потенциал $\varphi(r)$. Эффективная электронная плотность в точке нахождения атома создается окружающими атомами и определяется по формуле $\rho_i = \sum_j \psi(r_{ij})$, где $\psi(r_{ij})$ – сферически симметричный вклад в электронную плотность от соседа номер *j*. В рас-

электронную плотность от соседа номер *j*. В расчетах используются три подгоночные функции $\Phi(\rho)$, $\varphi(r)$ и $\psi(r)$. Модель МЕАМ отличается от ЕАМ тем, что функция $\psi(r)$ зависит от направления в пространстве и обеспечивает направленность химической связи в соответствующих ("плохих") металлах [12].

Качество описания свойств жидких металлов на основе потенциалов EAM и MEAM обсуждалось для случаев олова [13] и лития [17]. В [13] проведено моделирование олова в варианте 2NN MEAM и дано сравнение с результатами более ранней работы [12] с потенциалом того же типа. Ниже этот анализ проведен для олова с учетом более широкого набора свойств.

Парный вклад в потенциал ЕАМ. В настоящей работе потенциал ЕАМ для олова был рассчитан

а.	Номер и	нтервала і/Границы интервала <i>і</i>	$r_i - r_{i+1}, \text{\AA}$
a _{lm}	1/2.65-2.95	2/2.95-3.25	3/3.25-3.75
a_{i0}	-0.73100630012277D-01	-0.17303249473988D+00	-0.19288145759073D+00
a_{i1}	-0.24225042025184D+01	-0.19676550645699D+00	-0.16613525551281D-01
a_{i2}	-0.45816783142699D+02	-0.97681238713366D $+00$	0.21687976005082D+00
a_{i3}	0.29822987610930D+03	0.89964728062223D+01	0.46664176921973D+01
a_{i4}	0.16755710422549D+05	0.55442300167886D+03	0.31449585730303D+02
a_{i5}	0.17864382693927D+06	0.58274233150018D+04	0.88060727192409D+02
a_{i6}	0.85608446243725D+06	0.27331236695369D+05	0.98725388729013D+02
a_{i7}	0.19492454527359D+07	0.60904444672673D+05	0.87185973080032D+01
a_{i8}	0.17124792756266D+07	0.52383218019295D+05	-0.37772049719303D+02
<i>a</i> :	Номер и	нтервала <i>і</i> /Границы интервала <i>і</i>	$r_i - r_{i+1}, \text{Å}$
a _{im}	Номер и 4/3.75-4.80	нтервала і/Границы интервала і 5/4.80—6.75	$r_i - r_{i+1}, \text{\AA}$ 6/6.75–7.75
a _{im}	Номер ил 4/3.75–4.80 -0.77465250938324D-01	нтервала <i>і</i> /Границы интервала <i>і</i> 5/4.80–6.75 0.56721660553977D–02	$r_i - r_{i+1}, \text{\AA}$ 6/6.75–7.75 0.000000000000D+00
$\frac{a_{im}}{a_{i0}}$	Номер ил 4/3.75–4.80 -0.77465250938324D–01 0.13106868392360D+00	нтервала <i>і</i> /Границы интервала <i>і</i> 5/4.80—6.75 0.56721660553977D—02 —0.16068962129991D—01	$\frac{r_{i} - r_{i+1}, \text{\AA}}{6/6.75 - 7.75}$ 0.00000000000000000000000000000000000
$\begin{array}{c} a_{\mathrm{im}} \\ \hline \\ a_{i0} \\ a_{i1} \\ a_{i2} \end{array}$	Номер ил 4/3.75-4.80 -0.77465250938324D-01 0.13106868392360D+00 0.31894756131996D-01	нтервала <i>і</i> /Границы интервала <i>і</i> 5/4.80—6.75 0.56721660553977D—02 —0.16068962129991D—01 0.62770383391880D—01	$\frac{r_i - r_{i+1}, \text{\AA}}{6/6.75 - 7.75}$ 0.00000000000000000000000000000000000
$\begin{array}{c} a_{im} \\ \hline \\ a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \end{array}$	Номер ил 4/3.75-4.80 -0.77465250938324D-01 0.13106868392360D+00 0.31894756131996D-01 -0.25152296729665D+00	нтервала <i>i</i> /Границы интервала <i>r</i> 5/4.80–6.75 0.56721660553977D–02 –0.16068962129991D–01 0.62770383391880D–01 0.50785807215119D+00	$\frac{r_i - r_{i+1}, \text{\AA}}{6/6.75 - 7.75}$ 0.00000000000000000000000000000000000
$egin{array}{c} a_{i\mathrm{m}} & & & & & & & & & & & & & & & & & & $	Номер ил 4/3.75-4.80 -0.77465250938324D-01 0.13106868392360D+00 0.31894756131996D-01 -0.25152296729665D+00 -0.34666294537566D+01	нтервала <i>i</i> /Границы интервала <i>r</i> 5/4.80–6.75 0.56721660553977D–02 –0.16068962129991D–01 0.62770383391880D–01 0.50785807215119D+00 0.14377163022271D+01	$\frac{r_i - r_{i+1}, \text{\AA}}{6/6.75 - 7.75}$ 0.00000000000000000000000000000000000
$egin{array}{c} a_{im} & & & & & & & & & & & & & & & & & & &$	Номер ил 4/3.75-4.80 -0.77465250938324D-01 0.13106868392360D+00 0.31894756131996D-01 -0.25152296729665D+00 -0.34666294537566D+01 -0.10974840151942D+02	нтервала <i>i</i> /Границы интервала <i>i</i> 5/4.80–6.75 0.56721660553977D–02 –0.16068962129991D–01 0.62770383391880D–01 0.50785807215119D+00 0.14377163022271D+01 0.19238324427537D+01	$\frac{r_i - r_{i+1}, \text{\AA}}{6/6.75 - 7.75}$ 0.00000000000000000000000000000000000
a_{im} a_{i0} a_{i1} a_{i2} a_{i3} a_{i4} a_{i5} a_{i6}	Номер ил 4/3.75-4.80 -0.77465250938324D-01 0.13106868392360D+00 0.31894756131996D-01 -0.25152296729665D+00 -0.34666294537566D+01 -0.10974840151942D+02 -0.15071856818030D+02	нтервала <i>i</i> /Границы интервала <i>r</i> 5/4.80–6.75 0.56721660553977D–02 -0.16068962129991D–01 0.62770383391880D–01 0.50785807215119D+00 0.14377163022271D+01 0.19238324427537D+01 0.13031517802893D+01	$\begin{array}{c} \hline r_i - r_{i+1}, \text{\AA} \\ \hline 6/6.75 - 7.75 \\ \hline 0.00000000000000 + 00 \\ 0.16603918262948 \text{D} - 02 \\ 0.59863803082683 \text{D} - 01 \\ 0.66802727260636 \text{D} + 00 \\ 0.29146459726850 \text{D} + 01 \\ 0.62085862889623 \text{D} + 01 \\ 0.70508440033327 \text{D} + 01 \end{array}$
a_{im} a_{i0} a_{i1} a_{i2} a_{i3} a_{i4} a_{i5} a_{i6} a_{i7}	Номер ил 4/3.75-4.80 -0.77465250938324D-01 0.13106868392360D+00 0.31894756131996D-01 -0.25152296729665D+00 -0.34666294537566D+01 -0.10974840151942D+02 -0.15071856818030D+02 -0.96613215153309D+01	нтервала <i>i</i> /Границы интервала <i>i</i> 5/4.80–6.75 0.56721660553977D–02 -0.16068962129991D–01 0.62770383391880D–01 0.50785807215119D+00 0.14377163022271D+01 0.19238324427537D+01 0.13031517802893D+01 0.43780376591538D+00	$r_i - r_{i+1}$, Å 6/6.75–7.75 0.00000000000000000000000000000000000

Таблица 1. Коэффициенты разложения парного вклада в потенциал ЕАМ олова

методикой, описанной в [9, 18, 19]. Вначале парный вклад в потенциал был найден с помощью алгоритма Шоммерса [4] по гистограмме дифракционной парной корреляционной функции (ПКФ) олова при 523 К [20]. Была применена, где это возможно, методика подавления ложных осцилляций ПКФ на малых расстояниях [21].

При сравнении графиков одного и того же свойства (например, двух различных гистограмм ПКФ $g_1(r)$ и $g_2(r)$), будем определять степень их согласия как стандартное отклонение ("невяз-ку") с помощью формулы:

$$R_g = \left\{ \frac{1}{n_2 - n_1 + 1} \sum_{n_1}^{n_2} \left[g_1(r_j) - g_2(r_j) \right]^2 \right\}^{1/2}.$$
 (2)

Здесь n_1 и n_2 — номера точек гистограммы ПКФ, между которыми вычисляется невязка. При невязке $R_g < 0.04$ две ПКФ визуально неразличимы. Так, в случае олова при 523 К невязка R_g между дифракционной [20] и модельной ПКФ равна всего 0.019.

Далее полученные гистограммы парных вкладов в потенциал Шоммерса аппроксимировали кусочно-непрерывными полиномами с 6 участками по оси расстояний (точки деления $r_1, r_2, ..., r_7$) по формуле:

$$\varphi(r), \Im B = \sum_{i=1}^{k} \sum_{n=0}^{L} a_{in} (r - r_{i+1})^{n} H(r_{i}, r_{i+1})$$

$$\Pi p H \qquad r_{m} < r < r_{c}.$$
(3)

Для олова выбрали k = 6, L = 8 и $r_m = 2.80$ Å. В этом выражении $H(r_i, r_{i+1}) - функция Хевисай$ $да, равная 1 при <math>r_i \le r \le r_{i+1}$ и нулю в остальных случаях, i -это номер интервала на оси r (i = 1, 2, ..., 6). Условие непрерывности в точках $r = r_i$ было применено к самому потенциалу и к его производной. Величина $r_1 -$ это минимальное межчастичное расстояние в модели или немного меньшее значение. Радиус обрыва потенциала равен $r_c = r_7 = 7.75$ Å и является границей 2-й координационной сферы. В [12, 13] радиусы обрыва были меньше: 5.5 Å в [12] и 4.8 Å в [13]. Коэффициенты a_{in} парного вклада для расстояний 2.65 < r < 7.75 Å приведены в табл. 1. Они немного отличаются от предложенных в [8, 9].

При высоких давлениях атомы сближаются. Поэтому потенциал следует продолжить на область расстояний $0 < r \le 2.80$ Å, где алгоритм

r Å	$(r) \rightarrow B$	r Å	$\varphi(r) \rightarrow B$	r Å	$O(r) \rightarrow B$	r Å	$\omega(r) \rightarrow B$
7,11	φ(r), 3D	7,71	φ(r), 5D	7,71	φ(r), 3D	7,71	φ(7), 5Β
1.00	16.510	1.50	8.705	2.00	3.442	2.50	0.6095
1.05	15.610	1.55	8.066	2.05	3.051	2.55	0.4555
1.10	14.740	1.60	7.453	2.10	2.685	2.60	0.3246
1.15	13.900	1.65	6.864	2.15	2.342	2.65	0.2167
1.20	13.080	1.70	6.301	2.20	2.024	2.70	0.1316
1.25	12.280	1.75	5.763	2.25	1.7290	2.75	0.0692
1.30	11.520	1.80	5.249	2.30	1.4580	2.80	0.0294
1.35	10.770	1.85	4.761	2.35	1.2110	2.85	-0.0198
1.40	10.060	1.90	4.297	2.40	0.9870	2.90	-0.0430
1.45	9.369	1.95	3.857	2.45	0.7866	_	_
				1			

Таблица 2. Парный вклад в потенциал ЕАМ олова (фрагмент)

Шоммерса при обычном давлении не работает из-за отсутствия нужных пар атомов. Вид потенциала на малых расстояниях можно определить по данным ударного сжатия. В итоге значения парного вклада на интервале 1.00-2.80 Å рассчитываются интерполяцией данных алгоритма Шоммерса (табл. 2), а при $r \ge 2.80$ Å используется разложение (3). График парного вклада в потенциал ЕАМ показан на рис. 1.

Потенциал погружения ЕАМ. Потенциал погружения был аппроксимирован формулами [8, 9]:

$$\begin{split} \psi(r) &= p_1 \exp(-p_2 r), \\ \Phi(\rho) &= a_1 + c_1 (\rho - \rho_0)^2 \quad \text{при} \quad \rho_1 \leq \rho \leq \rho_6, \\ \Phi(\rho) &= a_i + b_i (\rho - \rho_{i-1}) + c_i (\rho - \rho_{i-1})^2 \\ \text{при} \quad \rho_i \leq \rho \leq \rho_{i-1} \quad (i = 2-5), \end{split}$$

$$\Phi(\rho) = [a_6 + b_6(\rho - \rho_5) + c_6(\rho - \rho_5)^2][2\rho/\rho_{5-}(\rho/\rho_5)^2]$$

при $\rho \le \rho_5,$ (4)

$$\Phi(\rho) = a_7 + b_7(\rho - \rho_6) + c_7(\rho - \rho_6)^m$$

при $\rho_6 \le \rho \le \rho_7,$ (4)

$$\Phi(\rho) = a_8 + b_8(\rho - \rho_7) + c_8(\rho - \rho_7)^n$$

при $\rho_7 \le \rho \le \rho_8,$
$$\Phi(\rho) = a_9 + b_9(\rho - \rho_8) + c_9(\rho - \rho_8)^q$$

при $\rho > \rho_8,$

причем $\rho_0 = 1$, а при $\rho = \rho_i$ непрерывны сама функция $\Phi(\rho)$ и ее первая производная. Функция $\Phi(\rho)$ и все коэффициенты *a*, *b* и *c* выражаются в эВ. Координаты точек деления оси абсцисс возрастают в последовательности $\rho_5 - \rho_4 - \rho_3 - \rho_2 - \rho_1 - \rho_0 - \rho_6 - \rho_7 - \rho_8$. В итоге потенциал EAM определяется параметрами p_1 , p_2 , a_1 , $c_1 - c_9$, $\rho_1 - \rho_8$, *m*, *n*, *q*. Подгонку проводили по зависимости плотности и энергии олова от температуры вдоль бинодали, а также по данным статического и ударного сжатия. Выражения при $\rho < \rho_0$ используются при моделировании состояний с нормальной и пониженной плотностью, а при ρ > ρ₆ – для сжатых состояний. Параметр *p*₂ в (4) является подгоночным. Параметр p_1 определялся таким образом, чтобы получить для модели жидкости в "стандартном" состоянии (вблизи от точки плавления) среднее значение $\langle \rho \rangle = \rho_0 = 1$. В этом случае потенциал погружения не влияет на движение частиц, поскольку $d\Phi(\rho)/d\rho$ при $\rho \approx 1$ очень мало. Коэффициенты a_2-a_9 , b_2-b_9 рассчитываются из условия непрерывности потенциала погружения и его производной в точках р_і. Значения коэффициентов потенциала погружения приведены в табл. 3.

Проведение расчетов. Модели олова имели размер 2048 или 2000 атомов в основном кубе. Отдельные расчеты проводили на моделях большего размера. Моделирование проводили алгоритмом Л. Верле с шагом $\Delta t = 0.01t_0$, где единица времени $t_0 = 1.109 \times 10^{-13}$ с. Применяли ансамбли *NVT* при реальной плотности олова [23] и *NpT* при давлении, близком к нулю. При расчетах учитывали

Рис. 1. Парный вклад в потенциал ЕАМ $\phi(r)$, найденный при 523 К алгоритмом Шоммерса по ПКФ олова из [20].

i	ρ _i	<i>а</i> _i , эВ	<i>b</i> _{<i>i</i>} , эВ	<i>с</i> _{<i>i</i>} , эВ
1	0.90	-1.90180	_	1.1832
2	0.78	-1.889968	-0.236640	0.0000
3	0.70	-1.861571	-0.236640	0.0500
4	0.50	-1.842320	-0.244640	0.0500
5	0.28	-1.791392	-0.264640	1.0000
6	1.30	-1.684771	-0.704640	0.0000
7	1.60	-1.795312	0.709920	0.7600
8	2.33	-1.413597	1.412999	0.8600
9	—	0.009458	2.753980	0.7400
p_1	p_2	т	п	q
4.0244	1.2000	1.25	2.50	2.70

Таблица 3. Коэффициенты разложения потенциала погружения $\Phi(\rho)$ олова

электронные вклады в энергию и давление в модели свободных электронов (МСЭ), принимая четыре электрона на атом [7–9]. Значения тепловой энергии электронов E_{eT} приведены в табл. 4. Электронный вклад в давление p_{eT} рассчитывается по формуле $p_{eT}V = (2/3)E_{eT}$. Часть результатов опубликована ранее в [8, 9].

Результаты расчетов для бинодали олова. В табл. 5 и на рис. 2 показаны невязки R_g между модельными и фактическими ПКФ [20, 24]. При T < 700 К невязки невелики ($R_g \le 0.03$), и обе ПКФ практически совпадают. При более высоких температурах расхождения между ПКФ увеличиваются (до $R_g = 0.058$ при 1573 К). Причинами расхождений являются как неточности потенциала ЕАМ, так и погрешность дифракционных данных, которая увеличивается с температурой. По данным графиков, в [13] невязка при 573 К до-

вольно велика ($R_g \approx 0.12$), хотя и несколько убывает при нагреве.

Результаты расчетов термодинамических свойств олова вдоль бинодали до 1973 К приведены в табл. 5. К энергии моделей были добавлены электронные вклады E_{eT} из табл. 4. Расчетная плотность отклоняется от фактической не более, чем на 1.9% (4 и 2 колонки). Электронные добавки в давление при невысоких температурах невелики и не превышают 0.1 ГПа. Согласие по энергии с данными опыта (10 и 11 колонки) в целом неплохое, но наблюдается небольшое занижение расчетных данных, которое постепенно увеличивается при нагреве. Это расхождение может быть отчасти следствием неточности МСЭ.

Далее был рассчитан с учетом электронных вкладов модуль всестороннего сжатия K_T , а также теплоемкости C_p и C_v и скорость звука и по уравнению $u = [(K_T/d)(C_p/C_v)]^{1/2}$, где d – плотность (см. табл. 6). Значения и приведены в табл.6 и показаны на рис. 3. Они согласуются с экспериментальными данными [25–27], а расхождения не превышают 3.6%.

Расчетный коэффициент самодиффузии монотонно увеличивается с температурой и описывается выражением D, см²/с = $5.5236 \times 10^{-9} T^{1.3344}$. Обзоры данных по самодиффузии олова приведены в [13, 22]. Характерен сильный разброс литературных данных. Значения D в условиях микрогравитации [28, 29] и близкие к ним значения, полученные в земных условиях [30], лежат заметно выше по отношению к нашим измерениям, значения в модели MEAM [13] также выше, а первопринципные значения [22] лежат немного ниже. Завышение значений D характерно для экспериментов с не полностью устраненной конвекцией.

Сдвиговая вязкость была рассчитана по Грину-Кубо через автокорреляционную функцию

					Z =	V_0/V				
<i>Т</i> , К	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90
					E	eT				
298	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1000	0.631	0.592	0.559	0.530	0.504	0.482	0.462	0.442	0.426	0.411
2000	2.707	2.542	2.398	2.274	2.164	2.067	1.980	1.901	1.830	1.765
3000	6.166	5.787	5.462	5.178	4.929	4.708	4.510	4.331	4.169	4.022
5000	17.208	16.154	15.248	14.459	13.764	13.147	12.595	12.097	11.646	11.235
10000	68.437	64.313	60.757	57.652	54.914	52.478	50.295	48.325	46.537	44.904
15000	151.63	142.81	135.15	128.42	122.45	117.13	112.35	108.02	104.08	100.48
20000	263.00	248.53	235.83	224.58	214.55	205.54	197.39	189.99	183.24	177.04
25000	397.64	377.24	359.15	342.98	328.43	315.28	303.31	292.38	282.35	273.12

Таблица 4. Электронные вклады в энергию олова E_{eT} , кДж/моль, $V_0 = 16.262 \text{ см}^3$ /моль

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 1 2023

	1 - 1 - 3	т ГПо	1 - (3	d r/cm ³		<i>Е</i> , кДж/моль; <i>р</i> , ГПа				
<i>Т</i> , К	<i>а</i> , г/см ³ [23]	<i>p</i> , 111a MD	a, г/см ³ при $p \approx 0$	$\langle \rho \rangle^a$	с учетом [20]	$-E_{\rm MD}$	<i>p</i> _{eT}	$E_{\rm eT}$	$-(E_{\rm MD} + E_{eT})$	$-E_{\rm exp}$ [9, 36]
1	2	3	4	5	6	7	8	9	10	11
298	7.300	1.92	7.300	1.107	_	289.41	0.000	0.000	289.41	295.0
298	7.300	< 0.01	6.990	1.004	_	289.92	0.000	0.000	289.92	295.0
523	6.967	< 0.01	6.946	0.999	0.020	281.32	0.005	0.124	281.20	281.3
573	6.935	< 0.01	6.926	0.996	0.027	280.07	0.007	0.161	279.91	279.8
773	6.804	< 0.01	6.838	0.986	0.047 ^c	275.11	0.015	0.336	274.77	274.2
973	6.674	< 0.01	6.741	0.970	0.068	270.33	0.025	0.560	269.77	268.6
1173	6.544	< 0.01	6.644	0.953	0.064	265.71	0.038	0.828	264.88	262.9
1373	6.413	< 0.01	6.529	0.938	0.056	260.88	0.053	1.141	259.74	257.3
1573	6.283	< 0.01	6.407	0.919	0.058 ^d	256.13	0.071	1.495	254.63	251.7
1773	6.152	< 0.01	6.279	0.894	0.095 ^d	251.25	0.092	1.887	249.36	246.0
1873	6.087	< 0.01	6.195	0.881	0.059 ^c	248.62	0.103	2.097	246.52	243.1
1973	6.022 ^b	< 0.01	6.122	0.872	0.066 ^d	246.08	0.115	2.316	243.76	240.2

Таблица 5. Свойства моделей Sn на бинодали. Метод МД с потенциалом ЕАМ

Примечания: ^а стандартное отклонение растет сверху вниз от 0.05 до 0.12, ^b экстраполяция, ^c с учетом дифракционных данных [22], ^d с учетом [24].

тензора вязких напряжений. С учетом работ [31, 32] вязкость η можно рассчитывать по уравнению:

$$\eta = \frac{V}{3k_{\rm B}T} \int_{0}^{\infty} \left(\sum_{\alpha\beta} \left\langle P_{\alpha\beta}(0) P_{\alpha\beta}(t) \right\rangle \right) dt.$$
 (5)

Здесь $k_{\rm B}$ — постоянная Больцмана, и берется сумма по $\alpha\beta = xy, xz, yz$. Далее,

$$P_{\alpha\beta} = (\pi_{\alpha\beta} + \pi_{\beta\alpha})/2 - \delta_{\alpha\beta} \left(\sum_{y} \pi_{yy}\right)/3,$$

где $\delta_{\alpha\beta}$ — символ Кронекера и

$$\pi_{\alpha\beta} = \frac{1}{V} \left[\sum_{j} m_{j} v_{j\alpha} v_{j\beta} + \frac{1}{2} \sum_{j} \sum_{k \neq j} (r_{j\alpha} - r_{k\alpha}) f_{jk\beta} \right].$$

Здесь m_j — масса атома j, $r_{j\alpha}$ и $r_{j\beta}$ — координаты атома j, $v_{j\alpha}$ и $v_{j\beta}$ — компоненты его скорости,

Рис. 2. Гистограмма дифракционной парной корреляционной функции. Штриховые линии – дифракционные ПКФ олова при 573 К; *1* – данные [20], *2* – данные [22]. Маркеры – ПКФ моделей с потенциалами, найденными алгоритмом Шоммерса. Невязки *R*_g между дифракционными и модельными ПКФ равны соответственно 0.020 (*1*) и 0.050 (*2*).

	<i>K</i> _{<i>T</i>} ,	ГПа	Дж/(м	оль К)	и, м/с		
<i>Т</i> , К	MD	Опыт [37]	C _p	C_v	МД	Опыт [27]	
523	37.6	36.6	25.8	24.46	2386	2484	
573	36.0	_	25.72	23.50	2384	2471	
773	34.3	_	25.35	23.38	2338	2421	
973	31.3	_	24.80	21.54	2324	2372	
1173	29.8	_	24.90	22.26	2257	2322	
1373	22.6	_	25.73	21.34	2061	_	
1573	18.2	_	25.95	20.46	1917	_	
1773	15.2	—	27.03	20.19	1819	—	

Таблица 6. Теплоемкости C_p и C_v с учетом электронных вкладов, и скорость звука и моделей жидкого олова на бинодали

 $f_{jk\beta} - \beta$ –компонента силы, с которой атом *j* действует на атом k. Расчеты проводили прогонами длиной 5000-10 000 шагов по времени, величины $P_{\alpha\beta}(t)$ вычисляли на каждом шаге по времени, интегралы (5) рассчитывали на интервалах длиной 2500 шагов по времени. Усреднение путем сдвига расчетного интервала вдоль таблицы данных одного МД-прогона не проводилось. Расчетные значения вязкости при температурах 523-1173 К приведены в табл. 7. При всех температурах наблюдается занижение расчетных данных по отношению к опыту [23] на 10-30%, которое увеличивается с понижением температуры. Значения вязпо Грину–Кубо, полученные кости С потенциалом МЕАМ [13], наоборот, завышены по отношению к данным [23] на 8-20%.

Рассмотрим, как выполняется соотношение Стокса–Эйнштейна, связывающее коэффициент самодиффузии и вязкость: $D = kT/4\pi\eta r_a$. Здесь r_a – "радиус атома". При T = 523 К по данным табл. 7 получаем $r_a = 2.10$ Å. При учете данных МЕАМ [13] из табл. 7 получается $r_a = 1.81$ Å. Если принять за диаметр атома координату 1-го пика

Рис. 3. Скорость звука *и*, м/с; *1* – данные [26], *2* – [25], *3* – [27], *4* – МД-расчет с потенциалом ЕАМ.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 1 2023

ПКФ (3.17 Å), то обе приведенные оценки завышены на 15-30%.

Состояния олова при высоких давлениях. Для расчета свойств олова при высоких давлениях требуется определить коэффициенты ρ_6 , ρ_7 , ρ_8 , a_7-a_9 , b_7-b_9 , c_7-c_9 , m, n, q. Их можно найти двумя способами: по форме ударной адиабаты и по данным статического сжатия при 298 К. При этом параметры потенциала ЕАМ, найденные при расчетах бинодали, сохраняются в обоих случаях.

Для расчета свойств в условиях ударного сжатия были использованы экспериментальные данные [33–35]. Ударная адиабата олова показана на рис. 4. Принято обозначение $Z = V_0/V$, где стандартный объем олова $V_0 = 16.262$ см³/моль. При давлениях свыше 310 ГПа имеется мало данных.

При высоких давлениях расстояния между ближайшими атомами убывают, так что необходима корректировка парного вклада в потенциал EAM на малых расстояниях. Для уточнения парного вклада оказались полезными данные по ударному сжатию. В работе [38] было исследовано ударное сжатие олова и рассчитаны дифракционные ПКФ жидкого олова в нескольких состояниях на ударной адиабате (при давлениях 0, 52, 79 и 84 ГПа). Кроме того, в [38] провели моделирование олова методом *ab initio* в состояниях на ударной адиабате при давлениях 50.5, 76.3 и 91.8 ГПа. В [38] приведены графики ПКФ жидкого олова в условиях ударного сжатия.

Две важных характеристики формы ПКФ – минимальное межчастичное расстояние и высота 1-го пика ПКФ – позволяют подобрать крутизну парного вклада в потенциал ЕАМ на малых расстояниях. Именно этот парный вклад в потенциал ЕАМ приведен на рис. 1 и в табл. 2. Далее можно по форме ударной адиабаты найти описанным в [39] методом коэффициенты потенциала погружения, ответственные за поведение металла при высоких давлениях. Они приведены в табл. 3. При расчетах используется уравнение ударной адиабаты [40]:

Рис. 4. Ударная адиабата олова: *1* – опыт [33–35, 42], 2 – МД с потенциалом ЕАМ. При расчетах использован потенциал ЕАМ с учетом электронных вкладов.

БЕЛАЩЕНКО

		$D \times 10$	⁵ , см ² /с	Вязкость, мПа с			
<i>Т</i> , К	EAM	EAM [9] MEAM* [13]		Опыт [22, 28-30]	EAM	MEAM* [13]	Опыт [23]
1	2	3	4	5	6	7	8
523	2.16	1.79	1.5	2.63	1.263	2.12	1.76
573	2.58	2.74	3.0	—	1.144	1.76	1.55
773	4.31	—	5.0	—	0.851	1.21	1.05
973	5.82	5.48	6.75	7.72	0.739	0.95	0.88
1173	8.14	7.98	9.5	9.56	0.645	0.91	0.77
1373	9.85	8.70	12.5	10.8	—	_	—
1573	11.4	—	—	14.8	—	0.73	—
1773	13.3	—		17.1	—	—	—

Таблица 7. Коэффициенты самодиффузии и вязкость моделей Sn, рассчитанные методом МД с потенциалом ЕАМ

Примечание: * интерполировано.

Таблица 8. Свойства моделей Sn при условиях ударного сжатия. Потенциал EAM, $V_0 = 16.262 \text{ см}^3/\text{моль}$

Ζ	<i>р</i> , ГПа [33–35]	<i>Е -Е</i> ₀ , кДж/моль	<i>Т</i> , К моделей	<i>T</i> , K [41]	<i>Е_{еТ},</i> кДж/моль	<i>р_{еТ},</i> ГПа	$E_{298} + E E_0,$ кДж/моль	Е _{МD} + Е _{еТ} , кДж/моль	<i>р</i> _{MD} , ГПа модель	р _{MD} +р _{еТ} , ГПа
1	2	3	4	5	6	7	8	9	10	11
1.00 ^a	0	0	298	298	0.000	0	-295.0 ^b	-287.99	1.51	1.51
1.20 ^a	13.8	18.7	310	510	0.004	0.000	-276.3	-272.07	17.75	17.75
1.40	43.5	101.1	1285	2110	0.864	0.050	-193.9	-193.74	41.47	41.52
1.60	97.5	297.3	5200	7110	13.62	0.894	2.3	0.11	100.45	101.3
1.80	183.2	662.2	12140	17 520	68.44	5.05	367.2	362.24	180.51	185.5
1.90	240.4	925.8	17450	_	135.45	10.55	630.8	632.96	229.12	239.7
2.00 ^c	308.3	1253	23700	—	238.59	19.56	958.2	959.09	288.6	308.2

Примечания: ^а структура ГЦК, ^b фактическое значение, ^c экстраполяция, $Z = V_0/V$.

$$E - E_0 = (1/2)(p_0 + p)(V_0 - V).$$
(6)

Здесь E — энергия металла в сжатом состоянии, E_0 — энергия в исходном состоянии, p и V — давление и объем в сжатом состоянии, а p_0 и V_0 они же в исходном состоянии. Величина E_0 = = -295.0 кДж/моль [7, 9]. Расчетные значения давления и энергии на адиабате с учетом электронных вкладов (в МСЭ при 4 эл/атом) показаны на рис. 4 и в табл. 8. Видно очень хорошее согласие с опытом для давления (табл. 8, колонки 2 и 11) и энергии (колонки 8 и 9) жидкого олова на адиабате. Электронные вклады быстро возрастают с увеличением температуры: до 238.59 кДж/моль и 19.56 ГПа при Z = 2. Температура на адиабате всюду ниже, чем в предположении, что электроны не дают вклада в энергию [41].

Дополнительное свидетельство адекватности потенциала ЕАМ можно получить, сравнивая ПКФ наших моделей с найденными методом *ab* *initio* и с ПКФ реального олова на ударной адиабате при Z = 1.5302 и 1.580 [38]. Эти ПКФ хорошо согласуются между собой. Высоты первых пиков дифракционных ПКФ в [38] несколько занижены (на ~0.5) по отношению к расчетам *ab initio*.

Холодное давление олова. Можно сравнить график холодного давления (изотерма при 298 K) с потенциалом ЕАМ с данными статического сжатия ОЦК олова при давлениях до ~200 ГПа [43–45] (рис. 5). При давлениях до 100 ГПа здесь получено очень хорошее согласие с опытом, которое довольно редко бывает при обработке данных ударного сжатия металлов. Однако при сжатии олова в 2 раза расхождение МД-расчета с опытом по давлению достигает 30 ГПа.

Нанокластеры олова. Поверхностные свойства нанокластеров анализировали ранее методом МД в ряде работ ([46–48] и др.). В частности, проводилась проверка применимости к нанокластерам макроскопических уравнений термодинамики

Рис. 5. График "холодного давления" ОЦК олова при 298 К: *1* – опытные данные [43], *2* – опытные данные [44], *3* – МД с потенциалом ЕАМ.

(уравнения Лапласа для давления, формулы Толмена для зависимости поверхностного натяжения от кривизны поверхности, уравнения Кельвина для давления пара). В [46] исследовали методом МД нанокластеры с потенциалом Леннард-Джонса, а в [47] – нанокластеры серебра, построенные с потенциалом EAM [5], а также методом *ab initio*. В [48] был исследованы нанокластеры Ar, а также Ag, Fe и Zn с потенциалами EAM.

Поверхностное натяжение на границе жидкость-газ рассчитывают обычно, используя двухфазные МД-модели с плоской границей раздела. Погрешность такого расчета составляет ~15-25% (Li [17], Sn [13]), причем в сторону как завышения, так и занижения. Значительно проще определять методом МД не поверхностное натяжение σ, а избыточную энергию поверхности h. В работе [48] была предложена схема расчета поверхностной энергии сферических нанокластеров. В качестве объектов были использованы икосаэдрические нанокластеры Маккея [49], содержащие от 13 до 5233 атомов. Было показано, что зависимость энергии нанокластера Е от числа атомов в нем N может быть с высокой точностью аппроксимирована уравнениями:

$$E = aN + bN^{2/3}$$
 или $E/N = a + bN^{-1/3}$. (7)

Коэффициенты *a* и *b* могут быть найдены графически. Значения поверхностной энергии $E_s = h = bN^{2/3}$ были получены ранее для Ar, Ag, Fe, Zn [48], In [50] и Tl [51].

В силу термодинамического соотношения

$$\sigma = h + Td\sigma/dT \tag{8}$$

можно было бы ожидать, что $\sigma < h$ (поскольку обычно $d\sigma/dT < 0$), причем разница между σ и h должна быть невелика. В [47] величины σ и h оценивали для моделей кристаллических кластеров Ag размером от 13 до 5233 атомов. При расчетах методом *ab initio* (SIESTA) отклонения σ от h были невелики (разница в несколько процентов) и

ЖУР

Рис. 6. Зависимость (7) для кластеров олова при 500 К.

знакопеременны, а при расчетах методом МД с потенциалом EAM из [5] величина σ при всех размерах кластеров Ag от 249 до 5233 атомов была на несколько процентов больше, чем h [47].

Аналогично [48], можно построить серию икосаэдрических нанокластеров Маккея для олова. При расчетах с потенциалом ЕАМ принималось во внимание, сколько атомов нанокластера находится не в жидкой, а в газовой фазе и не имеет ближайших соседей. Эти атомы при анализе кластеров не учитывались. Величины, рассчитанные без учета атомов в газовой фазе, обозначены как N^*, E^*, E^*_s, S^*_s . Модели находились в центральной части основного куба с длиной ребра 90 Å и не взаимодействовали со своими образами в соседних кубах. Периодически проводили остановку вращения кластера. Моделирование проводили прогонами по 10 000 шагов по времени. Шаг по времени равнялся $\Delta t = 0.01 t_0$, где единица времени $t_0 = 1.109 \times 10^{-13}$ с. Значения энергии этих нанокластеров были рассчитаны методом МД при 500 К и приведены в табл. 9 и на рис. 6. В последней строке приведены данные для модели сплошной жидкой фазы с периодическими граничными условиями (ПГУ).

Зависимость (7) для нанокластеров олова хорошо выполняется при N > 55, причем a = -2.9146 эВ/атом, а b = 1.3044 эВ/атом^{2/3} (см. рис. 6). Величина *а* почти совпадает с удельной энергией жидкого олова при 500 К (-2.9212 эВ/атом). Коэффициент *b* отвечает за поверхностную энергию кластеров [48, 50]. В наших обозначениях поверхностная энергия кластера равна $E_s^* = b(N^*)^{2/3}$. Эти величины для кластеров с размерами $13 \le N \le 5083$ приведены в табл. 9 (6 колонка).

Площадь поверхности нанокластера определяли путем разложения кластера на симплексы

Ν	N^*	<i>Е</i> *, эВ	$(N^*)^{-1/3}$	<i>E*/N</i> *, эВ/атом	<i>Е</i> _s *, эВ	$S_s^*, Å^2$	$E_s^*/S_s^*,$ $\ni \mathbf{B}/\mathbf{A}^2$	<i>E_s</i> / <i>S_s</i> , Дж/м ²
1	2	3	4	5	6	7	8	9
13	11	-20.93	0.44964	-1.7334	7.242	103.99	0.069637	1.116
55	49	-125.213	0.27328	-2.55537	18.943	310.24	0.061059	0.978
147	134	-357.443	0.19542	-2.66749	36.482	867.58	0.042051	0.674
309	300	-816.001	0.14938	-2.72	59.865	1618.6	0.036986	0.593
561	545	-1500.77	0.12242	-2.75371	89.093	2543	0.035035	0.561
923	904	-2513.89	0.10342	-2.78085	124.166	3656.8	0.033955	0.544
1415	1395	-3902.56	0.08950	-2.79753	165.085	5039.8	0.032756	0.525
2869	2856	-8039.21	0.07048	-2.81485	264.458	8306.1	0.031839	0.510
Sn	2048	-5982.6	0	-2.92111	_	—	—	(0.409)

Таблица 9. Поверхностные свойства нанокластеров олова при 500 К

Примечание: *N**, *E**, *E**, *S** – без учета атомов в газовой фазе.

Делоне [48, 50]. Те грани кластера, которые с внешней стороны грани не имеют соседнего симплекса, являются поверхностными. Сумму площадей этих граней S_s можно отождествить с площадью поверхности кластера. Однако поверхность нанокластера напоминает при этом черепичную крышу. Поэтому была введена поправка на сглаживание поверхности, которая учитывает наклон грани по отношению к линии, соединяющей грань с центром кластера. Для учета этой негладкости каждая поверхностная грань симплексов нормализовалась, т.е. поворачивалась перпендикулярно к вектору, соединяющему эту грань с центром масс кластера. Новая сумма нормализованных площадей граней симплекса (повернутых) S^{*} оказывается ниже исходной в среднем на 3-20% в зависимости от числа атомов в кластере и его рыхлости. Удельная поверхностная энергия увеличивается при этом на соответствующую долю.

В табл. 9 приведены значения нормализованной поверхности кластеров S_s^* и удельной поверхностной энергии кластеров $h = E_s^*/S_s^*$. На рис. 7 показана зависимость удельной поверхностной энергии $h = E_s^*/S_s^*$ от размеров нанокластера. Здесь также велична *h* линейно зависит от $N^{-1/3}$ при $N \ge 55$. В случае олова при 500 К предельное значение $h = E_s^*/S_s^*$ при $N \to \infty$ (то есть в макроскопическом пределе) равно 0.416 Дж/м².

Вернемся к соотношению (8). В случае реального олова при 500 К $\sigma = 0.552 \, \text{Дж/м}^2$ и $(d\sigma/dT)_p = -0.13 \, \text{мДж/(M}^2$ K) [52], так что при 500 К получаем $h = 0.617 \, \text{Дж/M}^2$. Эта величина выше полученного МД-расчетом значения 0.416 Дж/M^2 . В отличие от условия $\sigma < h$, здесь получается обратное неравенство $\sigma > h$.

В работе [13] авторы измеряли методом МД с потенциалом МЕАМ поверхностное натяжение олова на плоской границе "модель олова—вакуум" и получили при 500 К значение $\sigma \sim 0.645 \text{ Дж/м}^2$, которое больше фактического (0.552) и больше, чем *h*.

Такой же анализ был проведен на моделях лития при 500 К с использованием потенциала ЕАМ из работы [53]. На серии нанокластеров Маккея получено нормализованное значение $h = 0.620 \, \text{Дж/м}^2$ (при использовании не нормализованной поверхности кластеров получается 0.530 $\, \text{Дж/м}^2$). С потенциалом [53, 54] в работе [17] измерено поверхностное натяжение лития на плоской границе жидкость—пар двухфазным методом и получено $\sigma \approx 0.480 \, \text{Дж/м}^2$. Здесь неравенство $\sigma < h$ выполняется. Расчет по опытным данным [52] при 500 К дает $\sigma = 0.390 \, \text{Дж/м}^2$, и при $(d\sigma/dT)_p = -0.18 \, \text{мДж/(м}^2 \, \text{K})$ получается h =

Рис. 7. Удельная поверхностная энергия кластеров олова при 500 К.

Мотолл	ΤK	Опыт	г [52]	G	k	
IVIC I AJIJI	1, К	σ	h (8)	0	n	
Li	500	390	480	480 [17, 53]	620 [53]	
Ag	0	1150	1150	1070 [47]	1000 [47]	
					840 [48]	
In	433	571	619	—	474 [50]	
Tl	588	450	520	—	401 [51]	
Sn	500	552	617	645 [13]	416 (рис. 7)	

Таблица 10. Сравнение σ и *h*. Данные в мДж/м²

 $= 0.480 \ \text{Дж/м}^2$. Таким образом, расчеты на плоской границе раздела и на сферических нанокластерах согласуются между собой, но расходятся с опытом [52].

В случае индия реальное значение поверхностного натяжения при 433 К известно с разбросом от 0.556 до 0.595 Дж/м² (в среднем 0.571), а производная $(d\sigma/dT)_p = -0.11 \text{ мДж}/(\text{м}^2 \text{ K})$ [52]. Для величины *h* при 433 К по уравнению (8) получается $h = 0.619 \text{ Дж}/\text{м}^2$. В то же время рассчитанная на сферических нанокластерах удельная поверхностная энергия индия E_s/S_s в пределе $N \to \infty$ равна 0.474 Дж/м² [50] и ниже реальной величины *h* на ~25%.

В случае жидкого таллия при 588 К поверхностное натяжение равно 0.450 Дж/м² и $(d\sigma/dT)_p =$ = -0.119 мДж/(м² К) [52]. Отсюда по формуле (8) находим h = 0.520 Дж/м². В работе [51] на серии кластеров Маккея описанным выше методом получено значение h = 0.401 Дж/м², то есть на 23% ниже. Аналогичное занижение поверхностной энергии по отношению к величине о было получено для кластеров Ад в [47, 48].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Сравнение результатов ЕАМ и МЕАМ показывает, что переход от варианта ЕАМ к МЕАМ не приводит к улучшению согласия с экспериментом для жидкого олова. Направленность химической связи в жидком олове практически отсутствует, и нет необходимости прибегать к использованию МЕАМ.

Некоторые результаты МД-расчетов поверхностной энергии и поверхностного натяжения кластеров в пределе $N \rightarrow \infty$ приведены в табл. 10. Эти расчеты приводят к значительным расхождениям не только с опытом, но и с уравнением (8). Вряд ли эти расхождения можно приписать только недостаткам потенциалов EAM/MEAM. Видимо, сама схема EAM не подходит для расчетов поверхностных свойств металлов. При последовательном рассмотрении поверхностных свойств методами теории металлов необходимо учиты-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 1 2023

вать "двухкомпонентность" металла (ионы + + электроны) [55], которая приводит к "выпячиванию" в вакуум электронного заряда (spill out) над кристаллической решеткой металла и к образованию двойного электрического слоя на поверхности. Эта двухкомпонентность не сочетается с идеологией ЕАМ. Поэтому нет оснований рассчитывать на предсказательную силу EAM/MEAM в отношении поверхностных свойств. Например, довольно прямолинейный учет двойного слоя в случае серебра сильно меняет значения σ и *h* [47].

Пока неясны перспективы проверки соотношения (8) для нанокластеров. Теория функционала плотности (DFT) позволяет рассчитывать удельную поверхностную энергию с ошибкой не менее 10-20% [55]. Такова же и ошибка расчета поверхностной энергии *h* и поверхностного натяжения σ методом молекулярной динамики или прямого эксперимента. Однако если МД-расчет поверхностной энергии имеет ясный физический смысл, то МД-расчет поверхностного натяжения на двухфазных моделях металла через компоненты тензора напряжений приводит к результатам, такого смысла не имеющим.

СПИСОК ЛИТЕРАТУРЫ

- 1. Менделев М.И., Белащенко Д.К. // Неорган. материалы. 1994. Т. 30. № 11. С. 1412.
- 2. Белащенко Д.К. // Журн. физ. химии. 2001. Т. 75. № 1. С. 89.
- 3. Белащенко Д.К., Полянский Р.А., Павлов Р.Н. // Там же. 2002. Т. 76. № 3. С. 533.
- 4. Schommers W. // Phys. Lett. 1973. V. 43A. P. 157.
- Reatto L., Levesque D., Weis J.J. // Phys. Rev. A. 1986.
 V. 33. № 5. P. 3451.
- Daw M.S., Baskes M.I. // Phys. Rev. B. 1984. V. 29. № 12. P. 6443.
- 7. Белащенко Д.К. // ТВТ. 2017. Т. 55. № 1. С. 51.
- 8. Белащенко Д.К. // УФН. 2013. Т. 183. № 12. С. 1281.
- 9. *Belashchenko D.K.* Liquid Metals. From Atomistic Potentials to Properties, Shock Compression, Earth's Core and Nanoclusters. New York: Nova Science Publ, 2018.
- 10. Белащенко Д.К. // УФН. 2020. Т. 190. № 12. С. 1233.
- 11. Baskes M.I. // Phys. Rev. Letters. 1987. V. 59 (23). P. 2666.
- 12. Ravelo R., Baskes M. // Phys. Rev. Lett. 1997. V. 79. P. 2482.
- Vella J.R., Chen M., Stillinger F.H. et al. // Phys. Rev. B. 2017. V. 95. 064202.
- 14. Won-Seok Ko, Dong-Hyun Kim, Yong-Jai Kwon, Min Hyung Lee // Metals. 2018. V. 8. P. 900.
- Etesami S.A., Baskes M.I., Laradji M., Asadi E. // Acta Mater. 2018. V. 161. P. 320.
- Zhiwei Cui, Feng Gao, Zhihua Cui, Jianmin Qu // Modeling Simul. Mater. Sci. Eng. 2012. V. 20. 015014.

- 17. Vella J.R., Stillinger F.H., Panagiotopoulos A.Z., Debenedetti P.G. // J. Phys. Chem. B. 2015. V. 119. P. 8960.
- Belashchenko D.K. // Russ. J. Phys. Chem. A. 2006. V. 80. № 5. P. 758.
- 19. Белащенко Д.К., Островский О.И. // Журн. физ. химии. 2006. Т. 80. № 4. С. 602.
- Waseda Y. The Structure of Non-Crystalline Materials. Liquids and Amorphous Solids. N.Y.: McGraw-Hill, 1980. 325 p.
- Белащенко Д.К. // Кристаллография. 1998. Т. 43. № 5. С. 786.
- 22. Itami T., Munejiri S., Masaki T. et al. // Phys. Rev. B. 2003. V. 67. 064201.
- Assael M.J., Kalyva A.E., Antoniadis K.D. et al. // J. Phys. Chem. Ref. Data. 2010. V. 39. No. 3. 033105.
- 24. Михайлова Л.Е., Христенко Т.М., Ильинский А.Г., Романова А.В. Структурные факторы жидкого олова в интервале температур до 1973 К // АН УССР. Препринт ИМФ 1987. № 30.87.
- 25. Гитис М.Б., Михайлов И.Г. // Акустический журнал. 1966. V. 12. P. 145.
- Hayashi M., Yamada H., Nabeshima N., Nagata K. // Int. J. Thermophys. 2007. V. 83. P. 28.
- Greenberg Y., Yahel E., Ganor M. et al. // J. Non-Cryst. Solids. 2008. V. 354. P. 4094.
- Frohberg G., Kraatz K.-H., Wever H. // Proc. 5th Europ. Symp. on Material Sciences under Microgravity. Schloss Elmau, 5–7 Nov. 1984. (ESA SP-222). P. 201.
- Itami T., Aoki H., Kaneko M. et al. // J. Japan Soc. Micrograv. Appl. 1998. V. 15. P. 225.
- 30. Bruson A., Gerl M. // Phys. Rev. B. 1980. V. 21. P. 5447.
- Daivis P.J., Evans D.J. // J. Chem. Phys. 1994. V. 100. P. 541.
- Lee S.H., Chang T. // Bull. Korean Chem. Soc. 2003. V. 24. P. 1590.
- LASL Shock Hugoniot Data. Ed. Marsh S.P. Berkeley: Univ. California Press, 1980.
- Al'tshuler L.V., Bakanova A.A., Dudoladov I.P. et al. // J. Appl. Mech. Techn. Phys. 1981. V. 22. P. 145.
- 35. Data on the website: http//www.ihed.ras.ru/rusbank/

- Термодинамические свойства индивидуальных веществ. Справочное издание / Под ред. В.П. Глушко и др. Т. 2. 1979. Табл. 496.
- 37. *Филиппов С.И., Казаков Н.Б., Пронин Л.А.* // Изв. вузов. Черная металлургия. 1966. № 3. С. 8.
- 38. Briggs R., Gorman M.G., Zhang S. et al. // Appl. Phys. Lett. 2019. V. 115. 264101.
- 39. Belashchenko D.K., Ostrovskii O.I. // Russ. J. Phys. Chem. A. 2011. V. 85. № 6. P. 967.
- 40. Ландау Л.Д., Лифшиц Е.М. Механика сплошных сред. Гостехтеориздат. М.: 1954. 796 с.
- 41. *Жарков В.Н., Калинин В.А.* Уравнения состояния твердых тел при высоких давлениях и температурах. М.: Наука, 1968. 215 с.
- 42. Al'tshuler L.V., Bakanova A.A., Trunin R.F. // Sov. Phys. JETP. 1962. V. 15. P. 65.
- Salamat A., Garbarino G., Dewaele A. et al. // Phys. Rev. B. 2011. V. 84. 140104 (R).
- 44. *Gavriliuk A.G., Troyan I.A., Ivanova A.G. et al.* // JETP Letters. 2017. V. 106. № 11. P. 733.
- 45. Weir S.T., Lipp M.J., Falabella S. et al. // J. Appl. Phys. 2012. V. 111. № 12. P. 123529.
- 46. *Thompson S.M., Gubbins K.E., Walton J.P.R.B. et al.* // J. Chem. Phys. 1984. V. 81. P. 530.
- 47. Medasani B., Park Y.H., Vasiliev I. // Phys. Rev. B. 2007. V. 75. 235436.
- 48. *Белащенко Д.К.* // Журн. физ. химии. 2015. Т. 89. № 3. С. 517.
- 49. Mackay A.L. // Acta Crystallogr. 1962. V. 15. P. 916.
- 50. Белащенко Д.К. // Журн. физ. химии. 2021. Т. 95. № 12. С. 1804.
- 51. Белащенко Д.К. // Там же. 2022. Т. 95. № 3. С. 390.
- 52. Influence de la Temperature sur la Tension Superficielle. Techniques de l'ingenieur, Traite Constantes Physico-Chiniques. K 476-2.
- 53. Белащенко Д.К. // ТВТ. 2009. Т. 47. № 2. С. 231.
- 54. Белащенко Д.К. // Там же. 2015. Т. 53. № 5. С. 683.
- Patra A., Bates J.E., Sun J., Perdew J.P. // PNAS. 2017. October 17. E9188–E9196.