——— ПАМЯТИ Н.А. БУЛЬЕНКОВА ——

УДК 539.213 546.27

СТРУКТУРА И СВОЙСТВА СПЕЧЕННЫХ ПРИ ВЫСОКОМ ДАВЛЕНИИ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ, АРМИРОВАННЫХ ЧАСТИЦАМИ АМОРФНОГО БОРА

© 2023 г. И. Н. Лукина^{*a*}, О. П. Черногорова^{*a*,*}, Е. И. Дроздова^{*a*}, Е. А. Екимов^{*b*}

^аИнститут металлургии и материаловедения им. А.А. Байкова РАН, Москва, Россия ^bИнститут физики высоких давлений им. Л.Ф. Верещагина, Москва, Троицк, Россия *e-mail: tchern@imet.ac.ru

Поступила в редакцию 31.05.2022 г. После доработки 31.05.2022 г. Принята к публикации 10.06.2022 г.

Металломатричные композиционные материалы (КМ), армированные частицами бора, синтезированы при давлении 8 ГПа и температурах 500–1000°С из порошков аморфного бора и металла (Ni, Ti). Установлено, что аморфный бор при синтезе кристаллизуется при температурах выше 800°С, частицы аморфного бора характеризуются твердостью ~30 ГПа, модулем упругости при индентировании до 270 ГПа, упругим восстановлением более 60%. Исследованы закономерности образования боридов при высокобарическом синтезе. Показано, что износостойкость КМ Ni–B, синтезированного при 600°С, увеличивается более чем в 30 раз по сравнению с износостойкостью чистого никеля; армирование титана 30% аморфного бора повышает износостойкость более чем на два порядка, но коэффициент трения КМ снижается незначительно.

Ключевые слова: композиционные материалы, аморфный бор, термобарический синтез, кристаллизация, твердость, трибологические свойства

DOI: 10.31857/S0044453723010193, EDN: BCKIXS

Элементарный бор, благодаря его уникальным свойствам (низкой плотности, высокой твердости, высокой химической и термической стойкости), рассматривается как перспективный материал, способный работать в экстремальных условиях абразивного износа, при высоких механических нагрузках, а также в химически активных средах. Обнаружение в боре эффекта самосмазывания благодаря его окислению на воздухе и образованию твердой смазки – борной кислоты – делает бор перспективным материалом триботехнического назначения [1]. Несмотря на востребованность бора как конструкционного материала, задача его получения в виде объемных образцов с высокими механическими свойствами до настоящего времени остается нерешенной. Высокая хрупкость бора, особенно в кристаллической форме, препятствует его применению на практике.

Создание мелкозернистой структуры методом спекания могло бы повысить трещиностойкость бора, но из-за направленного характера жестких ковалентных связей, низкой поверхностной энергии и низкой диффузионной подвижности бора в структурах с локальным икосаэдрическим порядком задача спекания бора становится чрезвычайно сложной [2, 3]. Уплотнения прессовок кристаллического бора при спекании в вакууме не происходит вплоть до температуры плавления ~2370 К [2]. Частицы бора не обнаруживают сцепления между собой даже после прессования взрывом до почти теоретической плотности [3]. Уплотнение бора наблюдали [4] в процессе горячего прессования при давлениях ~40 МПа и температурах ~2100 К, однако, полученные образцы не были должным образом охарактеризованы: данные по микроструктуре и механическим свойствам образцов в работе представлены не были. Спеканием аморфного бора при давлениях 2-8 ГПа и температурах 750-1050 К удалось получить плотные образцы без трешин с сохранением исходной структуры [5, 6]. Изотропность механических свойств аморфного бора делает его особенно привлекательным в качестве конструкционного материала. Высокая твердость и высокие модули упругости полученных образцов свидетельствуют о прочном сцеплении частиц аморфного бора после спекания. Однако кристаллизация аморфного бора под давлением при температурах спекания выше 1300 К приводила к появлению многочисленных трещин в образцах, образцы легко разрушались при шлифовке.

Проблема хрупкости керамических материалов в целом и бора в частности может быть решена созданием металломатричных композиционных материалов [7, 8]: с одной стороны, в дискерамического персной фазе наполнителя уменьшается вероятность образования дефектов, а с другой стороны, создание сжимающих напряжений в хрупких фазах препятствует зарождению в них критической трещины. В разработке углеродсодержащих композиционных материалов и в моделировании структуры армирующей фазы, полученной из фуллеренов путем термобарического синтеза, деятельное участие принимал Николай Александрович Бульенков [8]. Для аморфного бора, полученного в виде волокон, наблюдали колоссальное улучшение гибкости и прочности на разрыв [9] благодаря созданию сжимающих напряжений в поверхностном слое волокон в процессе их получения [10]. Это позволяет надеяться на то, что при получении композиционных материалов на основе металлической матрицы с аморфным бором в качестве армирующей дисперсной фазы могут быть реализованы условия наследования уникальных физико-механических свойств бора.

Цель настоящей работы — термобарический синтез объемных образцов аморфного бора и композиционных металломатричных материалов с армирующими частицами аморфного бора, а также сравнительное исследование их микроструктуры, трибологических и механических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Агрегаты (размером <10 мкм) наночастиц аморфного бора в смеси с порошками титана и никеля размером 6-12 и 3-5 мкм, соответственно, а также без металла спекали при давлении (P) 8 ГПа и при температурах (T) в диапазоне от 500 до 1000°С с использованием камер высокого давления "тороид-15". Порошки в виде таблеток, предварительно спрессованных под давлением менее 1 ГПа, помещали внутрь нагревателя в центральную часть с целью снижения градиента температуры по образцу в процессе последующего спекания. Под давлением образцы нагревали с фиксированной скоростью до 100 К/мин до заданной температуры пропусканием тока через нагреватель. Продолжительность спекания при фиксированных параметрах Р и Т составляла 30-40 с. Давление в камерах высокого давления определяли при комнатной температуре по изменению электросопротивления реперных материалов Bi и Sn при фазовых переходах под давлением. Температуру в ячейке высокого давления определяли по показаниям хромель-алюмелевой термопары. Спай термопары располагали в центре образца или на внешней стенке графитового

нагревателя на середине его высоты. Получали образцы в виде таблеток диаметром 5 мм и высотой 2–3 мм. Измерение физико-механических свойств (ГОСТ Р 8.748-2011) проводили с помощью динамического микротвердомера DUH-211 (Shimadzu, Япония). Триботехнические испытания образцов КМ проводили на установке UMT-3MO фирмы CETR по схеме палец-диск с круговым движением.

Обработка порошка аморфного бора давлением 8 ГПа при 600–1000°С позволила получить компактные беспористые образцы. Рентгеновские дифрактограммы образцов, синтезированных при температурах 600–800°С, содержат размытые максимумы в области дифракционных рефлексов кристаллического бора, что свидетельствует об их аморфном состоянии. Образцы, синтезированные при 1000°С, частично кристаллизованы, на что указывает появление острых пиков кристаллического бора с ромбоэдрической решеткой ($R\overline{3}m, a =$ = 4.91 Å, c = 12.57 Å) на фоне размытых максимумов аморфного бора (рис. 1).

Для получения композиционных материалов (KM), армированных частицами аморфного бора, выбраны матрицы из металлов, сильно различающихся по температурным интервалам образования боридов: никель, образующий бориды в диапазоне температур синтеза 500–1000°С, и титан, у которого образование боридов в условиях синтеза маловероятно [11].

На рентгеновских дифрактограммах КМ Ni– В, полученных с 10 мас. % аморфного бора, интенсивность рефлексов бора незначительна по сравнению с таковой рефлексов матричного метала и боридов (рис. 2). По мере повышения температуры синтеза фазовый состав КМ Ni–В меняется вследствие реакционного взаимодействия между металлом и бором: образуются бориды с более высоким содержанием бора, а при 800°С уже наблюдаются только бориды, на образование которых расходуются все частицы бора (рис. 2). Синтез при 1000°С приводит фазовый состав КМ Ni–B (Ni₂B + Ni₄B₃) в соответствие с равновесной диаграммой состояния Ni–B [11].

В КМ Ni–В после синтеза при низких температурах наблюдается дисперсная структура с однородным распределением фазы аморфного бора (рис. 3), поскольку при получении КМ на основе Ni исходные порошки металла и аморфного бора были подвергнуты тщательному перемешиванию и измельчению. Поверхность разрушения КМ Ni–B, синтезированного при 600°С, демонстрирует раковистый излом частиц бора, типичный для аморфных материалов.

В КМ на основе Ті, синтезированных при 800°С из смесей, содержащих 10, 20 и 30 мас. % аморфного бора, согласно результатам рентгенофазового анализа, бориды титана отсутствуют.

Рис. 1. Дифрактограммы образцов бора, синтезированных под давлением 8 ГПа при разных температурах.

Рис. 2. Дифрактограммы КМ из смеси Ni-10 мас. %, синтезированных под давлением 8 ГПа при разных температурах.

Это позволяет в КМ Ті–В полностью сохранить бор в виде сплошной сетки включений второй фазы, которые равномерно распределены в структуре. Доля таких включений возрастает с повышением содержания аморфного бора.

Значения твердости H_{IT} , модуля упругости при индентировании E_{IT} и упругого восстановления при индентировании η_{IT} для объемных образцов бора и армирующих частиц в КМ приведены в табл. 1. Сравнение этих результатов показывает, что частичная кристаллизация аморфного бора не приводит к существенному изменению свойств. Следует отметить достаточно высокие значения упругого восстановления бора (>60%). Отношение твердости к модулю упругости образцов и частиц бора имеет довольно высокие значения (>0.1), что показывает их перспективность для триботехнического применения [12].

Испытания на абразивную износостойкость показали чрезвычайно низкую интенсивность изнашивания у образцов чистого бора (табл. 3), при этом они практически не имеют микроскопически видимых следов износа. Коэффициент трения таких образцов достаточно низкий (0.26). Износостойкость KM Ni–B, синтезированного при 600°С, благодаря армированию твердыми частицами аморфного бора увеличивается более чем в 30 раз по сравнению с таковой чистого никеля (рис. 4). Однако при повышении температуры

Рис. 3. Влияние температуры синтеза на микроструктуру КМ Ni-B.

синтеза от 500-600°С до 1000°С КМ системы Ni-В демонстрируют значительное (в 15-20 раз) повышение интенсивности изнашивания (рис. 4), что обусловлено растворением дисперсных включений аморфного бора с образованием боридов никеля. Износостойкость KM на основе Ti при повышении содержания бора от 10 до 30% возрастает в 7 раз и превышает износостойкость чистого титана более чем на два порядка величины (табл. 2). Коэффициент трения при армировании

Таблица 1. Механические характеристики (твердость индентирования $H_{\rm IT}$, модуль индентирования $E_{\rm IT}$ и упругое восстановление $\eta_{\rm IT} = W_{\rm elast}/W_{\rm total}$, где $W_{\rm elast}$ и $W_{\rm total}$ – упругая и полная работа индентирования, соответственно) образцов бора и КМ, полученных при разных температурах синтеза T

Таблица 2. Трибологические характеристики образцов аморфного бора, титана и KM на основе Ti, арми-

рованных частицами аморфного бора

w_{total} — упругая и полная работа индентирования, со- ответственно) образцов бора и КМ, полученных при разных температурах синтеза <i>T</i>					Образец	Интенсивность изнашивания,	Коэффициент
Образец	<i>T</i> , °C	$H_{\rm IT}$, ГПа	$E_{\rm IT}$, ГПа	$\eta_{IT},\%$		мг/м	прения
В	630	30.1	227	65.4	100% B	0.003	0.26
В	700	31.7	229	67.1	100% Ti	2.5	0.79
В	800	30.8	240	65.6	$T_{i} + 10\% B$	0.15	0.60
В	1000	32.5	257	64.8	11 + 1070 D	0.15	0.00
Ni-B	500	29.1	274	61	Ti + 20% B	0.04	0.67
Ti–B	800	32.4	274	61	Ti + 30% B	0.02	0.66

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 1 2023

Рис. 4. Влияние температуры синтеза на интенсивность изнашивания КМ Ni–B. Для сравнения приведен результат для чистого никеля.

титана аморфным бором снижается незначительно (от 0.79 до 0.66).

Таким образом, методом высокотемпературного (500-1000°С) синтеза под давлением 8 ГПа получены компактные образцы аморфного бора в виде макроскопических таблеток и микроскопических частиц, армирующих композиционные материалы (KM) на основе Ni и Ti. Повышение температуры синтеза сопровождается кристаллизацией аморфного бора в интервале температур 800-1000°С. По мере повышения температуры синтеза фазовый состав КМ Ni-В меняется вследствие реакционного взаимодействия между металлом и бором: образуются бориды с более высоким содержанием бора. Образцы и частицы аморфного бора демонстрируют высокие значения твердости ($H_{\rm IT} = 27 - 33 \ \Gamma \Pi a$), модуля упругости ($E_{IT} = \sim 200 - 300 \ \Gamma \Pi a$) и отношения работы упругой деформации к общей работе деформации при индентировании ($\eta_{IT} > 60\%$). Благодаря армированию твердыми частицами аморфного бора

износостойкость КМ Ni–B, синтезированного при 600°С, увеличивается более чем в 30 раз по сравнению с износостойкостью чистого никеля. Износостойкость КМ Ti–B при повышении содержания бора от 10 до 30% возрастает в 7 раз и более чем на два порядка превышает износостойкость чистого титана.

Работа выполнена в рамках государственного задания 075-00715-22-00.

СПИСОК ЛИТЕРАТУРЫ

- 1. Shah F.U., Glavatskih S., Antzutkin O.N. // Tribol. Lett. 2013. V. 51. № 3. P. 281. https://doi.org/10.1007/s11249-013-0181-3
- 2. *German R.M., Mar R.W., Hastings J.C.* // Ceram. Bull. 1975. V. 54. № 2. P. 178.
- Kalanadze G.I., Shalamberidze S.O., Peikrishvili A.B. // J. Solid State Chem. 2000. V. 154. P. 194. https://doi.org/10.1006/jssc.2000.8835
- Brodhag C., Thevenot F. // J. Less-Common Met. 1986.
 V. 117. P. 175. https://doi.org/10.1006/jssc.2000.8835
- 5. *Екимов Е.А., Садыков Р.А., Громницкая Е.Л. и др. //* Неорган. матер. 2006. Т. 42. № 5. С. 538.
- Ekimov E.A., Sidorov V.A., Sadykov R.A. et al. // High Pressure Res. 2007. V. 27. P. 179. https://doi.org/10.1080/08957950601101902
- Chernogorova O., Drozdova E., Ovchinnikova I. et al. // J. Appl. Phys. 2012. V. 111. P. 112601. https://doi.org/10.1063/1.4726155
- 8. Черногорова О.П., Дроздова Е.И., Блинов В.М., Бульенков Н.А. // Росс. нанотехнол. 2008. № 5-6. С. 150.
- 9. Talley C.P. // J. Appl. Phys. 1959. V. 30. № 7. P. 1114.
- Bhardwaj J., Krawitz A. // J. Mater. Sci. 1983. V. 18. P. 2639.
- Диаграммы состояния двойных металлических систем: справочник в 3-х т. / Под ред. Н.П. Лякишева. М.: Машиностроение, 1996.
- Leyland A., Matthews A. // Surf. Coat. Technol. 2004.
 V. 177–178. P. 317. https://doi.org/10.1016/j.surfcoat.2003.09.011