_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА __ И ТЕРМОХИМИЯ

УДК 669.017.13 + 554.016.2

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ И ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТРОЙНОЙ СИСТЕМЫ Ag–In–Pd

© 2023 г. А. С. Павленко^{*a*}, Е. А. Пташкина^{*a*}, Г. П. Жмурко^{*a*}, Е. Г. Кабанова^{*a*,*}, М. А. Карева^{*a*}, А. В. Хорошилов^{*b*}, В. Н. Кузнецов^{*a*}

^а Московский государственный университет им. М.В. Ломоносова, Химический факультет, Москва, Россия ^bИнститут общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Москва, Россия

*e-mail: kabanovaeg@gmail.com Поступила в редакцию 11.05.2022 г. После доработки 25.05.2022 г. Принята к публикации 27.05.2022 г.

Фазовые равновесия в тройной системе Ag-In-Pd изучены с использованием сканирующей электронной микроскопии, микрорентгеноспектрального (MPCA) и рентгенофазового (PФA) методов анализа. Установлена растворимость третьих компонентов в двойных фазах систем Ag-In и In-Pd, а также границы существования (от 4 до 17.5 ат. % Ag при 25 ат. % In) и кристаллическая структура (Al_3 Ti) тройного соединения τ . По полученным в настоящей работе и литературным экспериментальным результатам выполнен новый термодинамический расчет системы Ag-In-Pd. Достигнуто хорошее согласие с экспериментальными данными как по фазовым равновесиям, так и по термодинамическим свойствам фаз системы. Корректность полученного описания дополнительно подтверждена хорошей сходимостью результатов расчета с результатами ДСК/ДТА исследования трех образов, которые в оптимизацию не включались.

Ключевые слова: палладиевые сплавы, фазовые равновесия, термодинамическое моделирование **DOI:** 10.31857/S0044453723010235, **EDN:** BCRZNU

Сплавы на основе палладия находят широкое применение в различных областях промышленности: химической, электротехнической, автомобильной, в водородной энергетике и медицине. Компонентами палладиевых сплавов чаще всего являются металлы 11 группы, а также непереходные низкоплавкие элементы, например, индий и олово [1]. Два последних металла заметно понижают температуры обработки сплавов, но образуют большое число интерметаллических соединений, свойства которых необходимо учитывать при разработке составов и выборе способов технологической обработки новых материалов.

Основным инструментом при разработке многокомпонентных сплавов являются фазовые диаграммы. В настоящее время для построения диаграмм состояния многокомпонентных систем успешно используется метод термодинамического моделирования CALPHAD-метод. Этот метод позволяет не только обобщать экспериментальные данные по фазовым равновесиям и свойствам фаз, но и предсказывать равновесия в сложных многокомпонентных системах при наличии термодинамических описаний граничных двойных и тройных систем. Целью настоящего исследования являлся пересмотр термодинамического описания системы Ag–In–Pd с учетом всей имеющейся в литературе информации по свойствам ее фаз.

Фазовые равновесия в системе Ag–In–Pd при температурах 500 и 700°С изучались в работах [2, 3]. Следует отметить, что результаты этих исследований требуют некоторых уточнений, не была достоверно установлена граница существования ГЦК-твердого раствора в палладиевом углу системы, а также область гомогенности и кристаллическая структура обнаруженного тройного соединения. Что касается выполненного авторами [3] САLРНАД-расчета системы Ag-In-Pd, то он хорошо согласуется с их собственными экспериментальными данными при 500 и 700°С, но, по мнению авторов, требует дополнения, связанного с описанием обнаруженной тройной фазы. В расчете [3] также не проводилось моделирование расплава, хотя в литературе имеются термодинамические данные для этой фазы: энтальпии смешения [4] и парциальные энергии Гиббса компонентов, определенные методом ЭДС [5].

В настоящей работе для пересмотра термодинамического описания системы Ag–In–Pd установлены фазовые равновесия в богатой палладием области системы Ag–In–Pd при 500°С: определена растворимость индия в твердом растворе на основе палладия, а также область гомогенности и кристаллическая структура тройного соединения. Для получения экспериментальной информации в более широком интервале температур дополнительно изучены фазовые равновесия при 800°С. Кроме того, методом ДТА получены температуры фазовых переходов нескольких сплавов, которые использованы для валидации расчета.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследования фазовых равновесий в системе Ag–In–Pd было синтезировано 34 образца, 19 из которых отжигали при 500°С, 15 – при 800°С. Сплавы для исследования выплавляли из металлов высокой степени чистоты: палладий штрипсы (99.95 мас. %), серебро пластины (99.95 мас. %), индий полупроводниковой чистоты (99.999 мас. %). Сплавы готовили методом дуговой плавки в атмосфере аргона, предварительно очищенного плавкой геттера (титан). Угар полученных сплавов не превышал 1 мас. %.

Для достижения равновесного состояния сплавы подвергали отжигу в вакуумированных кварцевых ампулах в трубчатых печах сопротивления. Время отжига сплавов варьировали от 720 до 2880 ч в зависимости от состава сплава и температуры отжига.

Микроструктуры образцов исследовали с использованием сканирующего электронного микроскопа Carl Zeiss LEO EVO 50XPV. Съемку осуществляли в вакууме с остаточным давлением 10^{-7} Па при ускоряющем напряжении 20 кВ. Микроскоп был оборудован системой EDX энергодисперсионного анализа INCA Energy 450 фирмы Oxford Instruments (относительная точность измерений составляет 3–5%). С целью увеличения контрастности изображения использовали детектор Q-BSD.

Рентгенофазовый анализ проводили на автодифрактометре "STOE STADI Р" на монохроматизированном Си $K_{\alpha 1}$ -излучении (германиевый монохроматор, $\lambda = 1.54056$ Å, интервал углов $2\theta = 20-90^{\circ}$, шаг 0.01°, время экспозиции – 10 с на точку). Для расшифровки полученных рентгенограмм использовали программное обеспечение STOE WinXPOW, версия 2.24 [6].

Для определения температур солидуса и ликвидуса сплавов использовали метод дифференциально-термического анализа (ДТА). Образцы исследовали на термоанализаторе Jupiter STA 449 F1, NETZSCH-GERAETEBAU GmbH. Нагрев образцов осуществляли в токе гелия высокой очистки (99.9999%), скорость нагрева (охлаждения) составляла 5 К/мин.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 1 2023

Для расчета и термодинамического моделирования фазовых равновесий в тройной системе Ag–In–Pd использовали ряд модулей программы Thermo-Calc® (версия 2022а): SYSTEM, DATA, GIBBS–ENERGY–SYSTEM, POLY, SCHEIL и PARROT [7].

Модуль SYSTEM осуществляет общее управление программой. Работа с базами данных, выбор компонентов систем, а также чтение значений параметров проходит в модуле DATA. Для внесения изменений в описания моделей фаз используется модуль GIBBS–ENERGY–SYSTEM. Параметры моделей фаз находили с помощью модуля PARROT. Расчет термодинамических свойств и фазовых равновесий выполняется в модуле POLY. С помощью постпроцессора POST модуля POLY осуществлялось графическое представление результатов.

Метод CALPHAD [8] основан на аналитическом представлении энергий Гиббса всех возможных фаз в зависимости от состава и температуры. При этом расплав и твердый раствор на основе ГЦК-компонентов описываются моделью неупорядоченного раствора замещения:

$$G^{\Psi}(x,T) = \sum_{i} x_{i}^{0} G_{i}^{\Psi}(T) + RT \sum_{i} x_{i} \ln(x_{i}) + {}^{X_{s}} G^{\Psi}(\overline{x},T),$$
(1)

где ${}^{0}G_{i}^{\psi}$ — энергия Гиббса компонента *i* в фазе ψ , называемая также параметром стабильности компонента. Второй член соответствует вкладу конфигурационной энтропии неупорядоченного раствора, а третий, называемый избыточной энергией Гиббса фазы, учитывает взаимодействия компонентов. Избыточная энергия Гиббса обычно выражается в виде полинома Редлиха— Кистера:

$$X_{s}G(x_{i}, x_{j}) = x_{i}x_{j}\sum_{\nu=0}^{n}{}^{\nu}L_{i,j}(x_{i} - x_{j})^{\nu},$$
 (2)

где ${}^{v}L_{i,j}$ — параметры взаимодействия, которые определяются в ходе оптимизации.

Для описания энергии Гиббса упорядоченных фаз используют подрешеточные модели, при этом количество подрешеток и типы атомов, находящихся в них, определяются в соответствии с кристаллической структурой и составом фазы. Параметрами подрешеточной модели фазы являются энергии Гиббса квазикомпонентов – соединений, содержащих только один компонент в каждой подрешетке, а также параметры взаимодействий между компонентами в одной и той же подрешетке. Энергии Гиббса квазикомпонентов, также называемые параметрами стабильности этих квазикомпонентов, описываются выражением

Рис. 1. Рассчитанные изотермические сечения системы Ag–In–Pd при 500°С (а) и 800°С (б) в сравнении с экспериментальными данными, полученными в настоящем исследовании и в [2].

$$G_{A_m B_n}(T) = m G_A^{\text{ref}} + n G_B^{\text{ref}} + \Delta_f G(A_m B_n), \qquad (3)$$

где G_A^{ref} и G_B^{ref} – энергии Гиббса компонентов A и B в стандартных состояниях, а энергия Гиббса образования $\Delta_f G(A_m B_n)$, является подбираемым параметром.

Параметры взаимодействия в подрешеточной модели описываются выражением (2), в которое вместо концентраций компонентов x_i подставляются их концентрации в подрешетках y_i .

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Экспериментальные исследования фазовых равновесий

Результаты рентгенофазового и микрорентгеноспектрального анализа образцов, отожженных при 500 и 800°С, представлены в табл. 1 и 2. Коноды двухфазных и трехфазных равновесий нанесены на рис. 1.

Установлено, что в интерметаллидах $InPd_2$ и In_3Pd_5 серебро практически не растворяется. Область гомогенности эквиатомной фазы InPd направлена вдоль изоконцентраты 50 ат. % и максимальное содержание серебра в ней при обеих температурах составляет ~17 ат. %. Следует отметить, что в работе [3] при 500°С растворимость серебра в InPd несколько больше (~20 ат).

Растворимость индия в ГЦК-твердом растворе системы Ag–In–Pd проходит через минимум. В чистом палладии она составляет ~19 ат. % In, при добавлении ~90 ат. % Ag снижается до ~2 ат. % In, потом вновь резко возрастает. Подоб-

ный характер растворимости индия в ГЦК-твердом растворе отмечался и в работах [2, 3]. Однако минимум растворимости индия (5 ат. %) наблюдался при 80 ат. % серебра. Следует также отметить, что при 700°С растворимость индия в α -твердом растворе значительно ниже, чем установлено в настоящей работе при 500 и 800°С.

Кроме того, фаза ζ на изотермическом сечении при 500°С находится в равновесии с фазой InPd, в то время как авторы [2, 3] утверждают, что при 500°С реализуется равновесие ζ + In₃Pd₂.

На изоконцентрате ~25 ат. % In до 18 ат. % Ад существуют две фазы – твердый раствор на основе низкотемпературной модификации InPd₃ и тройная фаза τ . Стоит отметить, что обе эти фазы имеют родственные кристаллические структуры и из-за близости факторов рассеяния рентгеновского излучения атомами палладия, серебра и индия рентгенограммы этих соединений идентичны и соответствуют структурному типу индия. Кольман и Риттер [9] показали, что в сплавах Pd с непереходными металлами тетрагональные сверхструктуры к ГЦК-решетке (CuAu, Al₃Ti и Al₃Zr) можно различить рентгенографически по отношению c/a гранецентрированнной тетрагональной ячейки или субъячейки структуры.

Найденные в настоящей работе значения c/a приведены в табл. 3. Видно, что при содержании серебра до 4 ат. % c/a равно 0.94, что соответствует фазе на основе низкотемпературной модификации InPd₃ со структурой Al₃Zr. При содержании серебра от 7 до 18 ат. % отношение параметров тетрагональной субъячейки c/a имеет значение 0.88. Такое значение соответствует структурному

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

Nº	Средний состав образца, ат. %			Фаза	Состав фазы, ат. %		Параметры кристаллической решетки, Å			Структ.	
	Ag	In	Pd	1	Ag	In	Pd	а	Ь	с	ТИП
1	3	21	76	α	3.5	19.0	77.5	3.900(2)	_	_	Cu
				InPd ₃	2.8	22.7	74.5	2.8699(8)	_	3.828(1)	Al ₃ Zr
2	9	22	69	α	27.6	14	58.4	3.9141(4)	_	_	Cu
				InPd ₃	4.0	22.3	73.7	2.8724(5)	_	3.8189(8)	Al ₃ Zr
3	17	20	63	α	32.7	14.2	53.1	4.0310(8)	_	_	Cu
				τ	10.9	22.9	66.2	4.1589(6)	_	7.3494(8)	Al ₃ Ti
4	23	21	56	α	61.7	8.8	29.5	4.0578(4)	_	_	Cu
				τ	15.9	24.1	60.0	4.1825(6)	_	7.3114(8)	Al ₃ Ti
5	32	25	43	α	92.3	2.5	5.2	4.0777(6)	_	_	Cu
				InPd	17.3	31.2	51.5	3.2140(5)	_	_	CsCl
6	47	28	25	α	87.5	12.5	0.0	4.1189(3)	_	_	Cu
				InPd	4.4	45.7	49.9	3.2403(8)	_	_	CsCl
7	72	19	9	α	87.0	13.0	0.0	4.1194(9)	—	_	Cu
				InPd	4.6	46.1	49.3	3.2420(9)	—	_	CsCl
8	16	25	59	τ	16.1	25.3	58.6	4.1900(1)	—	7.3342(2)	Al ₃ Ti
9	20	27	53	α^{a}	_	-	_	4.0767(7)	-	—	Cu
				τ	17.8	25.1	57.1	4.1985(8)	_	7.326(2)	Al ₃ Ti
				InPd	13.8	31.0	55.2	3.2125(1)	_	_	CsCl
10	13	37	50	α	89.0	4.9	6.1	4.081(1)	_	_	Cu
				InPd	10.2	38.2	51.6	3.2236(5)	_	_	CsCl
11	2	44	54	InPd	2.3	43.5	54.2	3.2390(3)	_	_	CsCl
12	6	57	37	Lg	64.2	35.8	0.0	9.853(2)	—	—	Al ₄ Cu ₉
				InPd ^a	_	-	_	3.2411(8)	-	—	CsCl
				In_3Pd_2	0.6	59.4	40.0	4.5444(6)	—	5.5180(8)	Al ₃ Ni ₂
13	17	25	58	α^{a}	_	_	_	4.071(1)	_	_	Cu
				τ	17.2	25.4	57.4	4.1985(4)	—	7.3338(6)	Al ₃ Ti
14	3	24	73	InPd ₃	2.7	23.7	73.6	2.8854(5)	-	3.7869(8)	Al ₃ Zr
15	79	21	0	α	79.0	21.0	0.0	4.1328(7)	_	_	Cu
16	77	22	1	α	78.8	20.6	0.6	4.1335(3)	_	_	Cu
				InPd	6.9	45.5	47.6	3.2415(7)	_	_	CsCl
17	69	29	2	ζ	69.0	29.3	1.7	2.9537(5)	_	4.7877(8)	Mg
18	75	25	0	ζ	76.1	23.9	0.0	2.9566(6)	—	4.7914(5)	Mg
19	66	28	6	ζ	72.6	26.2	1.2	2.9588(8)	_	4.7866(9)	Mg
				InPd	45.0	49.4	5.6	3.2424(7)	_	-	CsCl

Таблица 1. Результаты МРСА и РФА образцов системы Ag–In–Pd, отожженных при 500°С

^а Количество фазы в образце недостаточно для определения ее точного состава.

⁶ Закристаллизовавшаяся жидкость.

ПАВЛЕНКО и др.

Nº	Сре обј	Средний состав образца, ат. %		Фаза	Соста	Состав фазы, ат. %		Параметры кристаллической решетки, Å			Структ.
	Ag	In	Pd		Ag	In	Pd	а	b	С	1111
1	3	20	77	α	5.5	16.0	78.5	3.9102(7)	_	_	Cu
				InPd ₃	0.0	23.4	76.6	2.8830(5)	—	3.7882(9)	Al ₃ Zr
2	8	21	71	α	15.2	16.6	68.2	а	_	_	Cu
				InPd ₃	2.8	23.2	74.0	а	_	_	Al ₃ Zr
3	16	20	64	α	58.4	4.9	36.7	4.0430(2)	_	_	Cu
				τ	7.3	24.3	68.4	4.1722(6)	_	7.3270(9)	Al ₃ Ti
4	33	23	44	α	85.5	2.5	12.0	4.0658(6)	_	_	Cu
				InPd	17.0	29.3	53.7	3.2002(4)	—	-	CsCl
5	34	21	45	α	84.6	2.9	12.5	4.0537(4)	_	_	Cu
				InPd	16.6	28.3	54.5	3.198(2)	_	_	CsCl
6	58	18	24	α	91.0	4.9	4.1	4.0797(7)	—	-	Cu
				InPd	13.6	36.7	49.7	3.2207(2)	—	-	CsCl
7	18	25	57	α	83.9	2.6	13.5	4.0622(8)	—	—	Cu
				τ	17.5	24.7	57.8	4.1960(6)	—	7.336(1)	Al ₃ Ti
8	24	29	47	α	90.4	2.2	7.4	4.0737(6)	—	—	Cu
				InPd	15.6	32.0	52.4	3.2088(6)	—	-	CsCl
9	10	34	56	InPd	10.5	33.9	55.6	3.2230(7)	—	-	CsCl
10	19	35	46	α	89.8	6.9	3.3	4.0849(4)	—	-	Cu
				InPd	12.9	38.0	49.1	3.2290(8)	—	-	CsCl
11	2	44	54	InPd	2.3	43.5	54.2	3.2328(6)	—	—	CsCl
12	11	40	49	InPd	11.4	39.5	49.1	3.2289(9)	—	-	CsCl
13	6	43	51	InPd	6.0	43.2	50.8	3.2351(9)	—	—	CsCl
14	12	27	61	τ	11.9	26.8	51.3	4.1862(6)	—	7.3350(9)	Al ₃ Ti
				InPd ^b	12.6	30.0	57.4	_	—	-	CsCl
15	5	28	67	τ	10.5	26.9	62.6	4.1557(6)	—	7.3576(9)	Al ₃ Ti
				InPd ₂	0	32.9	67.1	5.6060(9)	4.223(1)	8.207(5)	Co ₂ Si
				InPd	6.5	35.5	58.0	—	—	_	CsCl

Таблица 2. Результаты МРСА и РФА образцов системы Ag–In–Pd, отожженных при 800°С

^а Недостаточная интенсивность пиков для определения параметров решетки.

типу Al₃Ti, предложенному [9, 10] для высокотемпературной модификации InPd₃. Таким образом, можно утверждать, что на изоконцентрате 25 ат. % In при содержании серебра от ~7 до 18 ат. % существует тройная фаза τ со структурой Al₃Ti.

Образование нового тройного соединения на изоконцентрате индия 25 ат. % наблюдалось авторами также и в системе Cu—In—Pd. Поскольку фактор рассеяния рентгеновского излучения у атома меди заметно отличается, на рентгенограмме были обнаружены сверхструктурные линии, которые позволили определить кристаллическую структуру тройной фазы как структуру VRh₂Sn [11]. Эта структура является результатом дополнительного упорядочения структуры Al₃Ti.

В табл. 4 приведены результаты исследования трех сплавов системы Ag–In–Pd методом ДТА/ДСК. Составы этих сплавов лежат на линии In13Ag87–In47Pd53 и примерно соответствуют

Таблица 3. Значение отношения параметров ячейки нент c/a для фаз InPd₃ и τ системы Ag–In–Pd (образцы от-

жигались при 500°С)					
N⁰	Фаза	Состав фазы, ат. %	c/a		
1	InPd ₃	Ag2.8 In22.7 Pd74.5	0.94		
2	InPd ₃	Ag4 In22.3 Pd73.7	0.94		
3	τ	Ag9.9 In23.9 Pd66.2	0.88		
4	τ	Ag16 In24 Pd60	0.87		
8	τ	Ag16.1 In25.3 Pd58.6	0.88		
9	τ	Ag17.8 In25.1 Pd57.1	0.87		
13	τ	Ag17.2 In25.4 Pd57.4	0.87		
14	InPd ₃	Ag2.7 In23.7 Pd73.6	0.93		

Таблица 4. Результаты ДТА исследований образцов системы Ag–In–Pd, отожженных при 500°С

	Фазовый состав	<i>T</i> , °C					
N⁰		солидус	ликвидус	$(\alpha + \text{InPd} + \text{L}) \rightarrow $ $\rightarrow (\text{InPd} + \text{L})$			
6	α + InPd	804.3	883.7	_			
7	α + InPd	771.2	875.9	824.5			
13	α + InPd	752	1179.3	774.0			

одной из конод равновесия фазы InPd с ГЦКтвердым раствором на основе серебра.

Термодинамическое моделирование фазовых равновесий

Данные о чистых компонентах и двойных системах. Энергии Гиббса для Ag, In и Pd в жидком, ГЦК- и ОЦК-состояниях были взяты из базы данных Pure Element SGTE PURE5, которая распространяется с программным обеспечением Thermo-Calc [7].

Термодинамические описания ограничивающих двойных систем приняты по следующим источникам: Ag—In [12], Ag—Pd [13], In—Pd [14]. Эти описания с достаточной точностью воспроизводят как фазовые равновесия в указанных системах, так и результаты измерения термодинамических свойств существующих в них фаз.

Модели интерметаллических соединений. Поскольку экспериментально было установлено, что серебро практически не растворяется в соединениях $InPd_2$ и In_3Pd_5 , а растворимость палладия в фазе ζ системы Ag–In не превышает 2 ат. %, при термодинамическом моделировании тройной системы Ag–In–Pd растворимость третьего компонента в этих фазах не учитывалась и оценка параметров стабильности квазикомпонентов моделей этих фаз в соответствующих двойных системах, Ag–In и In–Pd, не проводилась.

Фаза InPd₃, со структурой Al₃Zr, растворимость серебра в которой составляет не менее 4 ат. %, описывалась двухподрешеточной моделью (Ag,Pd)_{0.75}(In)_{0.25}. Для воспроизведения экспериментально установленной области гомогенности фазы InPd, направленной к стороне Ag–Pd по изоконцентрате палладия, использовалась двухподрешеточная модель (Ag,In,Pd)_{0.5}(Pd,Va)_{0.5}.

Для описания тройной фазы т со структурой Al_3 Ті использовалась модель $(Ag,Pd)_{0.74}(In,Pd)_{0.26}$, предложенная [14] для высокотемпературной модификации фазы InPd₃, несмотря на то, что модель дает смещение области существования этой фазы от экспериментально установленной на 1 ат. %.

Исходные данные. Параметры моделей фаз подбирались под экспериментально установленные фазовые равновесия в системе Ag–In–Pd при 500 и 800°С. Поскольку растворимость индия в α -фазе, полученная в работе [3] при 700°С, плохо согласуется с результатами настоящего исследования, при нахождении параметров мы в основном опирались на данные настоящей работы.

При моделировании расплава использовались литературные данные по энтальпиям смешения [4] и парциальные энергии Гиббса компонентов, определенные методом ЭДС [5], а также полученные в настоящей работе температуры ликвидус.

Расчет системы Ag–In–Pd. Первоначально параметры моделей фаз подбирались под фазовые границы при каждой температуре, 500 и 800°С, отдельно, затем определялись параметры a и b в выражении $L_{ABC}^{i} = a_{ABC}^{i} + b_{ABC}^{i}T$. В заключение, в

выражении $L_{ABC}^i = a_{ABC}^i + b_{ABC}^i T$. В заключение, в модуле PARROT пакета Thermo-Calc проводилась общая оптимизация системы.

Несмотря на использование нового термодинамического описания системы Ag–Pd [13], при высоких температурах (1000–1100°С) в богатой серебром части диаграммы наблюдалась тенденция к появлению области фиктивного расслоения ГЦК-фазы. Для ее устранения пришлось, вопервых, присвоить параметрам тройных взаимодействий в α -фазе достаточно высокие по модулю значения, а во-вторых, при окончательной оптимизации системы несколько понизить веса равновесий α + InPd.

Использовать значения параметров тройных взаимодействий для жидкости, полученные [4] при описании энтальпий образования расплава, оказалось невозможно, поскольку на рассчитанных изотермических сечениях наблюдалась избыточная стабилизация жидкой фазы. Поэтому

Фаза	Параметр	Значение, Дж/моль			
Расплав (LIQUID)	Модель (Ag,In,Pd)				
	${}^{0}L_{\mathrm{Ag,In,Pd}}$	-210999 + 167.1 T			
	$^{1}L_{\mathrm{Ag,In,Pd}}$	+8187 - 162T			
	$^{2}L_{\mathrm{Ag,In,Pd}}$	-338955 + 109.8T			
α (FCC_A1)		Модель (Ag,In,Pd)(Va)			
	${}^{0}L_{\mathrm{Ag,In,Pd:Va}}$	-643369 + 554.28T			
	$^{1}L_{Ag,In,Pd:Va}$	+700000			
	$^{2}L_{Ag,In,Pd:Va}$	-640199 + 202.68T			
InPd (BCC_B2)		Модель (Ag,In,Pd) _{0.5} (Pd,Va) _{0.5}			
	$G_{ m Ag:Va}$	+1000 + 0.5 GBCCAG			
	$G_{ m Ag:Pd}$	+23000 + 0.5 GBCCAG + 0.5 GBCCPD			
	${}^{0}L_{\mathrm{Ag,In:Pd}}$	-89783 + 10.85T			
	${}^{0}L_{\mathrm{Ag,Pd:Pd}}$	-44596 <i>T</i>			
α InPd ₃		Модель (In) _{0.25} (Ag,Pd) _{0.75}			
	${}^{0}L_{\text{In:Ag,Pd}}$	-20000			
τ (β InPd ₃)		Модель (In,Pd) _{0.26} (Ag,Pd) _{0.74}			
	$G_{\mathrm{In:Pd}}$	-53227 + 13.154 <i>T</i> + 0.26 GHSERIN + 0.74 GHSERPD			
	$G_{\mathrm{In:Ag}}$	+2000 + 0.26 GHSERIN + 0.74 GHSERAG			
	$G_{ m Pd:Pd}$	+100 + GHSERPD			
	$G_{ m Pd:Ag}$	+100 + 0.26 GHSERPD + 0.74 GHSERAG			
	${}^{0}L_{\text{In:Ag,Pd}}$	-38584 + 8T			
	${}^{0}L_{\mathrm{In,Pd:Pd}}$	-1072			

Таблица 5. Параметры моделей фаз системы Ag-In-Pd

параметры взаимодействия расплава в настоящем исследовании были найдены заново по фазовым равновесиям, энтальпиям смешения [4] и активностям компонентов [5]. Параметры моделей фаз, полученные в настоящей работе, приведены в табл. 5. Рассчитанные изотермические сечения системы Ag–In–Pd при температуре 500 и 800°С представлены на рис. 1.

Рис. 2. Энтальпия образования расплава, рассчитанная по разрезам (а) Pd0.5Ag0.5–In, (б) Ag0.5In0.5–Pd. Пунктир – параметры [4], сплошная линия – параметры, полученные в настоящей работе.

Рис. 3. Рассчитанный политермический разрез системы Ag–In–Pd между составами In13Ag87–In47Pd53 (крестиками показаны данные ДТА).

В целом полученное описание системы Ag– In–Pd находится в хорошем согласии с соответствующими экспериментальными данными. Можно отметить, что расчет дает несколько заниженную растворимость серебра в фазе InPd. Однако любые попытки увеличить ее приводили к появлению расслоения α-фазы.

На рис. 2 представлено сравнение энтальпий смешения, рассчитанных по полученным в настоящей работе параметрам, с результатами аппроксимации экспериментальных данных по [4]. Можно отметить очень хорошее согласие между экспериментом и расчетом (расхождения не превышают 2 кДж/моль).

На рис. 3 представлено сравнение рассчитанного политермического разреза тройной системы Ag–In–Pd с полученными в настоящей работе данными ДТА (табл. 4). В целом результаты расчета и эксперимента хорошо согласуются, хотя рассчитанные температуры плавления фазы InPd несколько выше, чем установленные экспериментально. С учетом того, что результаты ДТА не использовались в процессе оптимизации при нахождении параметров моделей фаз, можно утверждать, что полученное в настоящей работе термодинамическое описание системы Ag–In–Pd является корректным и хорошо воспроизводит имеющиеся экспериментальные данные.

Таким образом, методами СЭМ, МРСА и РФА построены изотермические сечения тройной системы Ag—In—Pd при 500°С и 800°С. В целом они согласуются с данными более раннего исследования фазовых равновесий [2, 3]. Подтверждено существование в системе Ag—In—Pd тройного соединения τ. Установлена область его существования и кристаллическая структура — Al₃Ti. Методом ДТА определены температуры фазовых переходов в образцах трех составов. Температуры ликвидус использовались при нахождении параметров модели расплава, температуры фазового перехода (α + InPd + L) \rightarrow (InPd + L) для проверки адекватности проведенных расчетов.

Выполнен CALPHAD-расчет тройной системы Ag–In–Pd. Получено хорошее согласие расчетных и экспериментальных данных по фазовым границам, установленных в настоящей работе, и литературным термодинамическим данным для расплава. Корректность полученного описания системы Ag–In–Pd подтверждается хорошим согласием рассчитанных температур фазовых переходов с экспериментальными данными ДТА, не использованных при оптимизации.

Исследование выполнено за счет гранта Российского научного фонда № 22-23-00565, https://rscf.ru/project/22-23-00565/.

СПИСОК ЛИТЕРАТУРЫ

- Shin H.-J., Kwon Y.H., Seol H.-J. // J. Mech. Behav. Biomed. Mater. 2020. V. 107. P. 103728. https://doi.org/10.1016/j.jmbbm.2020.103728
- Zemanová A., Semenova O., Kroupa A. et al. // Monatsch. Chem. 2005. V. 136. № 11. P. 1931. https://doi.org/10.1007/s00706-005-0384-x
- 3. Zemanová A., Semenova O., Kroupa A. et al. // Intermetallics. 2007. V.15. № 1. P. 77. https://doi.org/10.1016/j.intermet.2006.03.002
- 4. *Luef C., Flandorfer H., Ipser H. //* Metall. Mater. Trans. A. 2005. V. 36. № 5. P. 1273. https://doi.org/10.1007/s11661-005-0219-8

5. *Garzeł G., Zabdyr L.A.* // Rare Met. 2006. V. 25. № 5. P. 587.

https://doi.org/10.1016/S1001-0521(06)60104-6

- 6. STOE WinXPow, version 2.24. Darmstadt электронный ресурс. – Software package (10.2 Mb). Germany: STOE & Cie GmbH; 2009.
- Thermo-Calc®-Academic (Version 2022a) электронный ресурс. – Software package (235 Mb). – Stockholm: Thermo-Calc® Software AB.; 2022.
- 8. *Saunders N., Miodovnik A.P.* CALPHAD (Calculation of Phase Diagrams): A comprehensive guide. London: Pergamon, 1998. 479 p.
- Kohlmann H., Ritter C. // Z. Anorg. Allg. Chem. 2009. V. 635. P. 1573. https://doi.org/10.1002/zaac.200900053

- Bhan S., Schubert K. // J. Less-Common Met. 1969. V. 17 P. 73. https://doi.org/10.1016/0022-5088(69)90038-1
- 11. *Ptashkina E.A., Kabanova E.G., Kalmykov K.B. et al.* // J. of Alloys Comps. 2020. V. 845. P. 156166. https://doi.org/10.1016/j.jallcom.2020.156166
- Muzzillo C.P., Anderson T. // J. Mater. Sci. 2018. V. 53. № 9. P. 6893. https://doi.org/10.1007/s10853-018-1999-8
- Pavlenko A.S., Kabanova E.G., Kuznetsov V.N. // Russ. J. Phys. Chem. A. 2020. V. 94. № 13. P. 2691. https://doi.org/10.1134/s0036024420130178
- Jiang C., Liu Z.K. // Metall. Mater. Trans. A. 2002. V. 33. № 12. P. 3597. https://doi.org/10.1007/s11661-002-0235-x