ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 541.11:536.7

ТЕРМОХИМИЯ РАСТВОРЕНИЯ ТЕТРА-4-КАРБОКСИМЕТАЛЛОФТАЛОЦИАНИНОВ В ВОДНЫХ РАСТВОРАХ КОН ПРИ 298.15 К

© 2023 г. О. Н. Крутова^{а,*}, В. Е. Майзлиш^а, А. И. Лыткин^а, В. В. Черников^а, А. В. Волков^а, А. Е. Федотова^а, П. Д. Крутов^а

^аИвановский государственный химико-технологический университет, Иваново, Россия

*e-mail: kdvkonkpd@yandex.ru Поступила в редакцию 10.05.2022 г. После доработки 23.06.2022 г. Принята к публикации 25.06.2022 г.

Получены комплексы тетра-4-карбоксифталоцианинов с медью и цинком, не растворимые в воде. Значения стандартных энтальпий образования соединений рассчитаны аддитивно-групповым методом, основанным на групповой систематике с классификацией фрагментов типа Бенсона, учитывающей влияние первичного окружения атомов. Термические эффекты растворения кристаллических тетра-4-карбоксиметаллофталоцианинов в водных растворах различной концентрации КОН (от 0.002 до 0.02 моль/л) при 298.15 К определяли прямым калориметрическим методом. Рассчитаны стандартные энтальпии образования продуктов диссоциации комплексов тетра-4-карбоксифталоцианинов с медью и цинком в водном растворе.

Ключевые слова: термодинамика, растворы, калориметр, энтальпия образования, константа диссоциации, фталоцианины

DOI: 10.31857/S0044453723020115, EDN: ECUSCJ

В настоящее время интенсивно развиваются исследования фталоцианинов (Рс) и их производных [1, 2]. Одним из направлений модификации Рс является введение различных заместителей в бензольные кольца соединений. Среди замешенных фталоцианинов особое место занимают карбоновые кислоты металлофталоцианинов. Они обладают растворимостью в слабощелочной среде и могут найти применение в различных областях науки и техники, например, в качестве красителей, катализаторов различных реакций, исходных соединений для синтеза термостойких полимеров. а также для получения производных карбоновых кислот [3-7].

В данной работе в качестве объекта исследования были выбраны комплексы тетра-4-карбоксифталоцианина с медью и цинком (рис. 1).

Хотя тетра-4-карбоксиметаллофталоцианины широко известны, однако термохимия их растворения в водных растворах щелочей не изучена. Эти соединения представляют большой научный и практический интерес, так как содержат координационные центры H_2N_4 (координационные центры MN_4 и R-COOH), обладающие высокой электроноакцепторной емкостью, сильно дифференцированные по электронной природе катионов металлов.

Целью данной работы было определение стандартных энтальпий образования комплексов тетра-4-карбоксифталоцианина с медью и цинком и продуктов их диссоциации в водном растворе по тепловым эффектам растворения препаратов в водных растворах КОН при 298.15 К.

Рис. 1. Тетра-4-карбоксиметаллофталоцианины; M = Zn, Cu.

Схема 1. Полученные тетра-4-карбоксиметаллофталоцианины; M = Zn, Cu; $X = CH_3COO$, n = 2.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения тетра-4-карбоксиметаллофталоцианинов (H₄L) использовали модифицированный метод (схема 1) [8].

Смесь, состоящую из следующих компонентов: 0.005 кг (0.024 моль) тримеллитовой кислоты, 0.0078 кг (0.13 моль) мочевины, 0.00064 кг (0.012 моль) хлорида аммония, 0.00008 КΓ (0.0005 моль) молибдата аммония и 0.01 моль ацетата (для М²⁺) соответствующего металла тшательно перетирали. Ее выдерживали при перемешивании при температуре 473.15-493.15 К в течение пяти часов. После охлаждения темно-синий остаток растирали и промывали 5%-ным раствором соляной кислоты до бесцветных фильтратов, а затем водой до нейтральной среды. Продукт кипятили в 5%-ном спиртовом растворе щелочи 12 ч, фильтровали, осадок растворяли в воде и снова фильтровали. Фильтрат перед осаждением подкисляли соляной кислотой, которую промывали водой до нейтральной среды и отсутствия в промывных водах ионов хлора, сушили под вакуумом при температуре 373.15-383.15 К. Синтезированные комплексы очищали переосаждением из концентрированной серной кислоты с последующей экстракцией примесей ацетоном и этанолом в аппарате Сокслета.

Результаты элементного анализа выделенного продукта и определение его молекулярной массы: показывают, что продукт отвечает химической формуле: $C_{36}H_{16}N_8O_8Zn$ (комплекс 1) (ИК-спектр, v, см⁻¹: 1700 (СООН). Электронный спектр поглощения, ДМСО, λ_{max} , нм: 687); (комплекс 2) $C_{36}H_{16}N_8O_8Cu$ (ИК-спектр, v, см⁻¹: 1698 (СООН). Электронный спектр поглощения, ДМСО, λ_{max} , нм: 687). Результаты элементного анализа представлены в табл. 1. Известно, что в результате темплатного синтеза образуется смесь рандомеров, разделение которых представляет собой сложную задачу. В нашем случае разделение и выделение индивидуальных рандомеров не проводилось.

Измерения проводились в калориметре с изотермической оболочкой, снабженном реакционным сосудом объемом 60 см³, электрической градуировкой при *T* = (293.15–308.15) ± 0.01 К и *P* = $= 100.5 \pm 0.7$ кПа и автоматической регистрацией температуры [9]. В качестве датчика температуры использовался термистор КМТ-14. Температурный контроль калориметрической ячейки осуществлялся в термостате, снабженном ПИД-регулятором с точностью 0.002 К. Датчиком температуры термостата служил платиновый термометр сопротивления. Калориметр калибровали по току. Объем калориметрической жидкости 42.83 мл. Рабочий объем ампулы 1-1.6 см³, максимальная термометрическая чувствительность калориметрической установки составила $(0.5-2) \times 10^{-2}$ Дж мм⁻¹ шкалы самописца. Работу установки проверяли по интегральной энтальпии растворения кристаллического хлорида калия в воде и считали годной для измерения, если определяемое в ней значение $\Delta_{sol}H(\infty H_2 O) =$ $= -17.25 \pm 0.06$ кДж/моль отличалось от нормативного $\Delta_{sol}H(\infty H_2 O) = -17.22 \pm 0.04$ кДж/моль на 0.3% [10]. Доверительный интервал среднего значения ΔH рассчитывали с вероятностью 0.95.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Значения стандартных энтальпий образования тетра-4-карбоксиметаллофталоцианинов рассчитаны с использованием аддитивного группового метода, основанного на групповой систематике с классификацией фрагментов типа Бенсона, учитывающей влияние первичного окружения ато-

Таблица 1. Результаты элементного анализа комплексов тетра-4-карбоксиметаллофталоцианинов меди (комплекс 2), цинка (комплекс 1)

Комплекс 1	С	Н	Ν	Комплекс 2	С	Н	Ν
Найдено, %	56.9	2.2	14.6	Найдено, %	57.1	2.2	14.7
Вычислено, %	57.4	2.1	14.9	Вычислено, %	57.4	2.1	14.9

200

N⁰	Группы	п	$-\Delta_{\mathrm{f}} H^{\circ}_{(\mathrm{\kappa p})i},$ кДж/моль
1	(С)–СООН	4	-453.3 ± 2.3
2		4	329.9 ± 41.1
3	(C) ₃ –CH	12	19.9 ± 29.3
4	(C) ₄ –N	4	102.0 ± 64.3
5	(C) ₄ –C	4	9.4 ± 1.9
6	(C) ₄ –Zn	1	2617.2 ± 43.9*
7	(C) ₄ –Cu	1	$3048.2 \pm 43.4^*$

Таблица 2. Численные значения энергетических вкладов в значения энтальпии образования в соответствии с классификацией Бенсона [11–13]

Примечание. Звездочкой отмечена энергия комплексообразования.

Величина энергетического вклада рассчитывается по формуле $E_{\text{compl}} = \Delta_{\text{f}} H^{\circ}_{(\text{Me}-\text{EP}-\text{I})} - \Delta_{\text{f}} H^{\circ}_{(\text{H}_2\text{EP}-\text{I})}$, где $\Delta_{\text{f}} H^{\circ}_{(\text{Me}-\text{EP}-\text{I})} -$ стандартная энтальпия образования комплекса 2,7,12,17-тетраметил-3,8,13,18-тетраэтилпорфина, кДж/моль; $\Delta_{\text{f}} H^{\circ}_{(\text{H}_2\text{EP}-\text{I})} -$ стандартная энтальпия образования 2,7,12,17-тетраметил-3,8,13,18-тетраэтилпорфина, кДж/моль; n – количество групп.

мов [11–13]. Расчет энтальпии сгорания и образования испытуемого соединения проводили по формуле:

$$\Delta_{c(f)}H^{\circ}_{(\kappa)} = \sum_{i}^{n} A_{i}\Delta_{c(f)}H^{\circ}_{i}, \quad i = 1, 2, 3, \dots n,$$
(1)

Рис. 2. Графическое определение теплового эффекта растворения частицы H_4L (кр.) в растворе КОН при бесконечном разведении; 1 -комплекс Zn, 2 -комплекс Cu.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 2 2023

где $\Delta_{c(f)}H_{(\kappa)}$ — энергетический вклад в энтальпию сгорания (образования) определенной атомной группы, A_i — число таких атомных групп в молекуле, n — число типов атомные группы в молекуле.

В табл. 2 представлены исходные данные для расчета $\Delta_{\rm f} H^{\circ}_{\rm (кp)} = -2808.1$ кДж/моль (комплекс Zn) и $\Delta_{\rm f} H^{\circ}_{\rm (kp)} = -3239.4$ кДж/моль (комплекс Cu) исследуемых соединений.

Процесс растворения в растворе КОН можно представить следующей схемой:

$$H_4L(\kappa p.) + 4OH^{-}(p-p, nH_2O) \rightarrow$$

$$\rightarrow L^{4-}(p-p, nH_2O) + 4H_2O.$$
 (2)

Графическая экстраполяция теплот растворения исследуемых соединений в растворах гидроксида калия к нулевой ионной силе представлена на рис. 2. Экспериментальные данные приведены в табл. 3.

Тепловые эффекты растворения кислоты в растворе КОН при нулевой ионной силе рассчитывали по уравнению [14]:

$$\Delta_{\rm r}H_i - \Delta Z^2 \psi(I) = \Delta_{\rm r}H_i^\circ + bI, \qquad (3)$$

где $\Delta_r H_i$ и $\Delta_r H_i^{\circ}$ – тепловые эффекты процесса (2) при конечных и нулевых значениях ионной силы.

Используя значения стандартных энтальпий образования гидроксид-иона $\Delta_f H^{\circ}(OH^-, p-p, H_2O, ct. c., 298.15 K) = -230.04 кДж/моль и воды в водном растворе <math>\Delta_f H^{\circ}(H_2O, x, 298.15 K) = -285.83 кДж/моль, рекомендованный справочником [15], была рассчитана стандартная энтальпия образования депротонированного <math>L_4^-$ аниона:

$$\Delta_{\rm f} H^{\circ}({\rm L}^{4-}, {\rm p-p, H_2O, ct. c., 298.15 K}) =$$

= $\Delta_{\rm f} H^{\circ}({\rm H_4L, \kappa p., 298.15 K}) +$
+ $4\Delta_{\rm f} H^{\circ}({\rm OH}^-, {\rm p-p, H_2O, ct. c., 298.15 K}) +$
+ $\Delta_{\rm r} H^{\circ}_{(2)} - 4\Delta_{\rm f} H^{\circ}({\rm H_2O, x, 298.15 K}).$ (4)

Стандартные энтальпии образования частиц HL^{3-} , H_2L^{2-} , H_3L^- , H_4L в водном растворе рассчитывали по уравнениям:

$$\Delta_{\rm f} H^{\circ}({\rm HL}^{3-}, {\rm p-p}, {\rm H}_2{\rm O}, {\rm ст.}, {\rm гип.}, {\rm недис.},$$

298.15 K) = $\Delta_{\rm f} H^{\circ}({\rm L}^{4-}, {\rm p-p}, {\rm H}_2{\rm O}, {\rm cr.},$ (5)
298.15 K) – $\Delta_{\rm dis} H^{\circ}({\rm HL}^{3-}, 298.15$ K),

$$\Delta_{\rm f} H^{\circ}({\rm H}_{2}{\rm L}^{2^{-}}, \text{ p-p, H}_{2}{\rm O}, \text{ ct., гип., недис.,}$$

298.15 K) = $\Delta_{\rm f} H^{\circ}({\rm H}{\rm L}^{3^{-}}, \text{ p-p, H}_{2}{\rm O}, \text{ ct.,}$ (6)
298.15 K) – $\Delta_{\rm dis} H^{\circ}({\rm H}_{2}{\rm L}^{2^{-}}, 298.15 \text{ K}),$

<i>m</i> × 10 ⁻³ , г (комплекс Zn)	С _{КОН} , моль/л	$-\Delta_{ m sol} H,$ кДж/моль	<i>m</i> × 10 ⁻³ , г (комплекс Cu)	$-\Delta_{ m sol} H,$ кДж/моль
0.0010 0.0015 0.0012	0.00205	$\begin{array}{c} 60.13 \pm 0.26 \\ 60.25 \pm 0.28 \\ 60.28 \pm 0.28 \end{array}$	0.0011 0.0013 0.0012	$78.73 \pm 0.26 78.85 \pm 0.27 78.68 \pm 0.28$
0.0021 0.0021 0.0020	0.00511	$\begin{array}{c} 61.35 \pm 0.25 \\ 61.42 \pm 0.28 \\ 61.24 \pm 0.25 \end{array}$	0.0020 0.0021 0.0020	$\begin{array}{c} 79.15 \pm 0.25 \\ 79.12 \pm 0.27 \\ 79.10 \pm 0.25 \end{array}$
0.0032 0.0032 0.0031	0.01866	$\begin{array}{c} 66.38 \pm 0.25 \\ 66.36 \pm 0.28 \\ 66.35 \pm 0.26 \end{array}$	0.0031 0.0031 0.0031	$\begin{array}{c} 81.98 \pm 0.26 \\ 82.00 \pm 0.28 \\ 81.91 \pm 0.26 \end{array}$

Таблица 3. Энтальпия растворимости тетра-4-карбоксиметаллофталоцианинов в растворе КОН при различных концентрациях и T = 298.15 К

Таблица 4. Энтальпии ступенчатой диссоциации Рс при температуре 298.15 К (кДж/моль)

Процесс	$\Delta_{ m r} H_{ m dis}$ (комплекс Zn)	p <i>K_i</i>	$\Delta_{ m r} H_{ m dis}$ (комплекс Cu)	pK _i
$\rm H_4L \rightarrow \rm H_3L^- + \rm H^+$	40.9 ± 1.5	3.54 ± 0.35	52.1 ± 1.8	4.56 ± 0.35
$\mathrm{H}_{3}\mathrm{L}^{-} \rightarrow \mathrm{H}_{2}\mathrm{L}^{2-} + \mathrm{H}^{+}$	102.1 ± 1.7	5.89 ± 0.35	115.3 ± 1.7	6.21 ± 0.35
$H_2L^{2-} \rightarrow HL^{3-} + H^+$	121.4 ± 1.9	8.41 ± 0.35	134.8 ± 1.6	9.32 ± 0.35
$\mathrm{HL}^{3-}\!\rightarrow\mathrm{L}^{4-}\mathrm{+}\mathrm{H}^+$	180.9 ± 1.6	10.22 ± 0.35	226.7 ± 1.9	11.65 ± 0.35

$$Δ_{\rm f} H^{\circ}({\rm H}_{3}{\rm L}^{-}, {\rm p-p}, {\rm H}_{2}{\rm O}, {\rm ct., run., heque.,}$$
298.15 K) = $Δ_{\rm f} H^{\circ}({\rm H}_{2}{\rm L}^{2-}, {\rm p-p}, {\rm H}_{2}{\rm O}, {\rm ct.,})$ (7)
298.15 K) – $Δ_{\rm dis} H^{\circ}({\rm H}_{3}{\rm L}^{-}, 298.15$ K),

 $\Delta_{\rm f} H^{\circ}({\rm H}_{4}{\rm L}, {\rm p-p}, {\rm H}_{2}{\rm O}, {\rm ст., }$ гип., недис., 298.15 K) = $\Delta_{\rm f} H^{\circ}({\rm H}_{3}{\rm L}^{-}, {\rm p-p}, {\rm H}_{2}{\rm O}, {\rm ct.},$ (8) 298.15 K) – $\Delta_{\rm dis} H^{\circ}({\rm H}_{4}{\rm L}, 298.15$ K).

Значения $\Delta_{dis}H(H_4L, 298.15 \text{ K}); \Delta_{dis}H (H_3L^-,$ 298.15 K), $\Delta_{dis}H(H_2L^{2-}, 298.15 \text{ K}), \Delta_{dis}H(HL^{3-},$ 298.15 К), были рассчитаны с помощью компьютерной программы НЕАТ [16, 17]. Программа НЕАТ предназначена для обработки данных калориметрических измерений с целью расчета констант равновесия и тепловых эффектов реакций в растворах. Помимо матрицы стехиометрических коэффициентов, логарифмов констант равновесия и общих концентраций базисных частиш в начальном и конечном состояниях. в расчет вводят экспериментально определенные изменения энтальпии, $\Delta H'_{_{\mathfrak{SKCII}}}$ и известные мольные тепловые эффекты $\Delta_r H$. Для изучаемых реакций в расчет вводят оценочные значения $\lg K$, приближенные значения $\Delta_r H$ вводить не требуется. Расчет $\Delta_r H$ изучаемых реакций проводится путем минимизации функции вида:

$$F = \sum \left(\Delta H'_{_{\mathsf{9KCII}}} - \Delta H'_{_{\mathsf{pacY}}} \right)_{l}^{2} \omega_{l}, \tag{9}$$

где $\Delta H'_{_{3KC\Pi}}$ — изменение энтальпии системы в результате протекания исследуемых реакций. Минимизируемая функция *F* представляет собой остаточную сумму квадратов отклонений при решении системы линейных уравнений методом взвешенных наименьших квадратов. Полученные значения представлены в табл. 4.

Авторы [18–20] проанализировали изменения сольватационных характеристик некоторых металлопорфиринов в зависимости от электронной структуры металла – комплексообразователя, структуры лиганда и природы растворителя. Для того чтобы проанализировать полученные данные, необходимо накопить достаточный экспериментальный материал. В частности, можно отметить, что, в отличие от меди, комплексы цинка обладают меньшими экзоэффектами. Основной причиной этих различий является благоприятная электронная структура иона Cu²⁺ 3d⁹, которая позволяет согласовывать порфириновый лиганд без затрат энергии. Цинк имеет стабильную орбиталь 3d¹⁰ и может использовать свои вакантные орбитали $4sp^2$ и $4d_{x^2-v^2}$ для образования четырех связей Zn-N в плоскости xv. В то же время образуются менее стабильные комплексы ZnP с

Частицы	Состояние	Δ _f <i>H</i> °(298.15 K), (комплекс Zn)	Δ _f H°(298.15 K), (комплекс Cu)
H_4L	кр.	2808.1 ± 2.9	3239.4 ± 2.9
	р-р, H ₂ O, ст. с., гип. недис.	2645.7 ± 2.9	3011.8 ± 2.9
H_3L^-	р-р, H ₂ O, ст. с., гип. недис	2686.6 ± 2.9	3063.9 ± 2.9
$H_{2}L^{2-}$	р-р, H ₂ O, ст. с., гип. недис.	2788.7 ± 2.9	3179.2 ± 2.9
HL^{3-}	р-р, H ₂ O, ст. с., гип. недис.	2910.1 ± 2.9	3313.9 ± 2.9
L ⁴⁻	р-р, H ₂ O, ст. с.	$3090.9.1 \pm 2.9$	3540.7 ± 2.9

Таблица 5. Стандартные энтальпии образования Рс и продуктов его диссоциации в водном растворе (кДж/моль)

внешней орбиталью, что было отмечено авторами [18–20].

Термодинамические характеристики растворения фталоцианина позволят нам получить много полезной информации о состоянии Рс в растворах. Значения стандартной энтальпии образования Рс в водном растворе получены в данной работе впервые. Они являются ключевыми величинами в термохимии Рс и открывают возможность проведения строгих термодинамических расчетов в системах с Рс. Приведенные значения термодинамических характеристик существенно пополнят банк термохимических данных для фталоцианинов. Полученные значения представлены в табл. 5.

Работа выполнена в Научно-исследовательском институте термодинамики и кинетики химических процессов Ивановского государственного химико-технологического университета в рамках государственного задания (09-Г3-23), проект № FZZW-2023-0008. Исследование выполнено с использованием ресурсов Центра коллективного пользования научным оборудованием ИГУХТ (при поддержке Министерства науки и высшего образования РФ, грант № (075-15-2021-671).

СПИСОК ЛИТЕРАТУРЫ

- Islam Z.U., Tahir M., Syed W.A., Aziz F. et al. // Energies. 2020. V. 13. № 4. P. 962. https://doi.org/10.3390/en130409621
- 2. Potlog T., Furtuna V., Rotaru C., Rusnac R. et al. // Int. J. Electr. Comput. Eng. 2018. V. 6. № 1. P. 40.
- Koifman O.I. et al. // Macroheterocycles. 2020. V. 13. № 4. P. 311. https://doi.org/10.6060/mhc200814k
- 4. Березин Д.Б., Макаров В.В., Знойко С.А., Майзлиш В.Е. и др. // Менделеевские сообщения. 2020. Т. 30. С. 621.

https://doi.org/10.1016/j.mencom.2020.09.023

 Лебедева Н.Ш., Юрина Е.С., Губарев Ю.А., Майзлиш В.Е. // Биоорган. Химия. 2016. Т. 42. V. 1. Р. 36. https://doi.org/10.7868/S0132342315050140

- Mashazi P.N., Westbroek P., Ozoemena K.I., Nyokong T. // Electrochim. Acta. 2007. V. 53. P. 1858–1869. https://doi.org/10.1016/j.electacta.2007.08.044
- Masilela N., Nyokong T. // Dyes Pigm. 2010. V. 84. P. 242. https://doi.org/10.1016/j.dyepig.2009.09.011
- Weber J.H., Busch D.H. // Inorg. Chem. 1965. V. 4. № 4. P. 469. https://doi.org/10.1021/ic50026a007
- Lytkin A.I., Chernikov V.V., Krutova O.N., Skvortsov I.A. // J. Therm. Anal. Calorim. 2017. V. 130. P. 457. https://doi.org/10.1007/s10973017-6134-6
- Wadsö I., Goldberg R.N. // Pure Appl. Chem. 2001. V. 73. P. 1625. https://doi.org/10.1351/pac200173101625
- 11. Тахистов А.В., Пономарев Д.А. Органическая массспектрометрия. С.-Петербург.: BBM, 2002. 346 с.
- 12. Закиров Д.Р., Базанов М.И., Волков А.В., Семейкин А.С. и др. // Журн. физ. химии. 2000. Т. 74. № 10. Р. 1899.
- 13. Закиров Д.Р., Базанов М.И., Волков А.В., Семейкин А.С. // Там же. 2001. Т. 75. № 12. Р. 2296.
- 14. Васильев В.П., Кочергина Л.А., Крутова О.Н. // Там же. 2003. Т. 77. № 12. Р. 2145.
- Термические константы веществ / Спр. под ред. В.П. Глушко Вып. III. М.: ВИНИТИ. 1965–1971.
- Бородин В.А., Васильев В.П., Козловский Е.В. // Математические задачи химической термодинамики. Новосибирск: Наука. 1985. С. 219.
- Tyunina E.Yu., Krutova O.N., Lytkin A.I. // Thermochim. Acta. 2020. V. 690. P. 178704. https://doi.org/10.1016/j.tca.2020.178704
- Березин М.Б., Пашанова Н.А., Чернова О.М., Березин Д.Б. и др. // Журн. физ. химии. 2001. Т. 75. № 8. Р. 1370.
- 19. *Березин М.Б., Чернова О.М. //* Журн. общ. химии. 2000. Т. 70. № 9. Р. 1541–1546.
- Березин М.Б., Семейкин А.С., Андрианов В.Г., Березин Д.Б. // Журн. общ. химии. 2000. Т. 70. № 9. Р. 1547.