_____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ____ И ТЕРМОХИМИЯ

УДК 543.087.9

МАТЕМАТИЧЕСКАЯ ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ, ПОЛУЧЕННЫХ НА АМПУЛЬНОМ КАЛОРИМЕТРЕ И КАЛОРИМЕТРЕ ТИТРОВАНИЯ С РАЗНЫМ ТИПОМ ЯЧЕЙКИ

© 2023 г. А. Н. Мешков^{*a*}, Г. А. Гамов^{*a*,*}

^аИвановский государственный химико-технологический университет, Иваново, Россия

**e-mail: ggamov@isuct.ru* Поступила в редакцию 21.06.2022 г. После доработки 02.09.2022 г. Принята к публикации 05.09.2022 г.

Описан алгоритм расчета констант равновесия и изменений энтальпии химических реакций по данным калориметрического эксперимента, выполненного на установках разных типов. Разработано свободно распространяемое программное обеспечение, реализующее описанный алгоритм. Кратко обсуждены отличия от уже существующих компьютерных программ с аналогичным функционалом, а также разные статистические критерии максимального правдоподобия.

Ключевые слова: калориметрия, константа равновесия, изменение энтальпии **DOI:** 10.31857/S0044453723020164, **EDN:** ECZUDQ

Калориметрия – один из наиболее широко применяемых физико-химических методов исследования. С ее помощью возможно определить все важнейшие термодинамические характеристики химической реакции (изменение стандартной энергии Гиббса, связанное с константой равновесия, изменение энтальпии, изменение энтропии), а также процессов растворения, смачивания, адсорбции, измерить теплотворную способность топлива и т.д. В зависимости от решаемой задачи применяются калориметры различных конструкций. Для исследования химических процессов в жидкой фазе часто применяются ампульные калориметры с изотермической оболочкой (конструкция описана в работах [1, 2], примеры исследований см. в [3-8]) и изотермические калориметры титрования (принцип измерения описан, например, в [9]), снабженные ячейкой со свободным объемом или ячейкой вытеснения (примеры исследований см. в [10-14]).

Расчет константы равновесия и изменения энтальпии по экспериментальным данным калориметрии может быть затруднен даже в простейшем случае, когда в изучаемой системе протекает единственная реакция между двумя реагентами в соотношении 1 : 1. Надежность определения термодинамических характеристик зависит от величины произведения константы равновесия на концентрацию вещества в калориметрической ячейке (параметра Вайсмана [9]), которая должна находиться в диапазоне 10–1000. Отмечается [9, 15], что дополнение простейшей системы еще одним равновесным процессом, в котором реагенты взаимодействуют в соотношении 1:2 существенно усложняет расчеты констант равновесия и изменений энтальпии реакций.

Производители некоторых калориметрических систем (например, ТАМ компании ТА Instruments) разрабатывают также и программное обеспечение, свободно доступное для использования (например, для прибора ТАМ III это ТАМ Assistant [16]), для обработки результатов экспериментов. Эти программы содержат несколько предустановленных стехиометрических схем реакций, которые могут протекать в ячейке, и лишь в ограниченной мере позволяют пользователю редактировать эти схемы для лучшего соответствия исследуемой системе. Существует более универсальное программное обеспечение (например, НЕАТ [17]), позволяющее работать с любыми системами, заданными пользователем, однако, НЕАТ ограничен, во-первых, типом калориметра (ампульный), а во-вторых, несовместимостью НЕАТ с современными операционными системами. Известны программные пакеты для расчетов термодинамических характеристик по калориметрическим данным для систем параллельных реакций произвольной сложности по усмотрению пользователя [18, 19], однако, они доступны на коммерческой основе.

В связи с этим мы ставим своей задачей разработку современного свободно распространяемого программного обеспечения, которое предоставляло бы возможность обрабатывать калориметрические данные, полученные для сложных систем химических реакций. Аналогичные программы были разработаны нами ранее для расчетов равновесного состава и констант равновесия по данным оптической спектроскопии, потенциометрии [20], спектроскопии ЯМР [21], а также описания спектров набором гауссианов или лоренцианов [22].

РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК РЕАКЦИЙ ПО КАЛОРИМЕТРИЧЕСКИМ ДАННЫМ

Общие принципы решения обратной задачи химических равновесий (т.е. установления констант равновесия и парциальных молярных свойств по экспериментально измеренным физическим параметрам) достаточно подробно изложены в монографиях [9, 15, 23]. Выкладки, относящиеся непосредственно к калориметрическому методу анализа, приводятся в статьях [17–19], поэтому мы ограничимся лишь сжатым повтором основных положений.

В потенциометрии и спектральных методах анализа, для которых нами ранее было разработано программное обеспечение под названием KEV [20, 21], измеряемый физический параметр характеризует раствор с определенным равновесным составом, а парциальные молярные свойства (молярный коэффициент светопоглощения или химический сдвиг реагента или продукта) не являются термодинамическими параметрами и характеризуют только одно вещество. Особенность калориметрического метода анализа в том, что измеряемая в эксперименте величина (выделившаяся или поглотившаяся теплота) характеризует переход от одного равновесного состава к другому, а роль парциальных молярных свойств в уравнении связи равновесных концентраций с измеренным параметром играет термодинамическая характеристика – изменение энтальпии отдельной реакции.

Входные данные для расчета:

 тип экспериментальной установки — один из основных задаваемых пользователем параметров для расчета, поскольку для ампульного калориметра и для калориметра титрования несколько отличаются уравнения связи;

объем калориметрической ячейки;

 матрица стехиометрических коэффициентов, задающая все химические реакции образования продуктов, протекающие в растворе, через величины стехиометрических коэффициентов перед частицами базиса;

 вектор констант равновесия, в котором неизвестные значения заменяются на приблизительные, предполагаемые пользователем; вектор изменений энтальпии реакций, в котором неизвестные значения опущены;

— матрица общих либо равновесных концентраций, вид которой зависит от типа экспериментальной установки. Для ампульного калориметра характерно наличие нескольких серий экспериментов, каждая из которых состоит из двух наборов концентраций, характеризующих систему до и после смешения растворов в ампуле и калориметрической ячейке. Для калориметра титрования также возможен ввод нескольких серий данных, которые представляют собой неограниченную последовательность наборов концентраций для каждой точки титрования.

Для ампульного калориметра и изотермического калориметра титрования, снабженного ячейкой со свободным объемом, концентрации реагентов после смешения могут быть рассчитаны по общей формуле:

$$C_{Bjks}(\text{cell}) = \frac{C_{Bjs}^{0}(\text{cell})V^{0} + C_{Bjs}^{0}(\text{titrant})\sum_{k=1}^{K}V_{ks}^{titr}}{V^{0} + \sum_{i=1}^{K}V_{ks}^{titr}}, \quad (1)$$

где $C_{Bjks}(\text{cell})$ — общая концентрация *j*-того реагента В в калориметрической ячейке в *k*-й точке экспериментальной серии *s*, $C_{Bjks}^0(\text{cell})$ — начальная общая концентрация *j*-го реагента В в калориметрической ячейке в экспериментальной серии *s*, $C_{Bjks}^0(\text{titrant})$ — начальная общая концентрация *j*-го реагента В в растворе титранта (ампуле) в экспериментальной серии *s*, V^0 — начальный объем раствора в калориметрической ячейке, V_{ks}^{iitr} объем *k*-й добавки титранта (объем ампулы) экспериментальной серии *s*, *K* — общее количество добавок титранта (в случае ампульного калориметра *K* = 1).

Для изотермического калориметра титрования, снабженного ячейкой вытеснения, концентрации реагентов после *k*-й добавки титранта серии *s* рассчитываются по общей формуле [19]:

$$C_{Bjks}(\text{cell}) = C_{Bjk-1s}(\text{cell}) \left(1 - \frac{V_{ks}^{iitr}}{V^0} \right) + C_{Bjs}^0 (\text{titrant}) \left(\frac{V_{ks}^{iitr}}{V^0} \right),$$
(2)

обозначения те же, что и для уравнения (1).

Также необходимы:

 матрица измеренных теплот с соответствующими теплотами разведения, определенными по данным холостого эксперимента, и экспериментальными погрешностями определения; указываются серии эксперимента, к которым относятся эти экспериментальные данные; – реакции, для которых необходимо определить равновесные константы.

Расчет равновесных концентраций для всех наборов общих концентраций проводится по методу, описанному в [20] с использованием приближенных значений неизвестных констант равновесия, заданных пользователем.

Расчет парциальных молярных свойств (изменений энтальпии реакции) при необходимости

Если изменения энтальпии каких-либо реакций неизвестны (что обычно встречается на практике), то необходимо решить систему линейных уравнений, вид которой зависит от типа экспериментальной установки.

Так, для ампульного калориметра с изотермической оболочкой справедливо выражение [23]:

$$\Delta H_{\text{exps}} = \frac{1}{C_{Bis}} \sum_{i=1}^{N} \Delta a_{is} \Delta H_i, \qquad (3)$$

где ΔH_{exps} — экспериментально определенный тепловой эффект в серии *s*, C_{Bjs} — общая концентрация реагента B_j в экспериментальной серии *s*, относительно которой рассчитаны ΔH_{exps} , Δa_{is} изменение равновесной концентрации продукта *i*-й реакции в экспериментальной серии *s*, N — общее число реакций, ΔH_i — изменение энтальпии *i*-й реакции.

Для изотермического калориметра титрования, снабженного ячейкой со свободным объемом, следует использовать выражение [9, 18]:

$$q_{ks} = -\left(V^0 + \sum_{i=1}^{K} V_{ks}^{titr}\right) \sum_{i=1}^{N} \Delta a_{iks} \Delta H_i, \qquad (4)$$

где q_{ks} — количество теплоты, выделившейся или поглотившейся после k-й добавки титранта в экспериментальной серии s, Δa_{iks} — изменение равновесной концентрации продукта *i*-й реакции после k-й добавки титранта в экспериментальной серии s.

Наконец, для изотермического калориметра титрования в режиме вытеснения, можно вывести [19]:

$$q_{ks} = -V^0 \sum_{i=1}^N \Delta a_{iks} \Delta H_i, \qquad (5)$$

Решив системы (3)–(5) относительно неизвестных ΔH_i взвешенным методом наименьших квадратов, можно найти сумму квадратичных отклонений между левыми и правыми частями линейных уравнений. Эта сумма дает значение целевой функции, минимальное значение которой с набольшей вероятностью соответствует истинным значениям констант равновесия.

Стандартные отклонения изменения энтальпии рассчитываются из ковариационной матрицы, которая вычисляется следующим образом:

$$\operatorname{cov}(p_j) = \frac{F}{M} \left(\left[J^T J \right]^{-1} \right)_{jj}, \qquad (6)$$

где F – сумма квадратов невязок, M – число степеней свободы, J и J^T – якобиан и транспонированный якобиан системы (5).

Минимизация значения целевой функции – суммы квадратов разностей экспериментальных и расчетных количеств теплоты – путем варьирования неизвестных констант равновесия проводится согласно алгоритму Хука–Дживса аналогично описанному в [20].

Расчет стандартных отклонений оптимизированных констант равновесия осуществляется аналогично описанному в [20] по уравнению вида (6), в котором элементы матрицы Якоби вычисляются конечно-разностным методом. Также проводятся проверки достижения целевой функции минимума и ее чувствительности к оптимизируемым константам равновесия. Рассчитывается матрица коэффициентов парной корреляции Пирсона.

Вывод данных после завершения расчета:

 – рассчитанные при помощи оптимизированных констант равновесия величины равновесных концентраций;

— рассчитанные при помощи оптимизированных констант равновесия значения тепловых эффектов/теплот ΔH_{exps} и q_{ks} в каждом k-м растворе в каждой *s*-й серии и их отклонения от экспериментальных значений (абсолютное и относительное);

— оптимизированные значения $\lg K$ вместе со стандартными отклонениями;

 матрица коэффициентов парной корреляции Пирсона;

— рассчитанные при помощи оптимизированных констант равновесия значения тепловых эффектов отдельных реакций ΔH_i вместе со стандартными отклонениями;

 если минимизационная функция не чувствительна к какой-либо константе или же минимум не найден (вообще или за отпущенное число итераций), выводятся соответствующие предупреждения;

 параметры, характеризующие качество описания расчетной кривой экспериментальных значений, а именно скорректированный коэффици-

ент детерминации (R_{adj}^2) , среднеквадратичная ошибка (*RMSE*), нормализованная среднеквадратичная ошибка (*NRMSE*) и симметричная средняя абсолютная ошибка в процентах (*SMAPE*).

Отметим, что описанный выше алгоритм, реализованный нами, отличается от положенного в основу программного обеспечения Нур Δ H [18], HypCal [19]. В частности, в этих программах константы равновесия и изменения энтальпии опти-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 2 2023

Таблица 1. Первичные экспериментальные данные, полученные на ампульном калориметре с изотермической оболочкой [24]

<i>C</i> ⁰ (М), моль/л	<i>C</i> ⁰ (L), моль/л	<i>С</i> ⁰ (Н), моль/л	$\Delta_{ m cM} H,$ кДж/моль
0	0.004903	0.003086	-4.83
0.006307	0.004785	0.003012	
0	0.004903	0.003086	-4.98
0.006464	0.004791	0.003015	
0	0.004903	0.003086	-5.59
0.005265	0.004808	0.003026	

Таблица 2. Первичные экспериментальные данные, полученные на изотермическом калориметре титрования, снабженном ячейкой со свободным объемом [25]

<i>V</i> , мл	<i>C</i> ⁰ (А), ммоль/л	<i>С</i> ⁰ (В), ммоль/л	—q _{изм} , мДж	q _{разб} , мДж
15	0.86623	0		
15.024977	0.86479	0.09889	73.66	-1.95
15.049954	0.86336	0.19746	74.03	2.47
15.074931	0.86193	0.29570	74.88	-0.18
15.099908	0.86050	0.39361	73.27	0.56
15.124885	0.85908	0.49120	74.99	0.71
15.149862	0.85766	0.58847	74.68	1.85
15.174839	0.85625	0.68542	71.70	1.08
15.199816	0.85484	0.78205	64.87	0.47
15.224793	0.85344	0.87837	41.67	1.06
15.24977	0.85204	0.97436	19.75	0.27
15.274747	0.85065	1.07005	6.83	1.17
15.299724	0.84926	1.16542	1.45	0.23
15.324701	0.84788	1.26048	1.99	0.92
15.349678	0.84650	1.35523	1.79	1.27
15.374655	0.84512	1.44967	-0.68	-0.40
15.399632	0.84375	1.54381	0.03	0
15.424609	0.84239	1.63764	0.08	-0.08

мизируются одновременно методом Ньютона— Рафсона. При этом в расчетах используются собственные значения равновесных концентраций реагентов и продуктов (а не их логарифмы, как в KEV [20]). При неудачном выборе начального приближения это делает возможным нахождение минимума, которому соответствуют не имеющие смысла отрицательные значения концентраций. Для проверки корректности расчета констант равновесия и изменений энтальпии химических реакций, мы воспроизвели расчеты по первичным экспериментальным данным, заимствованным из работ [24, 25] (см. табл. 1, 2).

В работе [24] проводили исследование системы реакций:

$$H + L = HL, \quad \lg \beta = 5.45,$$

 $\Delta H = 0.88 \ \kappa Дж/моль,$ (7)

$$2H + L = H_2L, \quad \lg\beta = 8.35,$$

 $\Delta H = -1.22 \ \kappa \exists m m m m,$ (8)

$$M + L = ML$$
, $lg\beta = 5.88$, ΔH неизвестна. (9)

Рассчитанная величина ΔH для процесса (9) составляет -6.12 ± 0.41 кДж/моль, что совпадает с результатами [24].

В работе [25] при помощи изотермического калориметра титрования, снабженного ячейкой со свободным объемом исследовали реакцию вида:

$$A + B = D;$$
 lg β и ΔH неизвестны. (10)

Рассчитанные величины для вещества T3CH [25] составляют $\lg\beta = 5.40 \pm 0.04$, $\Delta H = 50.30 \pm \pm 0.33$ кДж/моль, что согласуется с результатами [25].

Кроме того, используя уравнения (1), (4), мы смоделировали результаты гипотетического калориметрического титрования (табл. 3) в системе, в которой протекают две реакции:

$$A + B = D, \quad \lg \beta_1 = 3.8,$$

 $\Delta H_1 = -10.00 \text{ кДж/моль},$
(11)

$$2A + B = E, \quad \lg \beta_2 = 4.5,$$

 $\Delta H_2 = -15.00 \ \kappa Дж/моль.$ (12)

Расчет величин $\lg \beta_1$, $\lg \beta_2$, ΔH_2 , заданных как неизвестные, возвратил значения, которые были использованы для симуляции набора данных.

В качестве целевой функции, значение которой необходимо минимизировать, помимо суммы квадратичных отклонений могут быть также использованы сумма абсолютных отклонений или абсолютная величина наибольшего отклонения [15]. Э.С. Щербакова показала [26], что использование этих трех параметров дает разные величины искомых констант равновесия и изменений энтальпии, хотя при достаточной информативности эксперимента значения оптимизированных параметров близки при разных критериях. Мы можем добавить к этому выводу, что результат расчета (по итогам тестов) будет идентичным для идеальных, лишенных погрешностей данных (например, таких, какие приведены в табл. 3). Добавление случайных ошибок к симулированным значениям теплот приводит к расхождению оценок констант равновесия и ΔH ,

(4paso 0)						
<i>V</i> , мл	<i>C</i> ⁰ (А), ммоль/л	<i>С</i> ⁰ (В), ммоль/л	— $q_{_{\rm ИЗМ}},$ мДж			
5	0	10	0			
5 005	0 999	9 990	48 29			
5.005	1 996	9 980	47.87			
5.015	2 991	9 970	47 30			
5.02	3 984	9 960	46 51			
5.025	4 975	9 950	45 39			
5.03	5.964	9.940	43.77			
5.035	6 951	9 930	41 41			
5.04	7.937	9.920	38.01			
5.045	8.920	9.911	33.36			
5.05	9.901	9.901	27.74			
5.055	10.880	9.891	21.96			
5.06	11.858	9.881	17.01			
5.065	12.833	9.872	13.28			
5.07	13.807	9.862	10.57			
5.075	14.778	9.852	8.70			
5.08	15.748	9.842	7.43			
5.085	16.716	9.833	6.44			
5.09	17.682	9.823	5.73			
5.095	18.646	9.814	5.23			
5.1	19.608	9.804	4.76			
5.105	20.568	9.794	4.41			
5.11	21.526	9.785	4.17			
5.115	22.483	9.775	3.88			
5.12	23.438	9.766	3.72			
5.125	24.390	9.756	3.49			
5.13	25.341	9.747	3.38			
5.135	26.290	9.737	3.19			
5.14	27.237	9.728	3.11			
5 145	28 183	9 718	2 94			

Таблица 3. Симулированные данные для гипотетического калориметрического титрования ($q_{\text{pag6}} = 0$)

полученных при использовании разных целевых функций. При этом минимизация наибольшего отклонения расчетных значений от экспериментальных величин чувствительна к наличию выбросов. При минимизации суммы квадратичных отклонений повышается вес больших ошибок и понижается вес маленьких по сравнению с суммированием абсолютных отклонений. В итоге, было принято решение оставить в качестве целевой функции сумму квадратов ошибок.

Разработанное программное обеспечение для расчета констант равновесия и изменения энтальпии химических реакций по калориметрическим данным — часть созданной ранее компьютерной программы KEV (названной в честь Козловского Евгения Викторовича, разработчика предыдущего поколения программ для расчета равновесного состава и констант равновесия [17]) и находится в свободном доступе по адресу https://k-ev.org/ (требуется простая регистрация по адресу электронной почты).

Работа выполнена в рамках государственного задания Министерства науки и высшего образования (проект FZZW-2020-0009) при поддержке Совета по грантам при Президенте Российской Федерации (проект MK-923.2022.1.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. Васильев В.П., Лобанов Г.А. // Журн. неорган. химии. 1966. Т. 11. № 4. С. 699.
- 2. Перелыгин И.С., Кимтис Л.Л., Чижик В.И. и др. Экспериментальные методы химии растворов: Спектроскопия и калориметрия / Под ред. Г. А. Крестова. М.: Наука, 1995. С. 251–260.
- 3. Лыткин А.И., Крутова О.Н., Черников В.В. и др. // Журн. физ. химии. 2022. Т. 96. № 4. С. 524.
- 4. Лыткин А.И., Крутова О.Н., Черников В.В. и др. // Там же. 2021. Т. 95. № 11. С. 1674.
- 5. Лыткин А.И., Крутова О.Н., Тюнина Е.Ю. и др. // Там же. 2021. Т. 95. № 10. С. 1530.
- Krutova O.N., Lytkin A.I., Chernikov V.V. et al. // J. Mol. Liq. 2021. V. 338. Article number 116773.
- Лыткин А.И., Черников В.В., Крутова О.Н. и др. // Журн. физ. химии. 2021. Т. 95. № 9. С. 1375.
- Лыткин А.И., Крутова О.Н., Черников В.В. и др. // Там же. 2021. Т. 95. № 1. С. 70 (Lytkin A.I., Krutova O.N., Chernikov V.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. No. 1. P. 97).
- 9. Киселев М.Г., Носков С.Ю., Пуховский Ю.П. и др.– Теоретические и экспериментальные методы химии растворов / Под ред. А.Ю. Цивадзе. М.: Проспект, 2011. С. 651–662.
- 10. Фам Тхи Лан, Ву Сюань Минь, Ле Хай Кхоа и др. // Журн. физ. химии. 2021. Т. 95. № 5. С. 692.
- Sumyanova Ts., Borisova N., Ivanov A. et al. // Russ. J. Phys. Chem. A. 2020. V. 94. No. 13. P. 2674.
- Bretti C., De Stafano C., Cardiano P. et al. // J. Mol. Liq. 2021. V. 343. Article number 117669.
- Del Regno R., Santonoceta G.D.G., Della Sala P. et al. // Org. Lett. 2022. V. 24. P. 2711
- Migliore R., Biver T., Barone G., Sgarlata C. // Biomol. 2022. V. 12. No. 3. Article number 408.
- Щербакова Э.С., Бугаевский А.А., Карпов И.К. и др. Математические вопросы исследования химических равновесий / Под ред. В.Н. Кумока. Томск: Изд-во Томского ун-та, 1978. С. 67–102.
- https://www.tainstruments.com/tam-assistant-software/ (Доступ 7 июня 2022 г.)
- 17. Бородин В.А., Козловский Е.В., Васильев В.П. // Журн. неорган. химии. 1982. Т. 27. № 9. С. 2169.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 2 2023

- Gans P., Sabatini A., Vacca A. // J. Solut. Chem. 2008. V. 37. P. 467.
- Arena G., Gans P., Sgarlata C. // Anal. Bioanal. Chem. 2016. V. 408. No. 23. P. 6413.
- Meshkov A.N., Gamov G.A. // Talanta. 2019. V. 198. P. 200.
- Gamov G.A., Meshkov A.N., Zavalishin M.N. et al. // J. Mol. Liq. 2020. V. 305. Article number 112822.
- 22. *Gamov G.A., Meshkov A.N., Zavalishin M.N. et al.* // Spectrochim. Acta A: Mol. Biomol. Spec. 2020. V. 233. Article number 118165.
- Бугаевский А.А., Быстров Л.В., Горский В.Г. и др. Математические задачи химической термодинамики / Под ред. Г.А. Коковина. Новосибирск: Наука, 1985. С. 219–226.
- 24. *Kuranova N.N., Sharnin V.A.* // J. Therm. Anal. Cal. 2022. V. 147. Iss. 9. P. 5519.
- 25. Гамов Г.А., Завалишин М.Н., Кабиров Д.Н. и др. // Журн. физ. химии. 2019. Т. 93. № 2. С. 176.
- 26. Щербакова Э.С. // Там же. 1976. Т. 50. № 8. С. 1971.