_____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 544.35

ТЕРМОХИМИЧЕСКИЙ АНАЛИЗ ВЗАИМОДЕЙСТВИЯ L-КАРНОЗИНА, L-ГИСТИДИНА И L-АСПАРАГИНА С ПИРИДОКСИНОМ В ВОДНЫХ РАСТВОРАХ

© 2023 г. Е. Ю. Тюнина^{*a*,*}, О. Н. Крутова^{*b*}, В. П. Баранников^{*a*}

^аИнститут химии растворов им. Г.А. Крестова РАН, Иваново, 153045 Россия ^bИвановский государственный химико-технологический университет, Иваново, 153000 Россия

> *e-mail: tey@isc-ras.ru Поступила в редакцию 28.06.2022 г. После доработки 15.09.2022 г. Принята к публикации 16.09.2022 г.

Методом калориметрии исследованы особенности взаимодействия дипептида L-карнозина (Car) и аминокислот L-гистидина и L-аспарагина с пиридоксином (PN) в водном растворе. Впервые получены экспериментальные значения энтальпии растворения аминокислот и пептида в водном растворе пиридоксина при T = 298.15 К. Определены термодинамические характеристики и стехиометрия образования молекулярных комплексов между реагентами. Установлено, что стабильность полученных комплексов зависит от структуры реагентов и понижается в ряду: Car > Asn > His. Показано, что основной вклад в стабилизацию образуемых комплексов вносит энтропийная составляющая энергии Гиббса комплексообразования.

Ключевые слова: энтальпия растворения, аминокислоты, пиридоксин, водный раствор, термодинамические характеристики, комплексообразование

DOI: 10.31857/S0044453723030287, EDN: EAXQBF

В послелние лесятилетия исслелованию поведения биологически активных соединений (гормонов, энзимов, витаминов, лекарств) в жидких средах, содержащих добавки макромолекул (белков, нуклеиновых кислот и др.) уделяется большое внимание в связи с их важностью для понимания явлений биохимической избирательности (молекулярного распознавания, разделения) и процессов переноса в организме человека (мембранный транспорт, ферментативный катализ и др.), а также для разработки новых технологий в фармакологии, косметологии, производстве пищевых продуктов. Азотсодержащие гетероциклические органические молекулы как фрагменты структуры многих лекарственных препаратов, красителей и пищевых добавок в течение последних десятилетий являются предметом изучения химиков, фармакологов и физиков для установления связи между химической структурой и биологической активностью [1, 2].

Пиридоксин, (PN, 3-гидрокси-4,5-бис(гидроксиметил)-2-метилпиридин), известный как витамин B6, является предшественником различных коферментов (пиридоксаль-5'-фосфата, пиридоксамин-5'-фосфата и др.), необходимых для более 100 биохимических реакций [3]. Этот витамин влияет на правильное функционирование нервной системы, поддерживает иммунную систему, участвует в метаболизме аминокислот и гликогена в процессе производства эритроцитов [4, 5]. Пиридоксин наряду с другими витаминами В-группы (тиамин В1, никотиновая кислота В3, пирилоксаль) относится к волорастворимым витаминам. Пиридоксин может существовать в трех ионных формах при различной кислотности среды: при pH < 5 как катион, при pH 6.8 – диполярный ион и при pH > 8 – анион. Известно [6], что потеря первого протона молекулы PN соответствует диссоциации гидроксигруппы (фенольной группы). Вторая ступень диссоциации связана с потерей протона пиридиния (-NH). Следует отметить, что PN способен к существованию в нейтральном водном растворе в виде двух таутомерных форм: молекулярной и цвиттер-ионной [7, 8], при этом нейтральная форма пиридоксина более предпочтительна [7]. Общепризнано, что нейтральная форма PN более липофильна и, следовательно, более эффективна при диффузии через клеточный барьер по сравнению с заряженными формами [9]. В ряде работ [5, 10-12] показано, что витамины, ферменты и лекарственные вещества чаще всего действуют через образование молекулярных комплексов (интермедиатов) с белками-трансмиттерами. Такие комплексы в основном образуются в результате слабых молекулярных взаимодействий, важных с физико-химической точки зрения [5, 12].

На процесс комплексообразования и стабильность образуемых комплексов могут влиять различные факторы, в том числе кислотность среды, природа функциональных групп, полярность и гидрофобность молекул, наличие активных сайтов в молекулах и аффинность их к связыванию с реагентами. Поэтому мы исследовали образование комплексов аминокислот/пептида, имеющих различные боковые цепи, с витамином В6 (пиридоксином), используемых в качестве моделей взаимодействий белок—лекарство. Определение их термодинамических свойств в водном растворе направлено на уточнение избирательности взаимодействия и степени связывания реагентов.

В данной работе в качестве объектов исследования использовали структурные элементы альбумина. Это – две аминокислоты: L-гистидин (L-2-амино-3-(1Н-имидазол-4-ил-пропановая кислота) и L-аспарагин (2-амино-3-карбамоил-пропановая кислота), а также пептид L-карнозин (β-аланил-L-гистидин или (2S)-2-(3-анинопропаноил амин)-3-(1Н-имидазол-5-ил)пропановая кислота).

Боковая цепь молекулы L-аспарагина (Asn) является карбоксамидной группой, которая не несет формального заряда ни при каких биологически значимых величинах pH и проявляет склонность к образованию водородных связей [13]. В водном растворе Asn существует в основном в форме цвиттер-иона $[HL]^{\pm}$, при этом аминогруппа основной цепи протонирована ($-NH_3^+$), а карбоксильная группа ионизирована ($-COO^-$). Asn входит в состав ключевых сайтов для N-гликозилирования и модификации белковой цепи [14].

L-гистидин (His) относится к числу незаменимых аминокислот, характеризуется наличием имидазольной функциональной группы в боковой цепи молекулы, которая может служить как донором, так и акцептором образования водородных связей в зависимости от диапазона pH [15]. При низком значении pH < 2 оба атома азота имидазольного кольца протонируются с образованием катионного имидазолия. В области 6 < pH < 9 существуют два нейтральных таутомера: т-таутомер (протонированный атом N_{ϵ^2}) и π -таутомер (протонированный атом N_{δ1}). При pH > 9 α-аминогруппа основной цепи депротонируется с образованием аниона гистидина, боковая цепь в щелочной среде остается нейтральной для любого таутомерного состояния. Ранее показано [16], что в нейтральном водном растворе L-гистидин существует преимущественно в цвиттер-ионной $([HL]^{\pm})$ форме. Благодаря своему химическому составу и чувствительности к pH, гистидин находится в активных центрах многих белков и играет ключевую роль в ферментативном катализе, протонной проводимости, в комплексах металлопротеинов и др. [17].

Дипептид L-карнозин (Car) представляет собой полидентатную молекулу с несколькими потенциальными сайтами связывания. Его молекула содержит В-аланильный остаток аминокислоты (с аминогруппой), пептидную группу, карбоксильную группу и имидазольное кольцо гистидинового аминокислотного остатка. Наличие имидазольного кольца в карнозине делает его интересным кандидатом в качестве донора протонов для ионных форм некоторых лекарственных средств в водных растворах. Карнозин существует в водном растворе, преимущественно, в виде катионов (H_2L^+) в интервале pH 2.8-6.5 и цвиттер-ионов (HL^{\pm}) в интервале pH 6.5–9.2, при pH > 9.2 - в форме аниона (L⁻), а при pH < 2.8 - 100в форме дикатиона (H_3L^{2+}) [18]. Способность Car образовывать комплексы с широким рядом металлов и некоторыми органическими соединениями определяет области применения Car в качестве антиоксиданта, нейропротекторного средзаживления ства, стимулятора ран, ионхелатирующего и антигликирующего агента, а также в системе доставки лекарственных средств [19-21].

Насколько нам известно, опубликовано всего несколько исследований взаимодействия между аминокислотами/пептидами и витаминами В-группы с использованием метода калориметрии растворения [22–24]. Таким образом, цели данного исследования – определить способность Саг и Ніз образовывать комплексы с пиридоксином в водном растворе; проанализировать влияние природы боковых цепей аминокислот (His, Asn) и пептида (Car) на селективность комплексообразования на основе обобщения полученных результатов с опубликованными нами ранее данными для системы Asn–PN–вода [22].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали пиридоксин, дипептид L-карнозин, аминокислоты: L-гистидин и L-аспарагин, характеристики которых приведены в табл. 1. Вещества сушили в вакуумном шкафу при 343 К непосредственно перед использованием. Бидистиллированную воду (с удельной проводимостью 3.1 См см⁻¹, pH 5.4) использовали для приготовления водных растворов. Исследуемые растворы готовили весовым методом, используя весы Sartorius-ME215S (с точностью взвешивания 1×10^{-5} г).

Для измерения энтальпий растворения кристаллических аминокислот и пептида в водных растворах, содержащих фиксированную концен-

ТЕРМОХИМИЧЕСКИЙ АНАЛИЗ ВЗАИМОДЕЙСТВИЯ

Вещества	М	CAS №	Происхождение	Степень чистоты
L-Аспарагин H ₂ NCOCH ₂ CH(NH ₂)COOH	132.12 $pK_{a,1}^0 = 2.16 \pm 0.04$ $pK_{a,2}^0 = 8.97 \pm 0.08$	70-47-3	Sigma	>0.98
L-Гистидин N — O N — OH N — OH N — H	155.16 $pK_{a1} = 1.64$ $pK_{a2} = 5.97$ $pK_{a3} = 9.28$	59-67-6	Sigma-Aldrich	≥0.98
L-карнозин H_2N $N = N$ $N = NH$ H_2N $N = OH$ H = O	226.23 $pK_{a1} = 2.59 \pm 0.10$ $pK_{a2} = 6.77 \pm 0.02$ $pK_{a3} = 9.37 \pm 0.02$	305-84-0	Sigma-Aldrich	~0.99
Пиридоксин СН ₂ ОН НОССН ₂ ОН Н ₃ С	169.18 $pK_{a,1} = 4.85 \pm 0.05$ $pK_{a,2} = 8.96 \pm 0.05$	65-23-6	Sigma	>0.98

Таблица 1. Название, формула и показатели чистоты используемых реактивов

Обозначения: M — молекулярная масса вещества, кг кмоль⁻¹; CAS№ — Chemical Abstract Service регистрационный номер; степень чистоты — массовая доля содержания основного вещества (как заявлено производителем); pK_{a1} , pK_{a2} , pK_{a3} , — константы ионизации при T = 298.15 К, I = 0 аспарагина [25], гистидина [26], карнозина [27] и пиридоксина [28].

трацию пиридоксина, использовали калориметр ампульного типа с изотермической оболочкой и емкостью реакционного стакана 60 см³. Процесс растворения инициировали разбиванием ампулы. Энтальпию растворения измеряли сравнительным методом на цифровом эталонном измерителе температуры (БИК, Минск). Перед каждым экспериментом проводили электрическую калибровку калориметра. Детальное описание конструкции калориметра, его калибровки и процедуры измерения представлены в работах [29, 30]. Погрешность измерения единичного теплового эффекта не превышала 0.2%. Калориметр был протестирован путем измерения энтальпии растворения хлористого калия (KCl) (Sigma-Aldrich, CAS 7447-40-7, степень чистоты 99.5%) в H_2O при T = 298.15 K, рекомендованного в качестве стандарта в работах [31, 32]. Значение $\Delta_{sol}H^{\circ} =$ $= 17.23 \pm 0.07$ кДж моль⁻¹ при бесконечном разбавлении находится в хорошем согласии с рекомендованными литературными данными ($\Delta_{sol}H^{\circ} =$ = 17.25 ± 0.04 [32] и 17.22 ± 0.04 кДж моль⁻¹ [31]). Кроме того, сравнение полученных нами ранее

стандартных значений энтальпий растворения $(\Delta_{sol}H^{\circ})$ некоторых аминокислот и пептидов в воде с данными других авторов показало, что наши значения $\Delta_{sol}H^{\circ}(\kappa \Delta \times \text{моль}^{-1})$ для глицина 14.25 ± ± 0.06 [33], глицил-глицил-глицина 17.62 ± 0.05 [33] и L-метионина 11.21 ± 0.08 [34] согласуются с литературными значениями, соответственно, 14.23 ± 0.02 [35], 17.69 ± 0.02 [36] и 11.30 ± 0.06 [37], что дополнительно подтверждает достоверность результатов, полученных на данном калориметре. При этом относительная погрешность в измерениях энтальпий растворения составляла не более 0.7%.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Эффективность связывания Car, His и Asn с лигандом (PN) определяется, прежде всего, их состоянием в растворе. Расчет равновесного состава растворов исследуемых веществ при различных значениях pH был проведен с использованием программы RRSU [38]. Показано, что в зависимости от pH среды реагенты могут нахо-

$m_{ m His}$, моль кг ⁻¹	$His + H_2O$	$His + L + H_2O$	144	$Car + H_2O$	$Car + L + H_2O$			
	$\Delta_{ m sol} H_{ m m}({ m w}),$ кДж моль $^{-1}$	$\Delta_{ m sol} H_{ m m}({ m w}+{ m L})^{ m a},$ кДж моль $^{-1}$	<i>т_{Car},</i> моль кг ⁻¹	$\Delta_{ m sol} H_{ m m}({ m w}),$ кДж моль $^{-1}$	$\Delta_{ m sol} H_{ m m}({ m w}+{ m L})^6,$ кДж моль $^{-1}$			
0.0	14.28	—	0.0	11.19	—			
0.0018	14.30	16.23	0.0012	11.25	14.01			
0.0025	14.31	16.35	0.0014	11.26	14.12			
0.0033	14.32	16.78	0.0026	11.32	14.31			
0.0037	14.33	16.99	0.0033	11.36	14.58			
0.0048	14.34	17.35	0.0042	11.41	14.80			
0.0049	14.35	17.42	0.0048	11.44	14.88			
0.0059	14.36	17.56	0.0053	11.46	14.97			
0.0087	14.40	17.89	0.0061	11.51	15.05			
0.0112	14.44	18.11	0.0091	11.66	15.26			
0.0134	14.47	18.32	0.0100	11.71	15.33			
0.0149	14.49	18.55	0.0116	11.79	15.44			
0.0168	14.52	18.69	0.0167	12.06	15.72			
0.0182	14.54	18.70	0.0184	12.14	15.80			
0.0208	14.57	18.78	0.0206	12.26	15.89			

Таблица 2. Энтальпии растворения L-гистидина (His) и L-карнозина (Car) в воде и водных растворах, содержащих пиридоксин (PN), при *T* = 298.15 К

Примечание: L = PN; ^a $m_{\rm PN} = 0.0016 \pm 0.0002$ моль кг⁻¹; ⁶ $m_{\rm PN} = 0.0011 \pm 0.0002$ моль кг⁻¹.

диться в различных ионных состояниях. Молекулы гистидина и карнозина содержат в боковом радикале дополнительные группы, проявляющие осно́вные свойства, и их водные растворы являются щелочными. Проведенные нами измерения с помощью цифрового pH-метра (Mettler Toledo, модель Five-Easy) показали, что значения pH для водных растворов Car и His находятся в интервале 7.6-8.1 в зависимости от концентрации вещества. В этой области кислотности растворов Car и His, а также и Asn существуют преимущественно в виде цвиттер-ионов ([HL][±]), PN находится в нейтральной форме (HX⁰). Эти ионные формы, присутствующие в водном растворе, следует принимать во внимание при интерпретации взаимодействий между указанными реагентами.

Экспериментальные значения энтальпии растворения кристаллических Саг и Нів в воде $(\Delta_{sol}H_m(w))$ и водных растворах $(\Delta_{sol}H_m(w + L))$, содержащих PN, приведены в табл. 2. Аналогичные данные для системы Asn—PN—H₂O, используемые при сравнительном анализе межмолекулярных взаимодействий в исследуемых растворах, были опубликованы нами ранее [22]. Как видно из табл. 2, процессы растворения аминокислоты и пептида эндотермичны.

Энтальпии переноса ($\Delta_{tr}H_m$) аминокислоты и пептида из воды (w) в водный раствор лиганда

(w + L) вычислены из экспериментальных данных по соотношению:

$$\Delta_{\rm tr} H_{\rm m} = \Delta_{\rm sol} H_{\rm m}({\rm w} + {\rm L}) - \Delta_{\rm sol} H_{\rm m}({\rm w}), \qquad (1)$$

где $\Delta_{sol}H_m(w)$ — энтальпия растворения Саг и Ніѕ в чистом растворителе (воде), $\Delta_{sol}H_m(w + L)$ энтальпия растворения Саг и Ніѕ в водном растворе, содержащем пиридоксин (фиксированной концентрации). Концентрационные зависимости молярных энтальпий растворения исследуемых соединений в воде носят линейный характер и описываются уравнениями:

$$\Delta_{\rm sol}H_{\rm m}({\rm w}) = (14.28 \pm 0.12) + (14.37 \pm 0.18)m_{\rm His}, \ (2)$$

$$\Delta_{\rm sol}H_{\rm m}({\rm w}) = (11.19 \pm 0.11) + (52.31 \pm 0.16)m_{\rm Car}, \ (3)$$

где m_{His} и m_{Car} – концентрации растворенного вещества (моль кг⁻¹), соответственно, гистидина и карнозина. Определены стандартные молярные

энтальпии растворения ($\Delta_{sol}H_m^{\infty}$) при бесконечном разбавлении Ніѕ и Саг в воде, соответственно, 14.28 ± 0.12 и 11.19 ± 0.11 кДж моль⁻¹, что согласуется с имеющимися литературными значениями: 14.32 ± 0.06 кДж моль⁻¹ [39] для аминокислоты и 11.09 ± 0.09 кДж моль⁻¹ [18] для дипептида. Изотермы связывания исследуемых тройных систем (АК/ПП-лиганд-вода) демонстрируют нелинейную зависимость значений $\Delta_{tr}H_m$ от концентрации аминокислоты (пептида) (рис. 1), что свидетель-

Комплекс	$\lg K_{\rm c}^0 \pm 0.003$	$-\Delta_{ m c}G^0$, кДж моль $^{-1}$	$\Delta_{ m c} H^0$, кДж моль $^{-1}$	$T\Delta_{\rm c}S^0$, кДж моль ⁻¹
Car : PN	3.742	21.34 ± 0.12	3.64 ± 0.08	24.97 ± 0.23
His: PN	2.711	15.46 ± 0.11	4.56 ± 0.06	20.02 ± 0.25
Asn : PN [22]	3.625	20.66 ± 0.12	6.40 ± 0.18	27.06 ± 0.43

Таблица 3. Термодинамические характеристики комплексообразования L-карнозина (Car), L-гистидина (His) и L-аспарагина (Asn) с пиридоксином (PN) в водных растворах при T = 298.15 K

ствует об образовании комплексов между Car, His, Asn и лигандом (PN).

На основе полученных значений $\Delta_{tr}H_m$ рассчитаны стандартные термодинамические характеристики процесса комплексообразования с использованием компьютерной программы "HEAT" [38], в которой поиск неизвестных параметров (lg K_c^0 , $\Delta_c H^0$) сводится к численной минимизации функционала *F* по искомым параметрам:

$$F = \sum_{i=1}^{n} w_i (\Delta H_i^{\exp} - \Delta H_i^{\text{theor}})^2, \qquad (4)$$

где ΔH_i — тепловой эффект *i*-й реакции, *n* — число опытов, w_i — весовые множители, которые рассчитываются как $w_i = A/(\delta \Delta H_i)^2$ (где A — коэффициент, выбираемый из условия $\sum w_i = n$, т.е. сумма весов равна числу опытов; $\delta \Delta H_i$ — абсолютная погрешность измерения ΔH_i). Поскольку кислотно-основные равновесия, в которых участвуют реагенты, могут вносить определенный вклад в величину измеряемых тепловых эффектов, то их тепловые эффекты и константы равновесия реагентов [25–28] дополнительно вводились в вычислительную программу "НЕАТ" при расчете

Рис. 1. Зависимости энтальпии переноса L-карнозина (*1*), L-гистидина (*2*) и L-аспарагина [22] (*3*) из воды в водный раствор пиридоксина (PN) от концентрации аминокислоты и пептида (*m*).

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 3 2023

термодинамических параметров комплексообразования. Расчет равновесного состава для исследуемых систем с учетом различных стехиометрических схем взаимодействия показал наилучшее соответствие условию (4) в случае образования комплексов состава 1 : 1 между реагентами. Энергия Гиббса и энтропия комплексообразования определены по известным термодинамическим уравнениям:

$$\Delta_{\rm c} G^0 = -RT \ln K_{\rm c}^0, \tag{5}$$

$$\Delta_{\rm c} G^0 = \Delta_{\rm c} H^0 - T \Delta_{\rm c} S^0.$$
(6)

Полученные термодинамические параметры, представленные в табл. 3, могут быть использованы для определения характера и движущих сил взаимодействия между исследуемыми аминокислотами/пептидом и лигандом.

При комплексообразовании Car и Asn с PN разные значения $\Delta_c H^0$ компенсировались $\Delta_c S^0$, что приводило к близким значениям $\Delta_c G^0$. Как видно из данных табл. 3, взаимодействия между реагентами приводят к образованию комплексов средней силы. Значения констант связывания lg K_c^0 повышаются в ряду: His < Asn < Car, что симбатно изменению констант ионизации карбоксильной группы р K_{a1} в молекулах этих веществ (табл. 1).

Исследуемые аминокислоты и пептид содержат заряженные центры (СОО⁻/NH₃⁺), гидрофильные (–Imd, –NH₂, –СОNН–) и гидрофобные группы. В образовании комплекса могут участвовать разнообразные силы, такие как силы Ван-дер-Ваальса, водородные связи, электростатические и гидрофобные взаимодействия. Как известно [5, 40], взаимодействие PN с различными растворенными веществами происходит через атомы кислорода фенольных и примыкающих к ним гидроксиметильных групп, а также через пиридиновый азот, что наиболее характерно для образования пиридоксиновых комплексов. Заря-

женные концевые (NH_3^+/COO^-) группы в основной цепи Car, His и Asn, а также полярные имидазольные и аминогруппы в их боковой цепи служат активными центрами связывания с полярными заместителями в пиридиновом кольце нейтральной молекулы PN через образование водо-

родных связей. Неполярные углеводородные группы в молекулах аминокислот/пептида и неполярные фрагменты в молекуле PN могут участвовать в гидрофобных взаимодействиях, которые вносят свой вклад в стабилизацию структуры комплекса.

Для образования комплекса существенны как энергетические, так и энтропийные факторы. Значения $\Delta_c H^0$ и $T\Delta_c S^0$ включают вклады как от процессов образования комплексов между реагентами вследствие различного типа взаимодействий (экзоэффект), так и от частичной легилратации реагентов при взаимодействии друг с другом (эндоэффект), от гидратации образуемых комплексов (экзоэффект) и реорганизации растворителя (эндоэффект). Преобладание тех или иных процессов обусловливает полученные отрицательные или положительные значения энтальпии и энтропии процесса. Комплексообразование Car, His, Asn c PN в водном растворе сопровождается небольшими положительными изменениями энтальпии и большими положительными изменениями энтропии. По-видимому, эндотермические эффекты дегидратации реагентов преобладают над экзотермическим эффектом их взаимодействия. Стабильность образуемых комплексов Car, His и Asn c PN определяется в значительной степени энтропийной составляющей энергии Гиббса комплексообразования. Согласно подходу, предложенному в работе [41], положительные значения энтальпии и энтропии свидетельствуют о том, что в образовании и стабилизации комплексов между исследуемыми реагентами принимают участие, прежде всего, водородные связи и гидрофобные взаимодействия.

По сравнению с His, комплексообразование Car с PN характеризуется меньшим положительным значением $\Delta_c H^0$ и бо́льшим положительным значением $T\Delta_c S^0$, т.е. становится более экзотермичным и энтропийно более выгодным процессом. Анализ взаимодействий в системах His– PN–H₂O и Asn–PN–H₂O показывает, что в случае Asn изменение энтропии наиболее благоприятно для связывания с PN, тогда как связывание His с PN более энтальпийно выгодно.

ЗАКЛЮЧЕНИЕ

Методом калориметрии растворения исследованы молекулярные взаимодействия в водных растворах, содержащих пиридоксин (PN) и аминокислоту (His, Asn) и пептид (Car) при T == 298.15 К. Определены стандартные термодина-

мические характеристики (lg K_c^0 , $\Delta_c G^0$, $\Delta_c H^0$, $\Delta_c S^0$) процесса комплексообразования. Установлено образование в водном растворе молекулярных комплексов Car, His, Asn с PN средней силы со стехиометрией 1:1, в стабилизацию которых основной вклад вносит энтропийная составляющая энергии Гиббса комплексообразования. Показано, что устойчивость образуемых комплексных соединений зависит от структуры молекул исследуемых аминокислот/пептида и их ионного состояния. Значения констант стабильности уменьшаются в ряду Car \rightarrow Asn \rightarrow His, что симбатно изменению констант ионизации карбоксильной группы р K_{a1} в их молекулах. Полученные результаты свидетельствуют, что основными движущими силами процесса комплексообразования в исследуемых водных растворах, содержащих цвиттер-ионы аминокислот/пептила и пирилоксин в нейтральной форме, являются гидрофобные взаимодействия и образование водородных связей между растворенными веществами.

БЛАГОДАРНОСТИ

Исследование выполнено при финансовой поддержке РФФИ и Правительства Ивановской области РФ в рамках научного проекта № 18-43-370018.

СПИСОК ЛИТЕРАТУРЫ

- Kihal A., Rodriguez-Prado M., Godoy C. et al. // J. Dairy Sci. 2020. V. 103. P. 3125. https://doi.org/10.3168/jds.2019-17561
- Koczoń P., Piekut J., Borawska M. et al. // Spectrochim. Acta. Part A. 2005. V. 61. P. 1917. https://doi.org/10.1016/j.saa.2004.07.022
- 3. *Hellmann H., Mooney S. //* Molecules. 2010. V. 15. P. 442.
 - https://doi.org/10.3390/molecules15010442
- 4. Li W., Yang X., Song Q. et al. // Bioorg. Chem. 2020. V. 97. P. 103707. https://doi.org/10.1016/j.bioorg.2020.103707
- Komasa A., Babijczuk K., Dega-Szafran Z. et al. // J. Mol. Struct. 2022. V. 1254. P. 131773. https://doi.org/10.1016/j.molstruc.2021.131773
- Ristilä M., Matxain J.M., Strid Ă. et al. // J. Phys. Chem. B. 2006. V. 110. P. 16774. https://doi.org/10.1021/jp062800n
- 7. Гамов Г.А., Александрийский В.В., Шарнин В.А. // Журн. структур. химии. 2017. Т. 58. № 2. С. 293. https://doi.org/10.15372/JSC20170208
- 8. *Takács-Novák K., Tam K.Y.* // J. Pharm. Biomed. Anal. 2000. V. 21. P. 1171.
- 9. Noszál B. Acid-Base Properties of Pioligands in Piocoordination Chemistry. Ellis-Horwood, Chichester, UK, 1990.
- Tyunina E.Y., Badelin V.G., Mezhevoi I.N. et al. // J. Mol. Liq. 2015. V. 211. P. 494. https://doi.org/10.1016/j.molliq.2015.07.024
- Sharma M., Banipal T.S., Banipal P.K. // J. Chem. Eng. Data. 2018. V. 63. No. 5. P. 1325. https://doi.org/10.1021/acs.jced.7b00937

- https://doi.org/10.1016/j.tca.2020.178704 23. Barannikov V.P., Badelin V.G., Venediktov E.A. et al. //
- Russ. J. Phys. Chem. A. 2011. V. 85. № 1. P. 16. https://doi.org/10.1134/S003602441101002X
- 24. Krutova O.N., Usacheva T.R., Myshenkov M.S. et al. // J. Therm. Anal. Cal. 2021. No.7.
- 25. Kochergina L.A., Grosheva S.G., Krutova O.N. // Russ. J. Inorg. Chem. 2011. V. 56. P. 1481. https://doi.org/10.1134/S0036023611090129
- 26. Vasil'ev V.P., Kochergina L.A., Garavin V.Yu. // Russ. J. Gen. Chem. 1985. V. 55. P. 2780.

- 22. Tyunina E.Yu., Krutova O.N., Lytkin A.I. // Thermochim. Acta. 2020. V. 690. P. 178704.

- https://doi.org/10.1007/s10973-021-10982-1

- https://doi.org/10.2174/0929867054864796
- 19. Abdelkader H., Swinden J., Pierscionek B.K. et al. // J. Pharm. Biomed. Analysis. 2015. V. 114. P. 241. https://doi.org/10.1016/j.jpba.2015.05.025
- 20. Guiotto A., Calderan A., Ruzza P. et al. // Curr. Med.
- Chem. 2005. V. 12. P. 2293.

- 21. Bertinaria M., Rolando B., Giorgis M. et al. // J. Med.

- Chem. 2011. V. 54. P. 611. https://doi.org/10.1021/jm101394n

13. Kimura T., Matubayasi N., Sato H. et al. // J. Phys. Chem. B. 2002. V. 106. P. 12336.

ТЕРМОХИМИЧЕСКИЙ АНАЛИЗ ВЗАИМОДЕЙСТВИЯ

- https://doi.org/10.1021/jp0212460
- 14. Krall A.S., Xu Sh., Geraeber Th.G. et al. // Nut. Commun. 2016. V. 7. P. 11457.

12. Slifkin Von M.A. Charge Transfer Interaction in Bio-

https://doi.org/10.1002/ardp.19723050815

molecules. London - New York: Acad. Press, 1971.

- https://doi.org/10.1038/ncomms11457 15. Bretti C., Cigala R.M., Giuffrè O. et al. // Fluid Phase
- Equilibr. 2018. V. 459. P. 51.

https://doi.org/10.1016/j.molliq.2019.01.092

Thermodynamic. 2020. V. 150. P. 106206.

https://doi.org/10.1016/j.jct.2020.106206

P. 1.

- https://doi.org/10.1016/j.fluid.2017.11.030
- 16. Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. // J. Mol. Lig. 2019. V. 278. P. 505.

17. Cleland W.W. // Arch. Biochem. Biophys. 2000. V. 382.

18. Tyunina E.Yu., Mezhevoi I.N., Dunaeva V.V. // J. Chem.

- 27. Lytkin A.I., Barannikov V.P., Badelin V.G. et al. // J. Therm. Anal. Cal. 2020. V. 139. P. 3683. https://doi.org/10.1007/s10973-019-08604-y
- 28. Lytkin A.I., Krutova O.N., Tyunina E.Yu. et al. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. & Chem. Tech.] 2020. V. 63. № 6. P. 25. https://doi.org/10.6060/ivkkt.20206306.6183
 - 29. Badelin V.G., Tyunina E.Yu., Mezhevoi I.N. // Russ. J. Appl. Chem. 2007. V. 80. P. 711. https://doi.org/10.1134/S1070427207050047
 - 30. Smirnov V.I., Badelin V.G. // Thermochim. Acta. 2015. V. 606. P. 41. https://doi.org/10.1016/j.tca.2015.03.007
 - 31. Wadsö I., Goldberg R.N. // Pure Appl. Chem. 2001. V. 73. P. 1625.
 - 32. Archer D.G. // Phys. Chem. Ref. Data. 1999. V. 28. P. 1. https://doi.org/10.1063/1.556034
 - 33. Badelin V.G., Smirnov V.I., Mezhevoi I.N. // Russ. J. Phys. Chem. 2002. V. 76. P. 1168.
 - 34. Badelin V.G., Smirnov V.I. // Russ. J. Phys. Chem. 2010. V. 84. P. 1163. https://doi.org/10.1134/S0036024410070150
 - 35. Palecz B. // J. Therm. Anal. Calorim. 1998. V. 54. P. 257.
 - 36. Piekarski H., Nowicka B. // J. Therm. Anal. Calorim. 2010. V. 102. P. 31.
 - 37. Palecz B., Piekarski H., Romanowski S. // J. Mol. Lig. 2000. V. 84. P. 279.
 - 38. Бородин В.А., Васильев В.П., Козловский Е.В. Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219-226.
 - 39. Palecz B. // J. Am. Chem. Soc. 2005. V. 127. No. 50. P. 17768. https://doi.org/10.1021/ja0544071
 - 40. Refat M.S., Al-Azab F.M., Al-Mavdama H.M.A. et al. // Spectrochim. Acta. Part A: Mol. Biomol. Spectroscopy. 2014. V. 127. P. 196. https://doi.org/10.1016/j.saa.2014.02.043
 - 41. Ross P.D., Subramanian S. // Biochemistry. 1981. V. 20. № 11. P. 3096. https://doi.org/10.1021/bi00514a017

403