____ ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ

УДК 544.3 : [546.659 + 546.13]

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ХЛОРИДА Sm₃Cl₇ В СТАНДАРТНОМ СОСТОЯНИИ ПРИ 298.15 К

© 2023 г. В. Ф. Горюшкин^{а,*}, Ю. В. Бендре^а, С. А. Лежава^а

^аСибирский государственный индустриальный университет, Новокузнецк, Россия *e-mail: koax@sibsiu.ru Поступила в редакцию 30.06.2022 г. После доработки 26.10.2022 г.

Принята к публикации 27.10.2022 г.

Измерена ЭДС твердофазных гальванических элементов: (–) Sm $|SmCl_2||BaCl_2||SmCl_3|Sm_3Cl_7 (+)$, (–) Sm $|SmCl_2||BaCl_2||Sm_3Cl_7||SmCl_2 (+)$, (–) Sm $|SmCl_2||BaCl_2||Sm_3Cl_3|Sm_3Cl_7 (+)$, (–) Mg $|MgCl_2||BaCl_2||SmCl_3|Sm_3Cl_7 (+)$ в интервале температур 473–728 К. Экспериментальные данные обработаны по методу II закона термодинамики с привлечением литературных значений термодинамических характеристик компонентов ЭДС-образующей реакции Sm, Mg, SmCl_2, SmCl_3, MgCl_2. Путем усреднения данных по четырем гальваническим элементам получены значения стандартной энтергии Гиббса образования, стандартной энтальпии образования и стандартной энтропии хлорида Sm_3Cl_7 при температуре 298.15 К.

Ключевые слова: метод ЭДС, хлориды самария, твердофазный гальванический элемент, метод II закона термодинамики, термодинамические характеристики **DOI:** 10.31857/S0044453723040118. **EDN:** TFOPTK

Известны многие промежуточные хлориды в системах $LnCl_3$ —Ln, однако термодинамические характеристики фактически ни одного из них, в том числе и из серии составов Ln_nCl_{2n+1} , экспериментально не определены [1]. Нами методом ДТА установлено [2] образование промежуточного хлорида Sm_3Cl_7 из серии составов Ln_nCl_{2n+1} в системе $SmCl_3$ — $SmCl_2$, а в [3] проведено его детальное рентгенографическое исследование. Настоящая работа посвящена определению термодинамических свойств Sm_3Cl_7 на базе измерения ЭДС твердофазных гальванических элементов:

 $(-) Sm|SmCl_2||BaCl_2||SmCl_3|Sm_3Cl_7 (+), (1)$

$$(-) Sm|SmCl_2||BaCl_2||Sm_3Cl_7|SmCl_2 (+), (2)$$

$$(-) SmCl_{2} |Sm_{3}Cl_{7}| |BaCl_{2}| |SmCl_{3}| Sm_{3}Cl_{7} (+), (3)$$

$$(-) Mg|MgCl_2||BaCl_2||SmCl_3|Sm_3Cl_7 (+).$$
(4)

В них BaCl₂ служит униполярным Cl-ионным электролитом, а при установленной зкспериментально полярности и подтвержденном РФА составе электродов ЭДС-образующими являются реакции:

 $Sm + 3SmCl_3 = Sm_3Cl_7 + SmCl_2, \quad n_e = 2;$ (5)

$$Sm + 2Sm_3Cl_7 = 7SmCl_2, \quad n_e = 2;$$
 (6)

 $6SmCl_2 + 3SmCl_3 = 3Sm_3Cl_7, \quad n_e = 2;$ (7)

$$Mg + 3SmCl_3 = Sm_3Cl_7 + MgCl_2, \quad n_e = 2.$$
 (8)

Для снятия электрического потенциала с электродов служила платина. Отметим, что в составе электродов, состоящих из смесей (SmCl₃ + + Sm₃Cl₇) и (SmCl₂ + Sm₃Cl₇), не присутствует металлический самарий, т.е. они в контакте с платиной являются твердофазными окислительно-восстановительными электродами. В состав электродов элементов (1)–(3) входят исключительно самарий и его хлориды, гальванический элемент (4) и соответственно ЭДС-образующая реакция (8) не содержат самарий и дихлорид самария, а содержат только трихлорид самария и магний с дихлоридом магния.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методики приготовления таблеток электродов, электролита $BaCl_2$, составления гальванических элементов и измерения ЭДС рассмотрены в [4]. Использовали самарий марки СмМ-1 и магний МГ-1 сублимированный. Трихлорид SmCl₃ синтезировали по способу [5]. Дихлорид самария получали по методике [6]. Безводный MgCl₂ получали также хлорированием оксида MgO ("ч.д.а.") тетрахлоридом углерода аналогично способу [5], но затем полученный продукт очищали дистилляцией в вакууме.

Рис. 1. Зависимость ЭДС гальванического элемента (1) от температуры (3 опыта, 21 точка).

Рис. 3. Зависимость ЭДС гальванического элемента (3) от температуры (4 опыта, 26 точек).

Полученные вещества анализировали на содержание Sm (комплексонометрическое титрование с трилоном Б) и Cl (гравиметрия, осаждение в виде AgCl). В результате анализов найдено (мас. %):

образец SmCl₃

 $Sm - 58.4 \pm 0.2$ (теоретически 58.57);

$$Cl - 41.5 \pm 0.1$$
 (теоретически 41.43);

образец SmCl₂

 $Sm - 67.65 \pm 0.3$ (теоретически 67.95);

 $Cl - 32.1 \pm 0.1$ (теоретически 32.05);

образец MgCl₂

 $Cl - 74.7 \pm 0.5$ (теоретически 74.47).

Поскольку Sm_3Cl_7 содержит 66.7 мол. % $SmCl_2$, то смеси для таблеток электродов $SmCl_3|Sm_3Cl_7|$ и $Sm_3Cl_7|SmCl_2$ приготавливали для параллель-

Рис. 2. Зависимость ЭДС гальванического элемента (2) от температуры (3 опыта, 24 точки).

Рис. 4. Зависимость ЭДС гальванического элемента (4) от температуры (3 опыта, 17 точек).

ных опытов сплавлением SmCl₃ и SmCl₂ с содержанием 20, 40, 65 мол. % SmCl₂ (электрод SmCl₃ $|Sm_3Cl_7|$ и 68, 80, 95 мол. % SmCl₂ (электрод Sm₃Cl₇ $|SmCl_2|$). Сплавление производили в молибденовом тигле в атмосфере очищенного аргона.

Результаты измерения ЭДС приведены в табл. 1 в последовательности, установленной при проведении опытов и на рис. 1–4.

Температурные зависимости ЭДС (*E*, B) элементов (1)–(4) выражаются уравнениями:

$$E(1) = (1.978 \pm 0.001) + (2.97 \pm 0.12) \times \times 10^{-4} (T - T_{\rm cp}),$$
(9)

$$E(2) = (1.8682 \pm 0.0007) + (8.3 \pm 1.0) \times \times 10^{-5} (T - T_{re}),$$
(10)

$$E(3) = (0.112 \pm 0.002) + (2.91 \pm 0.49) \times \times 10^{-4} (T - T_{\rm cp}),$$
(11)

ГОРЮШКИН и др.

таолица 1. эна	чения эде на	лвванических	Shewenrob (1)	-(ч) (t – прод		вэксперимен	106)
Т, К	Е, В	Т, К	Е, В	Т, К	Е, В	Т, К	Е, В
Элемент (1)			Элемент (3)				
Опыт 1, т = 18 ч Опыт 2, т = 10 ч		Опыт 1, т = 33 ч		Опыт 3, τ = 20 ч			
623	1.9840	623	1.9866	633	0.1006	666	0.1076
653	1.9948	673	2.0049	674	0.1097	688	0.1131
673	2.0016	573	1.9738	666	0.1144	700	0.1178
693	2.012	543	1.9654	701	0.1258	713	0.1205
603	1.9817	Опыт 3,	τ = 16 ч	715	0.1304	683	0.1114
573	1.9723	623	1.9860	683	0.1214	Опыт 4,	τ = 21 ч
543	1.9622	653	1.9972	728	0.1307	677	0.1205
523	1.9578	683	2.0098	Опыт 2,	τ = 50 ч	659	0.1157
503	1.9541	583	1.9774	689	0.1234	694	0.1254
473	1.9430	553	1.9690	671	0.1152	630	0.1077
		513	1.9580	628	0.1008	607	0.1015
		483	1.9480	618	0.0968		
Элемент (2)		603	0.0913				
Опыт 1,	τ = 30 ч	Опыт 2,	τ = 24 ч	653	0.1050		
623	1.8702	623	1.8723	593	0.0907		
643	1.8743	653	1.8722	643	0.1029		
613	1.8708	673	1.8731	663	0.1077		
583	1.8676	603	1.8670		Элеме	ент (4)	
553	1.8644	573	1.8633	Опыт 1,	τ = 10 ч	Опыт 3	, τ = 9ч
523	1.8625	Опыт 3,	τ = 24 ч	633	1.1310	623	1.1316
473	1.8600	623	1.8724	653	1.1386	643	1.1403
633	1.8728	593	1.8702	673	1.1464	673	1.1526
563	1.8650	573	1.8648	693	1.1522	693	1.1580
533	1.8621	633	1.8742	603	1.1230	583	1.1170
513	1.8610	663	1.8739	573	1.1120		
493	1.8600	683	1.8739	Опыт 2,	τ = 11 ч		
				633	1.1307		
				663	1.1421		
				683	1.1486		
				703	1.1537		
				613	1.1242		
				593	1.1173		

Таблица 1. Значения ЭДС гальванических элементов (1)-(4) (т – продолжительность экспериментов)

$$E(4) = (1.136 \pm 0.003) + (3.48 \pm 0.30) \times \times 10^{-4} (T - T_{\rm cp}).$$
(12)

Отметим, что полученные для линейных зависимостей ЭДС от температуры коэффициенты корреляции достаточно высоки, но наибольшими значениями коэффициентов корреляции отличаются зависимости для элементов (1) и (4). Доверительные интервалы у коэффициентов уравнений прямых линий рассчитаны по методикам [7].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Термодинамические характеристики ЭДС-образующих реакций (5)—(8) для средневзвешенной температуры интервала измерений приведены в табл. 2. Для их расчета использовали известные соотношения между термодинамическими свойствами реакции [$\Delta_r G^{\circ}(T), \Delta_r H^{\circ}(T), \Delta_r S^{\circ}(T)$] и связь между ЭДС элемента и стандартной энергией Гиббса ЭДС-образующей реакции.

Реакция	<i>T</i> _{cp} , K	<i>E</i> _{cp} , B	$\Delta_{\mathrm{r}}G^{\circ}$, кДж	$\Delta_{\mathrm{r}} H^{\mathrm{o}},$ кДж	Δ _r <i>S</i> °, Дж/К
(5)	588.7	1.978	-381.7 ± 0.2	-348.0 ± 3.4	57.3 ± 5.8
(6)	593.0	1.8682	-360.5 ± 0.1	-351.0 ± 1.1	16.0 ± 1.9
(7)	664.5	0.112	-21.6 ± 0.4	15.6 ± 6.2	56.2 ± 9.4
(8)	643.0	1.136	-219.3 ± 0.6	-176.1 ± 3.8	67.2 ± 5.8

Таблица 2. Термодинамические характеристики ЭДС-образующих реакций (5)–(8) при средневзвешенной температуре измерения ЭДС (*T*_{cp})

Поскольку стандартная энтропия хлорида Sm_3Cl_7 экспериментально не определена, расчет термодинамических характеристик реакций (5)–(8) при 298.15 К проводили по методу II закона термодинамики. Использовали табличные данные по стандартным теплоемкостям Mg, MgCl₂ из [7, 8] и SmCl₂, SmCl₃ из [9], металлического самария из [10]; все – в интервале температур 298.15–700 К. Стандартную теплоемкость Sm₃Cl₇ оценивали по правилу аддитивности для каждого значения температуры (298.15, 300, 400, 500, 600, 700, T_{cp}):

$$C_p^{\circ}(\mathrm{Sm}_3\mathrm{Cl}_7) = 2C_p^{\circ}(\mathrm{Sm}\mathrm{Cl}_2) + C_p^{\circ}(\mathrm{Sm}\mathrm{Cl}_3).$$
(13)

При этом для теплоемкости реакций (5)–(8) в интервале температур 298.15–700 К получены уравнения:

$$\Delta_{\rm r} C_p^{\circ}(5) = 44.728 - 75.258 \times 10^{-3} T + + 3.8 \times 10^{-5} T^2, \quad R^2 = 0.998; \tag{14}$$

$$\Delta_{\rm r} C_p^{\rm o}(6) = 44.733 - 75.272 \times 10^{-3}T + + 3.8 \times 10^{-5}T^2, \quad R^2 = 0.998;$$
(15)

$$\Delta_{\rm r} C_p^{\circ}(7) = 0; \tag{16}$$

$$\Delta_{\rm r} C_p^{\circ}(8) = 18.688 + 0.249 \times 10^{-3} T -$$

- 2.0×10⁻⁵T², R² = 0.999. (17)

Таблица 3. Термодинамические характеристики ЭДСобразующих реакций (5)–(8) при температуре 298.15 К

Реакция	$\Delta_{ m r} H^{\circ}$, кДж	Δ _r S°(298.15 K), Дж/К	Δ _r <i>G</i> °(298.15), кДж
(5)	-353.5 ± 3.5	43.8 ± 6.0	-366.6 ± 3.9
(6)	-356.6 ± 1.2	2.4 ± 2.5	-357.3 ± 1.4
(7)	15.6 ± 6.3	56.2 ± 9.5	-1.2 ± 6.9
(8)	-181.0 ± 3.8	56.0 ± 6.0	-197.7 ± 4.2

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 4 2023

Переход от термодинамических характеристик реакций при $T_{\rm cp}$ к термодинамическим свойствам при T = 298.15 К осуществляли по уравнениям:

$$\Delta_{\rm r} H^{\circ}(298.15 \text{ K}) = \Delta_{\rm r} H^{\circ}(T_{\rm cp}) - \int_{298.15}^{T_{\rm cp}} \Delta C_p^{\circ} dT, \quad (18)$$

$$\Delta_{\rm r} S^{\circ}(298.15 \text{ K}) = \Delta_{\rm r} S^{\circ}(T_{\rm cp}) - \int_{298.15}^{T_{\rm cp}} \frac{\Delta C_p^{\circ}}{T} dT, \quad (19)$$

$$\Delta_{\rm r} G^{\circ}(298.15 \text{ K}) = \Delta_{\rm r} H^{\circ}(298.15 \text{ K}) - - 298.15 \Delta_{\rm r} S^{\circ}(298.15 \text{ K}).$$
(20)

Теплоемкость реакции (7) равна нулю, так как молярную теплоемкость хлорида Sm_3Cl_7 оценивали по правилу аддитивности из молярных теплоемкостей $SmCl_2$ и $SmCl_3$, а реакция (7) представляет собой "утроенную" реакцию образования Sm_3Cl_7 из хлоридов $SmCl_2$ и $SmCl_3$.

Термодинамические характеристики реакций (5)–(8) при температуре 298.15 К приведены в табл. 3.

Поскольку для реакции (7) $\Delta_{\rm r} C_{\rm p}^{\circ} = 0$, то стандартные энтальпия и энтропия этой реакции при температуре 298.15 К совпадают с таковыми при $T_{\rm cp} = 664.5$ К.

По термодинамическим характеристикам ЭДС-образующих реакций (5)–(8) на основании обобщенного закона Гесса рассчитывали термодинамические свойства хлорида Sm₃Cl₇ (табл. 4). Необходимые данные брали из тех же источников, что и теплоемкости веществ, за исключением стандартной энтропии SmCl₂, которая взята из [11, 12]. При определении средних значений 'крайние" результаты в табл. 4 (а это данные, полученные из термодинамических характеристик реакции (8)) прошли проверку по методу максимального относительного отклонения [7]. Во всех случаях максимальное относительное отклонение для "крайних" результатов оказалось меньше эталонного (табличного) для вероятности P = = 0.95 и четырех измерениях.

Из способа нашего расчета термодинамических свойств Sm_3Cl_7 следует, что достоверность результата во многом зависит от надежности ис-

Реакция	$-\Delta_{\mathrm{f}} H^{\mathrm{o}},$ кДж/моль	<i>S</i> °, Дж/(моль К)	$-\Delta_{\mathrm{f}}G^{\circ},$ кДж/моль
(5)	2627.4 ± 7.2	432.5 ± 6.1	2461.5 ± 7.4
(6)	2629.0 ± 7.0	426.8 ± 1.9	2461.4 ± 7.2
(7)	2624.3 ± 5.0	433.6 ± 3.3	2458.8 ± 5.2
(8)	2615.3 ± 7.1	450.4 ± 6.1	2454.8 ± 7.3
Среднее	2624.0 ± 6.6	435.8 ± 4.3	2459.1 ± 6.8

Таблица 4. Термодинамические характеристики хлорида $Sm_3Cl_7(\kappa p.)$ при температуре 298.15 К

пользуемых в расчете термодинамических свойств (стандартных энтропий и стандартных энтальпий образования) SmCl₂ и SmCl₃. И вот здесь оказалось возможным сделать некоторые выводы.

Несмотря на различные количественные стехиометрические соотношения веществ $SmCl_2$ и $SmCl_3$ в ЭДС-образующих реакциях (5)–(8), полученные величины стандартной энтальпии образования Sm_3Cl_7 (табл. 4) отличаются между собой максимум на 13.7 кДж/моль, что составляет 0.5% от измеряемой величины. Это может быть косвенным свидетельством достигнутой к настоящему времени надежности в определении стандартных энтальпий образования $SmCl_2$ и $SmCl_3$.

Вместе с тем, в литературных источниках имеется неоднозначное отношение к данным [11, 12] о результатах измерения низкотемпературной теплоемкости для SmCl₂ и соответственно к значению стандартной энтропии для этого хлорида (132.2 \pm 0.4 Дж/(моль K)), отмеченное в [9] на основании косвенных данных, а не на основании прямых экспериментальных измерений. Автор [9] предлагает использовать значение *S*°(SmCl₂, кр., 298.15 K) = 122.59 Дж/(моль K).

В табл. 4, однако, приведены стандартные энтропии хлорида Sm_3Cl_7 , полученные с использованием $S^{\circ}(SmCl_2, \kappa p., 298.15 \text{ K}) = 132.2 Дж/(моль$ K). При этом значения стандартной энтропии $<math>Sm_3Cl_7$, рассчитанные из термодинамики четырех разных гальванических элементов отличаются между собой максимум на 23.6 Дж/(моль K) (5.4% от измеряемой величины). Если же использовать значение $S^{\circ}(SmCl_2, \kappa p., 298.15 \text{ K}) = 122.59 Дж/(моль K),$ то различие в данных увеличивается в 2.5 раза. Таким образом, значение для стандартной энтропии $SmCl_2$ в [9] явно ошибочное и, видимо, неприемлемо в системе термодинамических данных для самария и его хлоридов. В заключение можно отметить, что в настоящей работе методом ЭДС с использованием результатов для четырех твердофазных гальванических элементов определены термодинамические характеристики хлорида Sm_3Cl_7 в стандартном состоянии при комнатной температуре: $\Delta_f H^{\circ}(Sm_3Cl_7, \text{ кр., } 298.15 \text{ K}) = -2624.0 \pm \pm 6.6 \text{ кДж/моль; } S^{\circ}(Sm_3Cl_7, \text{ кр., } 298.15 \text{ K}) = = 435.8 \pm 4.3 \text{ Дж/(моль K); } \Delta_f G^{\circ}(Sm_3Cl_7, \text{ кр., } 298.15 \text{ K}) = -2459.1 \pm 6.8 \text{ кДж/моль.}$

СПИСОК ЛИТЕРАТУРЫ

- Gmelin Handbook of Inorganic Chemistry. 8-th Edition. Sc, Y, La – Lu Rare Earth Elements. Berlin; Heidelberg; N.Y.: Springer–Verlag, 1982. 272 p.
- 2. Лаптев Д.М., Горюшкин В.Ф., Астахова И.С., Полякова Г.Г. // Журн. неорган. химии. 1979. Т. 24. № 5. С. 1311. Zh. Neorg. Khim. 24 (5), 1311 (1979).
- 3. Астахова И.С., Горюшкин В.Ф., Лаптев Д.М. // Журн. неорган. химии. 1979. Т. 24. № 7. С. 1977. Zh. Neorg. Khim. 24 (7), 1977 (1979).
- Горюшкин В.Ф., Пошевнева А.И., Подсевалов В.П. // Журн. физ. химии. 1992. Т. 66. № 12. С. 3391. Zh. Fiz. Khim. 66 (12), 3391 (1992).
- 5. Горюшкин В.Ф., Пошевнева А.И., Емельянов В.С. Способ получения безводных трихлоридов лантанидов // А.с. 1675209 СССР, С 01 F 17/10. Б.И. 1991. № 33.
- 6. Лаптев Д.М., Горюшкин В.Ф., Кулагин Н.М., Воронцов Е.С. // Журн. неорган. химии. 1976. Т. 21. № 10. С. 2616. Zh. Neorg. Khim. 21 (10), 2616 (1976).
- Боровиков В.П. Statistika. Статистический анализ и обработка данных в среде Windows [Текст] / В.П. Боровиков, И.П. Боровиков. М.: Информационно-издательский дом "Филинъ", 1998. 608с.
- Электронный ресурс. Режим доступа: https:// janaf.nist.gov/tables Дата обращения 19.04.21.
- 9. Червонный А.Д. Термодинамические свойства фторидов и хлоридов лантана и лантаноидов в газообразном и конденсированном состояниях: Дис. ... докт. хим. наук. Черноголовка.: Ин-т проблем хим. физики РАН, 2010. 464 с.
- Barin I., Knacke O., Kubaschevski O. Thermochemical Properties of Inorganic substances. Supplement. Berlin; Heidelberg; N.Y.: Springer-Verlag, 1977. P. 695.
- 11. Гавричев К.С., Толмач П.И., Горбунов В.Е., Горюшкин В.Ф. // Журн. физ. химии. 1987. Т. 61. № 4. С. 1129. Zh. Fiz. Khim. 61 (4), 1129 (1987).
- 12. Толмач П.И. Теплоемкость и термодинамические функции ряда ди- и трихлоридов лантаноидов в интервале температур 10–320 К: Автореф. дис. ... канд. хим. наук. М.: МГУ, 1988. 18 с.