ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ, 2023, том 97, № 4, с. 517–526

____ ФИЗИЧЕСКАЯ ХИМИЯ ____ РАСТВОРОВ

УДК 544.341.2:544.431.24:546.655.4:661.746.5

ТЕРМОДИНАМИКА ОБРАЗОВАНИЯ ПРОМЕЖУТОЧНЫХ КОМПЛЕКСОВ ПРИ ОКИСЛЕНИИ ЦЕРИЕМ(IV) ЛИМОННОЙ КИСЛОТЫ И КИНЕТИКА ИХ ВНУТРИМОЛЕКУЛЯРНОГО РЕДОКС-РАСПАДА

© 2023 г. О. О. Воскресенская^{*a*,*}, Н. А. Скорик^{*b*}

^аОбъединенный институт ядерных исследований, Дубна, Россия ^bТомский государственный университет, Томск, Россия *e-mail: voskr@jinr.ru Поступила в редакцию 17.08.2022 г. После доработки 17.08.2022 г. Принята к публикации 26.09.2022 г.

Спектрофото-, pH-метрическим и кинетическим методами при ионной силе I = 2 в интервалах pH 1–3 сернокислой среды и T = 290.15-303.15 К изучены термодинамические и кинетические характеристики церий(IV)–цитратных комплексов, образующихся на первой стадии окисления церием(IV) лимонной кислоты. Установлены их состав, форма присутствия в них органического лиганда, определены термодинамические параметры их образования и кинетические параметры внутрикомплексного редокс-распада. Рассмотрена наиболее вероятная схема начальных стадий протекающего в системе редокс-процесса, установлены закон его скорости и ассоциированный с ним реакционный механизм. Проведено сопоставление с результатами исследования других систем церия(IV) с окси- и дикарбоновыми кислотами.

Ключевые слова: термодинамика, кинетика, растворы, комплексы, церий, оксикарбоновые кислоты **DOI:** 10.31857/S0044453723040337, **EDN:** TJMWUQ

Взаимодействия церия(IV) с 3-гидрокси-3карбокси-пентандиовой (лимонной) кислотой, а также с другими оксикарбоновыми и дикарбоновыми кислотами, является областью активных исследований в связи с широким применением нерия(IV) в различных областях химии и технологии как комплексообразователя, одноэлектронного окислителя [1-4], катализатора и фотокатализатора многочисленных реакций [5–9], а также в связи с биологическим и промышленным значением лимонной кислоты и ее применением для решения широкого спектра задач био-, нанотехнологии и наномедицины [10–15]. Так, хорошо известны использование системы церий(IV) - лимонная кислота в аналитической практике для количественного определения церия(IV) [16] и лимонной кислоты [17]; применение цитрата церия(IV) в качестве ингибитора коррозии [18]; получение ультрамалых наночастиц диоксида церия(IV), стабилизированных лимонной кислотой, через промежуточное образование церий(IV)цитратных комплексов [19, 20]; неврологическая, гематологическая и антиканцерогенная активность комплексов церия(IV) с лимонной кислотой [21]. Однако кинетика и механизм взаимодействия компонентов данной системы, а также свойства комплексных цитратов церия(IV), еще

далеко не изучены. Известно, что окисление сульфатом церия(IV) лимонной, малоновой [22], щавелевой [23] и других ди- и оксикарбоновых кислот рассматривают как первую стадию активно изучаемой [24, 25] автоколебательной реакции Белоусова-Жаботинского (БЖ-реакции). детальный механизм которой чрезвычайно сложен и не полностью понят вследствие неполной информации о многочисленных образующихся в процессе данной реакции интермедиатах. Так, в частности, участие промежуточных комплексов церия(IV) с малоновой кислотой и ее производными в БЖ-реакции долгое время постулировалось [26, 27] и получило подтверждение [28], тогда как вопрос об интермедиатном механизме церий(IV)-цитратной реакции как части БЖреакции по-прежнему не изучен.

Предварительно система церий(IV)-лимонная кислота была исследована с термодинамической [29–31] и кинетической [32–34] точек зрения. Авторы [29] пришли к заключению о невозможности определения констант устойчивости цитратных комплексов церия(IV) по спектрофотометрическим данным, так как церий окисляет лимонную кислоту. Однако потенциометрически, без учета редокс-распада этих комплексов и установления формы присутствия в них лимон-

ной кислоты, предварительную оценку величинам констант устойчивости моно- и бискомплексов церия(IV) с лимонной кислотой (M : L = 1 : 1, 1:2) авторам дать удалось. В [30, 31] величина константы устойчивости монокомплекса MCitr^{q-x} $(M^{q+} = Ce^{4+} [30], CeOH^{3+} [31]; x = 2)$ была уточнена с учетом его редокс-распада и числа вытесняемых при его образовании протонов. Однако в [30, 31], как и в большинстве исследований комплексных цитратов ML^{q-x} ($M^{q+} = Ce^{4+}$, $CeOH^{3+}$, An^{4+}) предполагалось, что лимонная кислота ведет себя при комплексообразовании как дикарбоновая кислота, тогда как последующие структурные исследования показали, что цитрат-анион Citr^{2-} координируется катионом металла M^{q+} посредством карбоксильной и находящейся в α-положении гидроксильной групп [35, 36], что должно приводить к значительному повышению устойчивости этих соединений. Что касается работ [32-34], то на основании кинетических данных в них постулируется образование достаточно стабильных хелатных промежуточных церий(IV)цитратных комплексов (M : L = 1 : 1) при окислении лимонной кислоты. Из указанных работ наиболее информативна [32], где дан анализ более ранних работ, отмечена невозможность определения состава данного комплекса методом Жоба (изомолярных серий) из-за его быстрого редоксраспада, проведено сравнение кинетики окисления церием(IV) лимонной и малоновой кислот, предположено возрастание вклада свободнорадикального пути в процесс при уменьшении устойчивости промежуточного комплекса и увеличении избытка карбоновой кислоты. В контексте более сложных систем система $Ce^{4+}-SO_4^{2-}-H_2Citr$ рассмотрена, например, в [18–22]. В связи с недостатком информации о свойствах промежуточных комплексов редокспроцессов указанного типа, представляют интерес кинетические обобщения термодинамических методов исследования комплексообразования и кинетические аналоги этих методов для изучения состава и свойств комплексов металлов переменной валентности, а также кинетики и механизма редокс-процессов, в которых эти комплексы играют роль промежуточных комплексов [28, 31]. В представленной работе эти методы применены к исследованию системы Ce⁴⁺-SO₄²⁻-H₂Citr более сложной, чем в [28, 31].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали дважды перекристаллизованную лимонную кислоту марки "х.ч." и тетрагидрат сульфата церия(IV) Ce(SO₄)₂ · 4H₂O квалификации "ч.д.а.". Определенную величину ионной силы I = 2 растворов создавали сульфатом аммония ("ч.д.а."). Концентрацию растворов кислоты уточняли pH-метрическим титрованием раствором NaOH, не содержащим иона CO_3^{2-} . Содержание церия(IV) в свежеприготовленном растворе сульфата церия(IV) определяли обратным титрованием солью Мора в присутствии ферроина перед началом эксперимента и по его окончании.

Временем начала реакции $\tau = 0$ считали момент переворачивания сосуда-смесителя, в который помещали исходные компоненты. Начальную величину оптической плотности реакционной смеси D⁰ находили линейной экстраполяцией кинетических кривых в координатах $\lg D - \tau$ к начальному времени $\tau = 0$. Начальную скорость наблюдаемого редокс-процесса $-\dot{D}^0 \equiv \partial D/\partial \tau$, c^{-1} . оценивали методом конечных разностей по тангенсу угла наклона прямой $(D^0 - D^i)/(\tau^0 - \tau^i) = ext{const}$ в тех же координатах, а также рассчитывали посредством линейного МНК. Начальную равновесную концентрацию промежуточного комплекса ML_n определяли по формулам $c_n^0 = (D^0 - D_M)/(D_\infty^0 - D_M) = \alpha_n^0 c_M, \ \overline{c}_n^0 = (\dot{D}^0 - \dot{D}_M)/(\dot{D}_\infty^0 - D_M)$ $(-\dot{D}_{\rm M})c_{\rm M} = \overline{\alpha}_n^0 c_{\rm M} \ (c_{\rm M} \le c_{\rm L})$ при использовании термодинамических методов и их кинетических аналогов, соответственно ($D_{\rm M}$ – оптическая плотность раствора иона металла, $\dot{D}_{\rm M} \approx 0$ – скорость ее изменения, $c_{\rm M}$ и $c_{\rm L}$ – концентрации исследуемых растворов церия(IV) и лимонной кислоты, α_n^0 $(\bar{\alpha}_n^0)$ – выход комплекса в момент времени $\tau = 0$). Знак черты над символом здесь и далее означает величину, определенную кинетическим методом. Максимальное значение оптической плотности реакционной смеси D^0_{∞} и скорости ее изменения $-\dot{D}_{\infty}^{0}$, с⁻¹, находили из зависимостей $1/D^{0} - 1/c_{1}$, $1/\dot{D}^0 - 1/c_{\rm L}, D^0 - c_{\rm L}/c_{\rm M}, \dot{D}^0 - c_{\rm L}/c_{\rm M}.$

Регистрацию оптической плотности *D* растворов осуществляли регистрирующим спектрофотометром SPECORD UV VIS с термостатируемым блоком и фотоэлектроколориметром KF-5, оснащенным регистрирующим устройством МЭА-4 и термостатируемой ячейкой, на длине волны 400 нм, где наблюдалось наибольшее приращение разности $\Delta D^0 = D^0 - D_M$ с увеличением pH. Измерение pH в смеси компонентов проводили прецизионным pH-метром DATA METER. Мольное отношение металл : лиганд в комплексах, образующихся в момент смешения компонентов реакционной смеси, определяли с помощью модифицированных методов молярных отношений, изомолярных серий и их кинетических

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 4 2023

Рис. 1. Спектры поглощения системы $Ce^{4+}-SO_4^{2-}-H_2Citr$ в момент $\tau = 0$ при I = 2, T = 298.15 K (*I*-4) и значениях $c_M = 2.2 \times 10^{-4}$ моль/л, $c_L = 0$, pH 2.0 (*I*), $c_M = c_L = 2.2 \times 10^{-4}$ моль/л (2-4), pH 2.0 (2), 2.3 (3) и 3.5 (4).

аналогов по диаграммам свойство-состав [28]. В расчетах использовали значения логарифмов констант протонизации аниона лимонной кислоты Citr²⁻ : lg $B_1 = \lg \varkappa_1 = 14.60$ [37], lg $B_2 = \lg B_1 +$ $+ \lg \varkappa_2 = 17.44$ [38] (lg \varkappa_i – ступенчатые константы протонизации).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Спектрофотометрическое исследование системы Ce⁴⁺-SO₄²⁻-H₂Citr свидетельствует об образовании в ней в момент смешения реагентов нового соединения (рис. 1, линии *1, 2*). Наличие в спектрах поглощения изобестической точки ($\lambda_{max} = 287$ нм) указывает на возможность присутствия в ней в области pH 2–3 как минимум двух видов комплексов (рис. 1, линии 2–4).

Результаты установления состава образующихся в системе в момент $\tau = 0$ комплексов кинетическими аналогами методов изомолярных серий и молярных отношений (рис. 2) подтверждают результаты спектрофотометрического исследования. Они позволяют сделать вывод об образовании в системе в области рН 1.4–2.3 промежуточного церий(IV)-цитратного комплекса с мольным отношением металл : лиганд = 1 : 1 и о доминировании в ней при рН \geq 2.4 комплекса с мольным отношением металл : лиганд = 1 : 2. Ре-

Рис. 2. Определение мольного отношения металл : лиганд в цитратных комплексах церия(IV) с помощью кинетических аналогов методов молярных отношений (*1*, *2*) и изомолярных серий (*3*, *4*) при *I* = 2, *T* = 298.15 K, $\lambda = 400$ нм, *l* = 1 см и значениях pH 2.23, $c_{\rm M} = 2.85 \times 10^{-3}$ моль/л (*1*), pH 2.75, $c_{\rm M} = 2.50 \times 10^{-3}$ моль/л (*2*), $c_{\rm M+L} = 1.00 \times 10^{-3}$ моль/л, pH 1.4 (*3*), $c_{\rm M+L} = 4.00 \times 10^{-3}$ моль/л, pH 2.4 (*4*); *у* – мольная доля лиганда.

зультаты установления состава церий(IV)-цитратных комплексов в системе согласуются со сделанными на основе потенциометрических измерений выводами работы [29] об образовании в этой системе комплексов состава M : L = 1 : 1, 1 : 2.

Число протонов (z = xn), вытесненных из молекул лимонной кислоты ионом церия(IV) при установлении равновесий

$$CeOH^{3+} + nH_2Citr \Leftrightarrow^{K_n} CeOH(H_{2-x}Citr)_n^{3-nx} + (1) + xnH^+, \quad n = 1, 2,$$

$$\operatorname{CeOH}^{3+} + n\operatorname{H}_{2-x}\operatorname{Citr}^{x-} \stackrel{\beta_n}{\Leftrightarrow} \operatorname{CeOH}(\operatorname{H}_{2-x}\operatorname{Citr})^{3-nx}_n, (2)$$
$$n = 1, 2,$$

$$K_n = \beta_n^{\text{ef}} [\mathbf{H}^+]^{xn}, \quad \beta_n = \beta_n^{\text{ef}} f_x^n, \quad f_x = 1 + \sum_{i=1}^{x} B_i [\mathbf{H}]^i,$$
(3)

оценивали численно и графически как угловые коэффициенты зависимости

$$\lg \beta_n^{\rm er} = \lg K_n + xn \mathrm{pH} \tag{4}$$

Рис. 3. Диаграммы: $\lg \beta_n^{ef} - xnpH$, n = 1 (*1*), 2 (*2*), при I = 2, T = 298.15 K, $\lambda = 400$ нм, l = 1 см; $-\dot{D}^0 - c_n^0$, n = 1 (*3*), 2 (*4*), для систем Ce⁴⁺ - SO₄²⁻ -L, L = H₂Citr (*1*-4), L = H₂Ox (5).

в рамках методов D^0 , $\dot{D}^0 - pH$, $D^0 - pH$ [28]. Эффективные (зависящие от pH) константы устойчивости рассчитывали по уравнениям $\beta_n^{\text{ef}} = c_n^0/[(c_M - c_n^0)(c_L - c_n^0)]$, $\bar{\beta}_n^{\text{ef}} = \bar{c}_n^0/[(c_M - \bar{c}_n^0)(c_L - - \bar{c}_n^0)]$. В качестве формы присутствия церия(IV) в исследуемых комплексах согласно ряду работ ([39, 40] и др.) была принята моногидроксоформа CeOH(SO₄)₃³⁻ (далее используем сокращенное обозначение CeOH³⁺). Как следует из анализа зависимости (4), ион CeOH³⁺ вытесняет из каждой молекулы лимонной кислоты при образовании комплексов CeOH(H_{2-x}Citr)_n^{3-nx} (n = 1, 2) по два протона (рис. 3, линии 1, 2; табл. 1–3)¹.

Для равновесий (1), (2) и найденных значений *n*, *x* концентрационные константы равновесий (3) и изменение свободной энергии Гиббса рассчитывали для каждой точки зависимостей $\lg K_n = \lg \beta_n^{\text{ef}} - xn pH$, $\lg \beta_n = \lg \beta_n^{\text{ef}} + \lg f_x^n$, $\Delta G_n \approx$ $\approx -RT \ln K_n$, где R = 8.314 Дж моль⁻¹ K⁻¹ – универсальная газовая постоянная, с последующим усреднением полученных значений по данным серий D^0 , $\dot{D}^0 - pH$, D^0 , $\dot{D}^0 - c_L/c_M$, \dot{D}^0 , $D^0 - c_L/c_M$, $D^0 - pH$ (табл. 1–3). Доверительный интервал для усредненных значений параметров рассчитывали с доверительной вероятностью 0.95 при объеме выборки $N \approx 34$. Усредненные величины $\lg\beta_1 = 15.87 \pm 0.08$, $\lg\beta_2 = 30.30 \pm 0.19$, полученные указанными выше методами, подтверждаются величинами $\lg\beta_1 = 15.95$, $\lg\beta_2 = 30.40$, найденными прямым поисковым методом Хука–Дживса [42] при минизации стандартного отклонения значения функции $\Delta = \varepsilon_1\beta_1[\operatorname{Citr}^{2-}] + \varepsilon_2\beta_2[\operatorname{Citr}^{2-}]^2 - \tilde{\varepsilon}\beta_1[\operatorname{Citr}^{2-}] - \tilde{\varepsilon}\beta_2[\operatorname{Citr}^{2-}]^2$, где ε_n (n = 1, 2), л/(моль см), – коэффициент экстинкции комплекса; $\tilde{\varepsilon}$, л/(моль см), – средний коэффициент экстинкции раствора.

Расчет величин логарифмов констант скорости внутримолекулярного редокс-распада комплексов с использованием расширенных термо-

динамических методов $D^0, \dot{D}^0 - pH, D^0, \dot{D}^0 - \frac{c_L}{c_M}$:

$$lg k_n = lg k_n^{obs} - lg(l\epsilon_n^{ex}),$$

$$lg k_n^{obs} = lg(-\dot{D}^0) - lg c_n^0,$$
(5)

и их кинетических аналогов $\dot{D}^0, D^0 - pH,$ $\dot{D}^0, D^0 - c_L/c_M$:

$$lg \,\overline{k}_n = lg(k_n^{\text{obs}})^{\text{ex}} - lg(l\overline{\epsilon}_n), lg(k_n^{\text{obs}})^{\text{ex}} = lg \,\dot{D}_{\infty}^0 - lg \,c_{\text{M}}$$
(6)

проводили по уравнениям (5), (6). Здесь *l*, см, – толщина поглощающего слоя раствора; $\varepsilon_n^{\text{ex}}$ (*n* = 1, 2), л/(моль см), – экспериментально определенные коэффициенты экстинкции комплексов,

¹ Согласно [41], формулу CeOH(H_{2-x} Citr)^{3-*nx*} следует рассматривать как сокращенное обозначение брутто-форму-

лы $(\text{CeOH})_m(\text{Citr})_{nm}^{(3-2n)m}$ (*n*, *m* = 1, 2). Этот брутто-комплекс может представлять собой смесь частиц или совпадать с одной из частиц, доминирующей в смеси.

Таблица 1. Термодинамические и кинетические характеристики комплекса CeOHCitr⁺, определенные расширенным методом D^0 , $\dot{D}^0 - pH$ при $c_M = c_L = 3 \times 10^{-3}$ моль/л, I = 2, T = 298.15 K, $D_{\infty}^0 = 0.700$, $-\dot{D}_{\infty}^0 = 8.9 \times 10^{-3}$ с⁻¹, $\lambda = 400$ нм, l = 1 см

$10\Delta D^0$	$-10^3 \Delta \dot{D}^0,$ c^{-1}	рН	$lg\beta_1^{ef}$	$\lg \beta_1$	$-\lg K_1$	$\Delta G_{ m l},$ кДж/моль	10 ³ <i>c</i> ₁ ⁰ , моль/л	$-\lg k_1^{\rm obs}$	$-\lg k_1$
0.20	0.76	1.52	1.17	15.66	1.87	10.67	0.27	0.45	1.92
0.27	0.99	1.61	1.31	15.63	1.91	10.90	0.36	0.44	1.93
0.45	1.34	1.73	1.57	15.67	1.89	10.79	0.36	0.45	1.92
0.84	2.10	1.90	1.86	15.62	1.94	11.07	0.75	0.45	1.92
1.59	2.61	2.06	2.28	15.73	1.84	10.50	0.94	0.44	1.93
1.93	3.30	2.21	2.45	15.63	1.97	11.25	1.19	0.44	1.93
2.41	4.67	2.28	2.71	15.76	1.85	10.56	1.69	0.44	1.93
2.59	4.92	2.33	2.74	15.71	1.92	10.96	1.78	0.44	1.93
2.69	4.56	2.37	2.82	15.72	1.92	10.96	1.65	0.44	1.93

Примечание: Величина z = 2, $\lg \beta_1 = 15.68 \pm 0.05$, $-\lg K_1 = 1.90 \pm 0.04$, $\Delta G_1 \approx 10.85 \pm 0.24$ кДж/моль, $-\lg k_1^{\text{ex}} = 1.94$, $-\lg k_1^{\text{obs}} = 0.44 \pm 0.02$, $-\lg k_1 = 1.92 \pm 0.02$.

Таблица 2. Термодинамические, кинетические и оптические характеристики комплекса CeOHCitr⁺, определенные методами D^0 , $\dot{D}^0 - c_{\rm L}/c_{\rm M}$ (*I*), \dot{D}^0 , $D^0 - c_{\rm L}/c_{\rm M}$ (*2*) при $c_{\rm M} = 2.85 \times 10^{-3}$ моль/л, pH2.23, I = 2, T = 298.15 K, $D_{\infty}^0 = 0.770$, $-\dot{D}_{\infty}^0 = 8.3 \times 10^{-3}$ с⁻¹, $\lambda = 400$ нм

$10\Delta D^0$	$-10^{3}\Delta\dot{D}^{0},$ c^{-1}	10 ³ <i>c</i> _L , моль/л	10 ³ <i>c</i> ₁ ⁰ , моль/л	$\lg \beta_l$	$-\lg k_l^{\rm obs}$	$-\lg k_1$	10 ³ $\overline{c}_{1}^{0},$ моль/л	$\lg \overline{\beta}_l$	lg $\overline{\epsilon}_l$	$-\lg \overline{k_1}$
1.80	2.75	0.59	0.65	16.03	0.46	1.95	0.93	15.99	2.42	1.95
2.15	3.26	2.07	1.15	16.03	0.45	1.96	1.10	15.97	2.42	1.95
2.55	3.65	2.49	1.36	16.07	0.43	1.98	1.23	15.94	2.44	1.97
2.80	3.90	2.91	1.49	16.05	0.42	1.99	1.32	15.90	2.45	1.98
3.09	4.13	3.30	1.63	16.07	0.40	2.01	1.39	15.86	2.46	1.99
3.20	4.33	3.72	1.71	16.04	0.40	2.01	1.46	15.83	2.46	1.99
3.24	4.83	4.14	1.73	15.97	0.45	1.96	1.63	15.89	2.43	1.96
3.30	4.86	4.56	1.66	15.93	0.44	1.97	1.64	15.83	2.43	1.96

Примечание: Величина $\lg \beta_1 = 16.04 \pm 0.06$, $-\lg K_1 = 1.85 \pm 0.06$, $\Delta G_1 \approx 10.56 \pm 0.24$ кДж/моль, $-\lg (k_1^{obs})^{ex} = 0.43$, $-\lg k_1^{ex} = 1.98$, $-\lg k_1^{obs} = 0.43 \pm 0.02$, $-\lg k_1 = 1.98 \pm 0.02$ (*I*); $\lg \overline{\beta}_1 = 15.90 \pm 0.06$, $\lg \varepsilon_1^{ex} = 2.41$, $\lg \overline{\varepsilon}_1 = 2.44 \pm 0.02$, $-\lg \overline{k}_1 = 1.97 \pm 0.02$ (*2*).

оцененные из соотношения $\varepsilon_n^{\text{ex}} = D_{\infty}^0/c_{\text{M}} (c_{\text{M}} \leq c_{\text{L}});$ $(k_n^{\text{obs}})^{\text{ex}} \equiv k_n^{\text{ex}} \varepsilon_n^{\text{ex}} -$ экспериментально оцененные в соответствии с (6) наблюдаемые (зависящие от $\varepsilon_n^{\text{ex}}$) константы скорости редокс-распада комплексов; $\overline{\varepsilon}_n = \Delta D^0/\overline{c}_n^0 + \varepsilon_{\text{M}} -$ коэффициенты экстинкции комплексов, рассчитанные для каждого из значений \overline{c}_n^0 , ε_M , л/(моль см), — коэффициент экстинкции сульфата церия(IV).

Как видно из табл. 1-3, рассчитанные величины $\lg k_n$ сохраняют в рамках изученных серий постоянство значения, что свидетельствует о доминировании в каждой серии одного комплекса. Рассчитанные разными методами значения кон-

Таблица 3. Определение термодинамических, оптических и кинетических характеристик комплекса CeOHCitr₂⁻ методами D^0 – pH при I = 2, T = 298.15 K, $\lambda = 400$ нм, l = 1 см, $c_{\rm M} = 3.0 \times 10^{-3}, c_{\rm L} = 6.0 \times 10^{-3}$ моль/л (I, 2), $D^0, \dot{D}^0 - c_{\rm M}/c_{\rm L}$ (3), $\dot{D}^0, D^0 - c_{\rm M}/c_{\rm L}$ (4) при I = 2, T = 298.15 K, $\lambda = 400$ нм, l = 1 см, pH = 2.75, $c_{\rm M} = 2.50 \times 10^{-3}$ моль/л, $D_0^0 = 0.488$ и $-\dot{D}_0^0 = 6.67 \times 10^{-3}$ с⁻¹ (3, 4)

$10\Delta D^0$	pН	$lg\beta_2^{ef}$	$lg\beta_2$	$-\lg K_2$	$\Delta G_2,$ кДж/мс	$_{\rm DDE}$ 10 ΔL) ⁰ pH	ł	$lg\beta_2^{ef}$	lg	β_2	$-\lg K_2$	$\Delta G_2,$ кДж/моль	
Серия № 1						Серия № 2								
Метод $D^0 - pH$														
2.91	2.30	4.68	30.27	4.52	25.80	2.75	2.3	3	4.77	30	.26	4.55	25.97	
3.79	2.45	5.21	30.08	4.59	26.20	3.28	2.4	0	5.03 30.26		.26	4.57	26.09	
4.68	2.56	5.57	30.07	4.67	26.66	3.40	2.4	4	5.20	30	.33	4.56	26.03	
5.23	2.61	5.68	30.21	4.76	27.17	3.87	2.4	8	5.32	30.31		4.60	26.26	
5.99	2.67	6.00	30.27	4.68	26.72	4.43	4.43 2.53		5.50	30.29		4.62	26.37	
6.38	2.75	6.22	30.40	4.78	27.29	4.58	2.5	5	5.48	30	.23	4.72	26.94	
6.88	2.92	6.85	30.09	4.83	27.57	4.74	2.5	9	5.73 30		.32	4.63	26.43	
7.61	2.93	7.15	30.71	4.57	26.09	4.87	2.6	5	5.77	30.18		4.83	27.57	
7.89	3.03	7.37	30.31	4.75	27.12	5.83	2.8	0	6.51	30.50		4.69	26.77	
$10\Delta D^0$	-10	$-10^{3}\Delta\dot{D}^{0},$ $10^{3}c_{\mathrm{L}},$ $10^{3}c_{2}^{0},$ c^{-1} моль/л моль/л		,0 2, ь/л -	$-\lg k_2^{\rm obs}$	— 1g <i>k</i>	² 2	10 ³ $\overline{c}_2^0,$ моль/л л		10 л/(м) ⁻¹ ī, оль см)	$-\lg \overline{k_2}$		
Методы $D^0, \dot{D}^0 - c_M/c_L, \dot{D}^0, D^0 - c_M/c_L$														
1.58	1.58 2.8		2.50	1.0	5	0.43	1.86		1.10		18.84		1.85	
1.88	1.88 3.30		3.00	1.2	9	0.41	1.88		1.29		19.05		1.85	
2.03	3.70 3.50		1.3	1.35		1.91		1.45		18.48		1.84		
2.11		3.70	4.00	.00 1.40		0.42	1.87		1.45		19.03		1.85	
2.36		3.90	5.00	1.5	6	0.40	1.89)	1.53		1	9.90	1.87	
2.33	4	4.10	6.00	1.5	5	0.40	1.87		1.61		1	8.95	1.85	
2.51	· · ·	4.10	7.00	1.6	7	0.39	1.90)	1.61		2	0.07	1.88	
2.55	2	4.30	7.50	1.7	0	0.40	1.89		1.69		1	9.57	1.87	

Примечание: Величины z = 4, $\lg \beta_2 = 30.30 \pm 0.19$, $-\lg K_2 = 4.67 \pm 0.11$, $\Delta G_2 = (26.73 \pm 0.60)$ кДж/моль (1), z = 4, $\lg \beta_2 = 30.30 \pm 0.09$, $-\lg K_2 = 4.64 \pm 0.09$, $\Delta G_2 = (26.49 \pm 0.52)$ кДж/моль (2), $-\lg k_2^{\text{ex}} = 1.88$, $-\lg k_2^{\text{obs}} = 0.40 \pm 0.02$, $-\lg k_2 = 1.88 \pm 0.02$, $\varepsilon_2^{\text{ex}} = 195.10$ л/(моль см) (3), $\overline{\varepsilon}_2 = (192.40 \pm 5.50)$ л/(моль см), $-\lg \overline{k}_2 = 1.86 \pm 0.01$ (4).

стант скорости хорошо согласуются между собой: $\lg k_1 = -1.95 \pm 0.02$ и $\lg \overline{k_1} = -1.97 \pm 0.01$, $\lg k_2 = -1.88 \pm 0.02$ и $\lg \overline{k_2} = -1.86 \pm 0.01$ (табл. 1– 3). Полученные для n = 1, 2 значения $\lg k_n$ близки друг к другу, как и соответствующие значения аррениусовской энергии активации $E_1 = 129.3 \pm 1.7$, $E_2 = 128.1 \pm 1.9$ кДж/моль (рис. 4). Несколько меньшее значение $\lg k_1$ по сравнению с $\lg k_2$ согласуется с меньшей величиной соответствующего

предэкспоненциального множителя ($\lg A_l = 19.10$, $\lg A_2 = 19.22$). Большую величину энергии активации можно рассматривать как признак незначительности вклада радикального пути в изучаемый редокс-процесс и свидетельство его внутримолекулярного характера (см. рис. 3, линии 3, 4, и дальнейшее обсуждение).

Отметим близость полученных значений $\lg k_n$, E_n , кДж/моль (n = 1, 2) для комплексов CeOHCitr_n³⁻²ⁿ к ранее полученным авторами $\lg k_1$,

Рис. 4. Аррениусовская зависимость $\lg k_n - T^{-1}$ для комплексов CeOHCitr_n³⁻²ⁿ, n = 1 (*I*), 2 (*2*), при *I* = 2, $\lambda = 400$ нм, l = 1 см, $c_{\rm M} = c_{\rm L} = 2.38 \times 10^{-3}$ моль/л (*I*), $c_{\rm M} = 2.38 \times 10^{-3}$, $c_{\rm L} = 4.72 \times 10^{-3}$ моль/л (*2*).

 E_1 , кДж/моль, для комплексов CeOHL^{3-x} (L^{x-} – анионы хинной Quin²⁻, молочной Lact²⁻, яблочной Malt³⁻ и винной Tart⁴⁻ α -оксикарбоновых кислот) [43], а также независимость этих величин в сульфатной среде от соответствующих lg β_n и дентатности лиганда (рис. 5),² и прямую корреляцию между – lg k_n и lg β_n для комплексов с теми же лигандами, наблюдаемую в нитратной среде [44]. Данное различие можно объяснить различием строения внешнесферных нитратных и внутрисферных сульфатных комплексов церия(IV) в нитратной и сульфатной средах, соответственно [45, 46]. Можно предположить, что тогда как в нитратной среде внешнесферные NO₃⁻-анионы не предятствуют полному насышению внут-

ны не препятствуют полному насыщению внутренней координационной сферы функциональными группами полидентатных лигандов

L^{*x*-} (или самими лигандами) и дальнейшей ста-

Рис. 5. "Эффект насыщения" в сульфатной среде при I = 2, T = 298.15 К для значений $-\lg k_n$ комплексов CeOHOx⁺, CeOHMaln⁺, CeOHQuin⁺, CeOHLact⁺, CeOHCitr⁺, CeOHMalt⁰, CeOHTart⁻, CeOHCitr⁻(слева направо) (*I*) и величин E_n , кДж/моль, комплексов CeOHOx⁺, CeOHQuin⁺, CeOHCitr⁺, CeOHMalt⁰, CeOHTart⁻, CeOHCitr² (слева направо) (*I*).

билизации неустойчивого состояния окисления церия CO +4 при x > 2, n > 1, в сульфатной среде для смешанно-лигандных комплексов типа (NH₄)_{*r*}CeOH(SO₄)₃L^{*r*-3-*xn*} координационное насыщение внутренней сферы и предельная стабилизация CO +4 церия в комплексе достигаются уже при x = 2, n = 1 (так как KЧ_{Ce⁴⁺} = 9 [47]). Функциональные группы лиганда или сами лиганды (при n > 1), остающиеся во внешней сфере этих комплексов, имеющих общее строение внутренней координационной сферы, по-видимому, уже не влияют на скорость внутрисферного переноса электрона в комплексе.

Отметим также равенство нулю интерсепта A линейной зависимости $-\dot{D}^0 = A + k_n^{obs} c_n^0$ для системы Ce⁴⁺-SO₄²⁻-L, L = H₂Citr (рис. 3, линии 3, 4), в отличие от системы с L = H₂Ox, где $A \neq 0$ (рис. 3, линия 5), что может свидетельствовать о пренебрежимости вклада бимолекулярного пути в процесс окисления церием(IV) лимонной кислоты в условиях проведенного эксперимента и позволяет записать уравнение для начальной скорости редокс-процесса в системе с L = H₂Citr, учитывая комплексообразование с анионами фона, в виде:

² Заметим, что значения $-\lg k_1$, E_1 , кДж/моль, комплексов с анионами дикарбоновых кислот (щавелевой Ox²⁻, малоновой Malt²⁻) [23, 28] существенно ниже соответствующих величин для комплексов с оксикарбоновыми кислотами (рис. 5), что согласуется с наблюдением из [32]. На рисунке

⁽рис. 5), что согласуется с наблюдением из [32]. На рисунке приведены величины – $\lg k_1$, пересчитанные для T = 278.15 К с использованием соответствующих значений E_1 , кДж/моль.

Рис. 6. Диаграммы выхода частиц: (1) CeOH³⁺, (2) CeOHMaln⁺ в системе Ce⁴⁺-SO₄²⁻-H₂Maln при $c_{\rm L} = 2.5 \times 10^{-1}$ моль/л; (3) CeOH³⁺, (4) CeOHCitr⁺, (5) CeOHCitr⁻₂ в системе Ce⁴⁺-SO₄²⁻-H₂Citr при $c_{\rm L} = 4.5 \times 10^{-1}$ моль/л, (6) CeOH³⁺, (7) CeOHCitr⁺, (8) CeOHCitr⁻₂ в той же системе при $c_{\rm L} = 3.0 \times 10^{-3}$ моль/л.

$$-\frac{\partial c_{\mathrm{M}}}{\partial \tau} = (k_1 K_1 + k_2 K_2 [\mathrm{H}_2 \mathrm{Citr}] [\mathrm{H}^+]^{-2}) \times \\ \times [\mathrm{CeOH}(\mathrm{SO}_4)_3^{-1}] [\mathrm{H}_2 \mathrm{Citr}] [\mathrm{H}^+]^{-2}.$$
(7)

Уравнение (7) может быть представлено в форме, учитывающей все основные предравновесия, быстро устанавливающиеся в системе:

$$-\frac{\partial c_{\rm M}}{\partial \tau} = \left\{ \left(k_1 \beta_1 + k_2 \beta_2 \frac{[\operatorname{Citr}^{2^-}]}{1 + B_1[\mathrm{H}] + B_2[\mathrm{H}]^2} \right) \times \frac{\kappa_{1SO_4} \kappa_{2SO_4} \kappa_{3SO_4} \beta_{1\rm h} K_w[\mathrm{H}_2\mathrm{O}]}{(1 + B_1[\mathrm{H}] + B_2[\mathrm{H}]^2)[\mathrm{H}]} \left(\frac{c_{SO_4}}{1 + B_{1SO_4}[\mathrm{H}]} \right)^3 \right\} \times (8)$$
$$\times [\operatorname{Ce}^{4+}][\operatorname{Citr}^{2^-}].$$

Ассоциированные с (8) реакционный механизм и модель процесса могут быть описаны следующими уравнениями:

$$H_2O \stackrel{K_w}{\Leftrightarrow} H^+ + OH^-, \tag{9}$$

$$\mathrm{SO}_4^{2-} + \mathrm{H}^+ \stackrel{B_{\mathrm{ISO}_4}}{\Leftrightarrow} \mathrm{HSO}_4^-,$$
 (10)

$$\operatorname{Citr}^{2-} + \operatorname{H}^{+} \stackrel{B_{1}}{\Leftrightarrow} \operatorname{HCitr}^{-},$$
 (11)

$$\operatorname{Citr}^{2-} + 2\operatorname{H}^{+} \stackrel{B_{2}}{\Leftrightarrow} \operatorname{H}_{2}\operatorname{Citr},$$
 (12)

$$\operatorname{Ce}^{4+} + \operatorname{SO}_{4}^{2-} \stackrel{\kappa_{\mathrm{ISO}_{4}}}{\Leftrightarrow} \operatorname{CeSO}_{4}^{2+}, \qquad (13)$$

$$\operatorname{CeSO}_{4}^{2+} + \operatorname{SO}_{4}^{2-} \stackrel{\kappa_{2SO_{4}}}{\Leftrightarrow} \operatorname{Ce}(\operatorname{SO}_{4})_{2}, \qquad (14)$$

$$\operatorname{Ce}(\operatorname{SO}_4)_2 + \operatorname{SO}_4^{2-} \stackrel{\kappa_{3SO_4}}{\Leftrightarrow} \operatorname{Ce}(\operatorname{SO}_4)_3^{2-},$$
(15)

$$\operatorname{Ce}(\operatorname{SO}_4)_3^{2-} + \operatorname{OH}^- \stackrel{\beta_{1h}}{\Leftrightarrow} \operatorname{CeOH}(\operatorname{SO}_4)_3^{3-}, \quad (16)$$

$$CeOH(SO_4)_3^{3-} + Citr^{2-} \stackrel{\beta_1}{\Leftrightarrow} CeOH(SO_4)_3 Citr^{5-}, (17)$$

$$CeOH(SO_4)_3Citr^{5-} \stackrel{\kappa_1}{\Rightarrow} Ce(SO_4)_2^{-} + + PRODUCTS,$$
(18)

$$\operatorname{CeOH}(\operatorname{SO}_4)_3^{3-} + 2\operatorname{Citr}^{2-} \stackrel{\beta_2}{\Leftrightarrow} \operatorname{CeOH}(\operatorname{SO}_4)_3\operatorname{Citr}_2^{7-}, (19)$$

$$CeOH(SO_4)_3Citr_2^{7-} \stackrel{k_2}{\Rightarrow} Ce(SO_4)_2^{-} + + PRODUCTS$$
(20)

с параметрами р $K_w = 15.74$, lg $B_{1SO_4} = 1.00$, lg $\varkappa_{1SO_4} = 4.54$, lg $\varkappa_{2SO_4} = 2.30$, lg $\varkappa_{3SO_4} = 1.30$ lg $\beta_{1h} = 13.90$ [28]; lg $B_1 = 14.60$, lg $B_2 = 17.44$, lg $\beta_1 = 15.87$, lg $k_1 = -1.96$, lg $\beta_2 = 30.30$, lg $k_2 = -1.87$.

Решение прямой задачи равновесий комплексообразования с использованием найденных констант устойчивости lgβ_n комплексов CeOHL³⁻²ⁿ и программы "Выход комплекса" [47] демонстрирует сдвиг диаграмм их выхода

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 4 2023

 α_n^0 в кислую область с увеличением c_L (рис. 6, линии 3-8; [23, 28]). Оно показывает, что в условиях, обычно создаваемых для проведения БЖ-реакции (pH ~ -0.1 сернокислой среды, c_1 ~ ~ 0.1-0.5 моль/л), сравнительно малоустойчивые комплексы церия(IV) с дикарбоновыми кислотами (CeOHOx⁺, $\lg \beta_1 = 7.70$, pH ~ 0–1.5 [23]; CeOHMaln⁺, $\lg \beta_1 = 9.22$, pH ~ 0.5–2.0 [28]) доминируют, тогда как выход значительно более устойчивых комплексов с α-оксикарбоновыми кислотами ($\lg \beta_1 = 15-16$; в частности, CeOHCitr⁺, $\lg \beta_1 = 15.87, pH \sim 1.5 - 3.0$) пренебрежимо мал (рис. 6, линия 4). Последнее практически исключает участие данных комплексов в механизме окисления оксикарбоновых кислот в этих условиях и служит аргументом в пользу свободнорадикального механизма окисления церием(IV) в условиях БЖреакции данных органических кислот.

Результаты работы представляют теоретический и практический интерес и могут быть использованы, в частности, для моделирования церий(IV)-цитратной реакции в сернокислой среде, более детального описания "органической части" механизма БЖ-реакции с участием дикарбоновых и оксикарбоновых кислот, решения технологических задач стабилизации СО +4 церия(IV) оксикарбоновыми кислотами, а также решения прямых задач расчета начальных и текущих кон-

центраций комплексов CeOHCitr_n³⁻²ⁿ (n = 1, 2) в технологии растворов, содержащих данные соединения.

СПИСОК ЛИТЕРАТУРЫ

- Zhang J., Wenzel M., Schnaars K. et al. // Dalton Trans. 2021. V. 50. P. 3550. https://doi.org/10.1039/D1DT00365H
- Jacobsen J., Wegner L., Reinsch H. et al. // Dalton Trans. 2020. V. 49. P. 11396. https://doi.org/10.1039/D0DT02455D
- Kozlova T.O., Baranchikov A.E., Ivanov V.K. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1761. https://doi.org/10.1134/S003602362112010X
- Lopatin S.I., Shugurov S.M., Kurapova O.Y. // Russ. J. Gen. Chem. 2021. V. 91. P. 2008. https://doi.org/10.1134/S1070363221100121
- Issa G., Dimitrov M., Ivanova R. et al. // Reac. Kinet. Mech. Cat. 2022. V. 135. № 2–3. P. 105. https://doi.org/10.1007/s11144-021-02135-0
- Dalanta F., Kusworo T.D. // Chem. Eng. J. 2022. V. 434. Article ID 134687. https://doi.org/10.1016/j.cej.2022.134687
- Colliard I., Nyman M. // Angew. Chem. Int. Ed. 2021. V. 60. № 13. P. 7308. https://doi.org/10.1002/anie.202016522

- Wadekar K., Aswaleb S., Yatham V.R. // Org. Biomol. Chem. 2020. V. 18. P. 983. https://doi.org/10.1039/C9OB02676B
- Yedase G.S., Kumar S., Stahl J. et al. // Beilstein J. Org. Chem. 2021. V. 17. P. 1727. https://doi.org/10.3762/bjoc.17.121
- Ragukumar G., Nethaji O. // Indian J. Natur. Sci. 2021. V. 12. № 69. P. 36350.
- Ciriminna R., Meneguzzo F., Delisi R. et al. // Chem. Centr. J. 2017. V. 11. P. 22. https://doi.org/10.1186/s13065-017-0251-y
- Duangsa K., Tangtrakarn A., Mongkolkachit C. et al. // Adv. Mater. Sci. Eng. 2021. Article ID 5592437. https://doi.org/10.1155/2021/5592437
- Bao Y., Ma J., Pan Ch. et al. // Chemosphere. 2020. V. 240. P. 124897. https://doi.org/10.1016/j.chemosphere.2019.124897
- Zhang S.H., Yang B., Li M.D. et al. // Key Eng. Mater. 2019. V. 814. P. 144. https://doi.org/10.4028/www.scientific.net/KEM.814.144
- Wu Y., Li H., Bian X. et al. // Materials. 2021. V. 14. № 17. P. 4963.
- 16. *Таран В.Г., Боровская Л.В., Мазуренко Е.А.* // Науч. обозр. (РЖ). 2019. № 2. С. 24.
- Васильев В.П. Аналитическая химия. Часть 1. Гравиметрический и титриметрический методы анализа. М.: Высш. школа, 1989. 320 с.
- 18. *Marunkić D., Pejić J., Jegdicć B. et al.* // Materials and Corrosion. 2022. V. 73. № 6. P. 950.
- Zherbakov A.B., Zholobak N.M., Ivanov V.K. // Cerium Oxide (CeO₂): Synthesis, Properties and Applications / Ed.by S. Scire, M. Palmisano. Amsterdam: Elsevier, 2019. 402 p.
- Hancock M.L., Yokel R.A., Beck M.J. et al. // Appl. Surf. Sci. 2021. V. 535. Article ID https://doi.org/10.1016/j.apsusc.2020.147681
- 21. Toxicological Reviev of Cerium Oxide and Cerium Compounds (CAS № 1306-383). Washington: U.S. Enviromental Protection Agency, 2009.
- 22. Cassani A., Monteverde A., Piumetti M. // J. Math. Chem. 2021. V. 59. P. 792.
- Воскресенская О.О., Скорик Н.А. // Журн. физ. химии. 2015. Т. 89. № 10. С. 1619; Voskresenskaya O.O., Skorik N.A. // Russ. J. Phys. Chem. 2015. V. 89. № 10. P. 1821.
- 24. *Čupić Ž., Lente G. //* React. Kinet. Mech. Catal. 2022. V. 135. № 3. P. 1137.
- 25. Muzika F., Górecki J. // Ibid. 2022. V. 135. № 3. P. 1187.
- Kasperek G. T., Bruice T.C. // Inorg. Chem. 1971. V. 10. P. 382.
- 27. Rustici M., Lombardo R., Mangone M. et al. // Faraday Disc. 2001. V. 120. P. 47.
- 28. Воскресенская О.О., Скорик Н.А., Южакова Ю.В. // Журн. физ. химии. 2017. Т. 91. № 4. С. 601.
- Nebel D., Urban G. // Z. Phys. Chem. (DDR). 1966.
 V. 233. P. 73.
- 30. *Печурова Н.И., Вахрамова Г.П., Спицын В.И. //* Журн. неорган. химии. 1974. Т. 19. № 8. С. 2074.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 97 № 4 2023

- Воскресенская О.О., Скорик Н.А. // Журн. физ. химии. 2009. Т. 83. № 6. С. 1079.
- 32. *Sengupta K.K.* // Bull. Chem. Soc. Japan. 1969. № 2. P. 298.
- Tripathy S.N., Prasad R.K. // Ind. J. Chem. A. 1980.
 V. 19. P. 214.
- Datt N., Nagori R., Mehrotra R. // Can. J. Chem. A. 1986. V. 64. P. 19.
- 35. *Felmy A.R., Cho H., Dixon D.A. et al.* // Radiochim. Acta. 2006. V. 94. № 4. P. 205.
- 36. *Thuéry P.* // Cryst. Eng. Com. 2008. V. 10. № 2–3. P. 79.
- Добрынина Н.А., Мартыненко Л.И. // Проблемы современной химии координационных соединений / Под ред. К.А. Буркова. Л.: Изд-во ЛГУ, 1989. С. 98.
- Martell A.E., Smith R.M., Motekaitis R.J. NIST Critically Selected Stability Constants of Metal Complexes. Database: Version 8.0. National Inst of Standards and Technology, Gaithersburg, 2004.
- Binnemans K. // Handbook on the Physics and Chemistry of Rare Earts, V. 36. / Ed.by K.A. Gschneidner. North-Holland: Elsevier, 2006. P. 281.

- 40. *Singh R.S., Jha P.N., Prasad R.K.* // Proc. Nation. Sci. 1987. V. LVII. № III. P. 272.
- 41. *Hardwich T.G., Robertson E.* // Can. J. Chem. A. 1955. V. 29. P. 818.
- 42. Атрошенко Ю.К. Оптимизация статических и динамических режимов. Томск: Изд-во ТПУ, 2019. С. 2.
- 43. Воскресенская О.О., Скорик Н.А. // Журн. прикл. химии. 2002. Т. 75. № 6. С. 886; Voskresenskaya O.O., Skorik N.A. // Russ. J. Appl. Chem. 2002. V. 75. № 6. Р. 866.
- 44. Воскресенская О.О., Скорик Н.А., Соковикова Н.И. // Журн. неорган. химии. 2019. Т. 64. № 4. С. 1095.
- 45. Яцимирский К.Б., Костромина Н.А., Шека З.А. и др. Химия комплексных соединений редкоземельных элементов. Киев: Наукова думка, 1966. 493 с.
- 46. *Casari B.M., Lander V.* // Acta Crystallogr. C. 2007. V. 63. № 4. P. i25.
- Скорик Н.А., Чернов Е.Б. Расчеты с использованием персональных компьютеров в химии комплексных соединений. Томск: Изд-во ТГУ, 2009. 90 с.