НОВЫЕ ЛЮМИНЕСЦЕНТНЫЕ СТЕКЛОМАТЕРИАЛЫ ВаВі_{2 – х}Еи_хВ₂О₇

© 2019 г. А. П. Шаблинский^{1, 2}, А. В. Поволоцкий², И. А. Дроздова¹, И. Е. Колесников², Р. С. Бубнова^{1, 2, *}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт—Петербург, 199034 Россия

²Санкт-Петербургский государственный университет, Университетская наб., 7/9, Санкт–Петербург, 199034 Россия

*e-mail: rimma_bubnova@mail.ru

Поступила в редакцию 06.08.2018 г. После доработки 21.09.2018 г. Принята к публикации 08.10.2018 г.

Получены Ві-содержащие стекла, допированные Eu³⁺: BaBi_{2 – x}Eu_xB₂O₇ (x = 0.00, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50). Выявлена зависимость интегральной интенсивности люминесценции от концентрации Eu³⁺. Тушение люминесценции начинается при концентрациях Eu³⁺ более 0.20. Максимальная интенсивность люминесценции при прочих равных условиях наблюдается в образце BaBi_{1.5}Eu_{0.5}B₂O₇. Показано, что ло-кальное окружение ионов Eu³⁺ не зависит от содержания ионов Eu³⁺ в изученном диапазоне концентраций.

Ключевые слова: боратные стекла, люминесценция, ликвация

DOI: 10.1134/S0132665119010062

введение

Стекла и стеклокерамические материалы с высоким показателем преломления, большой областью прозрачности, широкой запрещенной зоной, большой изоморфной емкостью и простым синтезом в настоящее время изучаются с целью поиска применения в качестве новых высокоэффективных красных люминофоров или замены для оптических керамик на основе ZnS. Такими материалами являются стекла и стеклокерамические материалы системы BaO–Bi₂O₃–B₂O₃ [1–9]. Вi-содержащие боратные стекла обладают широкой областью стеклования, высокими значениями и низкой дисперсией показателя преломления. В [10] было установлено существование в данной системе стеклокерамики на основе бората BaBi₂B₂O₇, была расшифрована и уточнена кристаллическая структура соединения BaBi₂B₂O₇ и твердых растворов Sr_{1 – x}Ba_xBi₂B₂O₇, определены температуры плавления BaBi₂B₂O₇ (630°C) и SrBi₂B₂O₇ (776°C), стеклования и кристаллизации, и коэффициенты термического расширения [11]. В последние годы к кристаллическим и стекломатериалам систем MO–Bi₂O₃–B₂O₃, где M = Ca, Sr, Ba, проявляется повышенный интерес благодаря возможности использование их в качестве матриц для редкоземельных элементов [12, 13].

Цель данной работы — изучение люминесцентных свойств стекол BaBi₂B₂O₇:Eu³⁺ как нового красного люминофора.

МЕТОДИКА ЭКСПЕРИМЕНТА

Стекла составов $BaBi_2B_2O_7$, $BaBi_{1.95}Eu_{0.05}B_2O_7$, $BaBi_{1.9}Eu_{0.1}B_2O_7$, $BaBi_{1.8}Eu_{0.2}B_2O_7$, $BaBi_{1.6}Eu_{0.4}B_2O_7$, $BaBi_{1.5}Eu_{0.5}B_2O_7$ получены быстрым охлаждением стехиометричного состава. В качестве исходных реактивов были использованы H_3BO_3 марки "х. ч.", $BaCO_3$ "ос. ч.", Bi_2O_3 "ос. ч." и Eu_2O_3 "ос. ч.". Предварительно отожженная шихта была выдержана в печи при температуре 600°C в течение 3 ч. Образцы были расплавлены в печи при температуре 1200°C при выдержке 30 мин. Полученный расплав выливали на стальную плиту. Выливание расплавов $BaBi_2B_2O_7$ и $SrBi_2B_2O_7$ от температуры 950°C на стальную холодную плиту привело к получению прозрачного однородного стекла желтого цвета с микроструктурой капельно-канального типа.

Морфологию поверхности образцов $BaBi_2B_2O_7$ в зависимости от условий термообработки исследовали на просвечивающем электронном микроскопе ЭМ-125, U = 75 кВ, методом одноступенчатых реплик. Одноступенчатые реплики были получены напылением аморфного углерода на поверхность свежего скола исследуемого образца. Напыление проводили в вакууме с использованием установки ВУП-НВА. Полученные пленки были отделены путем механического отрыва, тщательно промыты и изучены под электронным микроскопом.

Для всех образцов была выполнена порошковая рентгенография, которая показала только наличие аморфной фазы. Исследования проводили с использованием дифрактометра Rigaku "MiniFlexII" (30 кВ/10 мА, высокоскоростной энергодисперсионный детектор DTEX/ULTRA) с $K_{\alpha 1 + \alpha 2}$ -излучением Си в интервале углов 10°-60° со скоростью 2°/мин.

Оптические свойства образцов изучали с помощью спектрофлуориметра Horiba Fluorolog-3. Для измерения спектров возбуждения люминесценции и спектров люминесценции исследуемые образцы прессовали под давлением 10 бар в таблетки с КВг в соотношении 5 мг/300 мг. Для достижения однородного распределения образца по таблетке перед прессованием образцы перетирали в агатовой ступке.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Микроструктура стекол. По данным просвечивающей электронной микроскопии структуру меняют стекла состава $BaBi_2B_2O_7$ в зависимости от условий термообработки. При выливании на изложницу расплава $BaBi_2B_2O_7$ от 950°C происходит ликвация. Образуется микроструктура капельно-канального вида, с диаметром каналов 40–50 нм, относительный объем этой фазы составляет около 11% от общего объема образца. В порах присутствуют зародыши кристаллов размером от 40–100 нм (рис. 1, *a*). При сопоставлении полученной микроструктуры с образцом стекла $SrBi_2B_2O_7$, полученным в аналогичных условиях (рис. 1, *b*), видно, что с замещением бария на стронций размер каналов остается прежним (40–50 нм), а размер кристаллов уменьшается до 20 нм. Количество капельно-канальной фазы возрастает до 40%. Эти два состава могут быть отнесены к области ликвации на фазовых диаграммах $SrO-Bi_2O_3-B_2O_3$ и BaO-Bi_2O_3-B_2O_3, что уточняет и расширяет данные, полученные по стеклообразованию в данных системах [5–7].

Ликвация в рассматриваемой фазовой системе можно объяснить с помощью известных структурных теорий ликвации [14–16]. Кристаллическая структура соединения BaBi₂B₂O₇ состоит из изолированных борокислородных треугольников BO₃, полиэдров BiO₇ и BaO₁₀ [11]. В структуре присутствует атом кислорода не связанный с бором, образующий оксоцентрированный полиэдр OM₅ (M = Bi, Ba). По соотношению z/r (где z – заряд катиона, r – ионный радиус) Bi (2.29) и Ba (1.28) существенно уступают бору (20) в образовании прочных химических связей с атомами кислорода.

87

Рис. 1. Данные просвечивающей электронной микроскопии стекол на основе $BaBi_2B_2O_7(a)$ и Sr $Bi_2B_2O_7(\delta)$ со связанными порами.

Низкое содержание бора, по-видимому, не позволяет ему формировать непрерывную боратную сетку. В этих условиях образование сетки происходит за счет встраивания полиэдров висмута. Согласно структурным данным $BaBi_2B_2O_7$ [11] полиэдры висмута сильно искажены из-за присутствия стереохимически активной неподеленной электронной пары. Благодаря этому координацию висмута можно рассматривать, как "псевдотетраэдр" BiO_3 [17], четвертой вершиной которого является неподеленная электронная пара. Разброс длин связей в таком тетраэдре по данным рентгеноструктурного анализа составляет 2.11–2.45 Å [11]. Атомы бария не могут встроиться в боратно-висмутатную сетку в стекле из-за высокого координационного числа полиэдра с длинами связей 2.48–3.08 Å, что повышает склонность расплава к ликвации, согласно [15]. Стекла, полученные закалкой от 1200°С, являются гомогенными.

Люминесцентные свойства. При допировании ионами Eu³⁺ стекол состава BaBi₂B₂O₇, закаленных от температур 1200°С получены следующие результаты. Спектры возбуждения люминесценции соответствуют электронным переходам ионов Eu³⁺: полоса в области 393 нм соответствует переходу $^{7}F_{0}-^{5}L_{6}$, в области 464 нм переходу $^{7}F_{0}-^{5}D_{2}$, в области 525 нм переходу $^{7}F_{0}-^{5}D_{1}$ (рис. 2). На спектрах возбуждения люминесценции наблюдается монотонный рост интенсивности на длине волны 613 нм при возбуждении излучения 393 нм с ростом концентрации ионов европия. Спектры люминесценции исследуемых образцов получены при оптическом возбуждении перехода иона европия $^{7}F_{0}-^{5}L_{6}$ (рис. 3). На спектрах люминесценции наблюдаются следующие электронные переходы ионов Eu³⁺: $^{5}D_{0}-^{7}F_{0}$ в области 580 нм, $^{5}D_{0}-^{7}F_{1}$ в области 590 нм, $^{5}D_{0}-^{7}F_{2}$ в области 620 нм, $^{5}D_{0}-^{7}F_{3}$ в области 660 нм, $^{5}D_{0}-^{7}F_{4}$ в области 700 нм, что соответствует известным спектрам люминесценции стекол состава (мол. %) 30ВаО $\cdot 25Bi_2O_3 \cdot 45B_2O_3$, допированых ионами Eu³⁺ [8].

Из спектров люминесценции видно, что с ростом концентрации ионов европия, как и в случае полосы в области 393 нм спектра возбуждения люминесценции, наблюдается монотонный рост интенсивности всех наблюдаемых полос. На рис. 4 представлена зависимость интегральной интенсивности люминесценции исследуемых образцов от концентрации европия.

Рис. 2. Спектры возбуждения люминесценции образцов $BaBi_{2-x}Eu_{x}B_{2}O_{7}$ (x = 0.05; 0.10; 0.15; 0.20; 0.30; 0.50), длина волны люминесценции 613 нм.

Рис. 3. Спектры люминесценции образцов $BaBi_{2-x}Eu_xB_2O_7$ (x = 0.05; 0.10; 0.15; 0.20; 0.30; 0.50), длина волны возбуждения 393 нм.

Концентрационное тушение люминесценции начинается при $x \ge 0.20$. Максимальная интенсивность люминесценции при прочих равных условиях наблюдается в образце BaBi_{1.5}Eu_{0.5}B₂O₇.

Локальное окружение ионов редкоземельных металлов оказывает влияние на возбужденные электронные состояния активных ионов, в том числе на время жизни этих состояний. Наблюдаемое время жизни уровня ${}^{5}D_{0}$ определяли по кинетической кривой затухания люминесценции на длине волны 613 нм при импульсном оптическом возбуждении на длине волны 393 нм. Пример полученной кинетической кривой затухания люминесценции для образца BaBi_{1.95}Eu_{0.05}B₂O₇ представлен на рис. 5.

Рис. 4. Зависимость интегральной интенсивности люминесценции образцов ВаВі_{2- x}Eu_xB₂O₇ (*x* = 0.05; 0.10; 0.15; 0.20; 0.30; 0.50) при накачке 393 нм.

Рис. 5. Кинетическая кривая затухания люминесценции (*2*) и аппроксимация одноэкспоненциальной функцией (*I*) для образца BaBi_{1.95}Eu_{0.05}B₂O₇.

Полученные кривые аппроксимировали экспоненциальной функцией вида:

$$a + be^{-\frac{t}{\tau}},$$

где τ – искомое время жизни возбужденного состояния. График зависимости наблюдаемого времени жизни состояния ${}^{5}D_{0}$ от концентрации ионов Eu $^{3+}$ представлен на рис. 6.

Наблюдаемое время жизни для всех исследуемых образцов с концентрацией европия 0.05–0.30 практически совпадает в пределах ошибки измерения. Это значит, что локальное окружение активных ионов Eu^{3+} одинаково во всех образцах матрицы $BaBi_2B_2O_7$. Для образца с x = 0.50 время жизни меньше других (рис. 6), что является

Рис. 6. Зависимость наблюдаемого времени жизни состояния ${}^{5}D_{0}$ от концентрации ионов Eu $^{3+}$.

следствием взаимодействия соседних ионов европия, приводящего к концентрационному тушению люминесценции. Определенная таким образом граница концентрационного тушения хорошо согласуется с данными концентрационной зависимости интенсивности люминесценции. Полученные значения наблюдаемого времени жизни хорошо согласуются с литературными данными [9].

Сопоставление люминесцентных свойств данных стекол с наиболее близким по составу и структуре кристаллическим аналогом $SrBi_{2-x}Eu_xB_2O_7$ [12], показано, что тушение начинается при x = 0.15, резко возрастает при x = 0.25, а после x = 0.29 монотонно убывает. При содопировании бората $SrBi_2B_2O_7$ [13] Sm^{3+} и Eu^{3+} оптимальная концентрация снизилась до 6 мол. %, термическая стабильность за счет вхождения Sm возрастает.

ЗАКЛЮЧЕНИЕ

Стекла, полученные закалкой от 950°С, являются двухфазными и имеют капельноканальную микроструктуру, в порах которой расположены зародыши кристаллов. При замещении Ва на Sr размер кристаллов в стекле уменьшается, размер каналов остается прежним. С повышением температуры стекла становятся гомогенными.

В допированных европием стеклах $BaBi_{2-x}Eu_xB_2O_7$, полученных закалкой от 1200°С, установлено, что концентрационное тушение люминесценции наблюдается при замещении более 20 мол. % Bi^{3+} на Eu^{3+} . Полученное значение величины концентрационного тушения сопоставимо с известными литературными данными.

Исследования проведены с использованием оборудования ресурсных центров "Оптические и лазерные методы исследования вещества" и "Рентгенодифракционные методы исследования" Научного парка СПбГУ. Исследование выполнено при поддержке РФФИ (проект № 18-03-00679).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Becker P*. Thermal and optical properties of glasses of the system Bi₂O₃−B₂O₃ // Cryst. Res. Technol. 2003. V. 38. № 1. P. 74–82.
- 2. Kosaka S., Benino Y., Fujiwara T. Synthesis and nonlinear optical properties of $BaTi(BO_3)_2$ and $Ba_3Ti_3O_6(BO_3)_2$ crystals in glasses with high TiO_2 contents // J. Solid State Chem. 2005. V. 178. No 6. P. 2067–2076.

- Егорышева А.В., Скориков В.М., Володин В.Д. Фазовые равновесия в системе ВаО-Ві₂O₃-В₂O₃// Журн. неорган. химии. 2006. Т. 51. №12. С. 2078-2082.
- 4. *Егорышева А.В., Володин В.Д., Скориков В.М., Юрков Г.Ю., Сорокин Н.И.* Синтез нанокомпозитов на основе стекол систем *MO*−Bi₂O₃−B₂O₃ (*M*−Ca, Sr, Ba) // Неорган. материалы. 2010. Т. 46. № 4. С. 495–500.
- 5. *Егорышева А.В., Володин В.Д., Скориков В.М.* Стеклообразование в системе Bi₂O₃-B₂O₃-BaO // Неорган. материалы. 2008. Т. 44. № 11. С. 1397–1401.
- 6. *Егорышева А.В., Володин В.Д., Миленов Т., Рафаилов П., Скориков В.М., Дудкина Т.Д.* Стеклообразование в системах CaO-Bi₂O₃-B₂O₃ и SrO-Bi₂O₃-B₂O₃// Журн. неорган. химии. 2010. Т. 55. № 11. С. 1920–1927.
- 7. *Егорышева А.В., Володин В.Д., Скориков В.М.* Фазовые равновесия в системе SrO–Bi₂O₃–B₂O₃ в субсолидусной области // Журн. неорган. химии. 2009. Т. 54. № 11. С. 1891–1895.
- Егорышева А.В., Володин В.Д., Чистяков А.А., Кузищин Ю.А., Скориков В.М., Дудкина Т.Д. Люминесценция стекол системы BaO-Bi₂O₃-B₂O₃, легированных европием // Неорган. Материалы. 2010. Т. 46. № 12. С. 1518–1524.
- 9. Егорышева А.В., Володин В.Д., Березовская И.В., Зубарь Е.В., Скориков В.М., Миленов Т., Рафаилов П. Влияние Eu₂O₃ на процесс кристаллизации стекол системы BaO-Bi₂O₃-B₂O₃ // Неорган. материалы. 2012. Т. 48. № 9. С. 1071–1075.
- Шаблинский А.П., Дроздова И.А., Волков С.Н., Кржижановская М.Г., Бубнова Р.С. Получение и исследование стеклокерамики в системе Sr_{1 – x}Ba_xBi₂B₂O₇ // Физ. и хим. стекла. 2012. Т. 38. № 6. С. 886–889.
- Бубнова Р.С., Шаблинский А.П., Волков С.Н., Филатов С.К., Кржижановская М.Г., Уголков В.Л. Кристаллические структуры термическое расширение твердых растворов Sr_{1-x}Ba_xBi₂B₂O₇ // Физ. и хим. стекла. 2016. Т.42. №4. С. 469 – 482.
- Li Z., Pian Q., Li L., Sun Y., Zheng S. Luminescence properties of SrBi₂B₂O₇: Eu³⁺ orange-red phosphor // Opt. 2018. V. 161. P. 38–43.
- 13. Wu L., Bai Y., Wu L., Yi H., Kong Y., Zhang Y., Xu J. Sm³⁺ and Eu³⁺ codoped SrBi₂B₂O₇: a red-emitting phosphor with improved thermal stability // RSC Adv. 2017. V. 7. P. 1146–1153.
- 14. Warren B.E., Pincus A.G. Atomic consideration of immiscibility in glass systems // J. Am. Ceram. Soc. 1940. V. 23. № 10. P. 301–304.
- Levin M., Block S. Structural interpretation of immiscibility in oxide systems: I, analysis and calculation of immiscibility // J. Am. Ceram. Soc. 1957. V. 40. № 3. P. 95–106.
- Taylor P., Owen D.J. Liquid immiscibility in complex borosilicate glasses // J. Non-Crystal. Solids. 1980. V. 42. P. 143–150.
- 17. *Кривовичев С.В., Филатов С.К.* Кристаллохимия минералов и неорганических соединений с комплексами анионоцентрированных тетраэдров. СПб.: СПбГУ, 2001. 200 с.