ВЛИЯНИЕ ДОБАВОК РЬ НА КИНЕТИКУ И МЕХАНИЗМ КРИСТАЛЛИЗАЦИИ СТЕКЛА As₂Se₃

© 2019 г. Е.В.Школьников*

Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., 5, Санкт-Петербург, 194021 Россия

*e-mail: eshkolnikov@yandex.ru

Поступила в редакцию 05.04.2018 г. После доработки 20.08.2018 г. Принята к публикации 08.10.2018 г.

Методами измерения плотности, микротвердости, температурной зависимости электропроводности, рентгенофазового анализа и оптической микроскопии закаленных образцов исследована кинетика и механизм превращений при объемной изотермической кристаллизации полупроводниковых стекол $AsSe_{1.5}Pb_x$ (x = 0, 0.025, 0.13) в интервале температур $210-340^{\circ}$ С. Анализ кинетики валовой объемной кристаллизации стекол выполнен по данным измерения плотности с использованием уравнения Колмогорова–Аврами, обобщенного на ступенчатые и неполные изотермические превращения.

Ключевые слова: ступенчатая объемная термокристаллизация стекол, ситаллы, степень завершенности кристаллизации, кинетические параметры изотермической валовой кристаллизации, обобщенное уравнение Колмогорова—Аврами

DOI: 10.1134/S0132665119010086

введение

В работе [1] исследовано влияние добавок Sn 5, 7.4 и 10 ат. % на кинетические параметры ступенчатых превращений при изотермической объемной кристаллизации стекол AsSe_{1.5}Sn_x (где $x \le 0.28$). Полупроводниковое стекло As₂Se₃, используемое в волоконной ИК оптике и электронной технике, при температурах значительно выше температуры стеклования T_g (174 ± 3°C) кристаллизуется преимущественно с поверхности в изотермических [2] и неизотермических условиях [3, 4], как и многие халькогенидные [5] и оксидные [6] монолитные стекла и стеклопорошки. Кинетику изотермической кристаллизация стекла As₂Se₃ исследовали методами измерения плотности и электропроводности [2], рентгенофазового анализа [7], дифференциальной сканирующей калориметрии (ДСК) и микроскопии с учетом морфологии роста кристаллов, влияния условий синтеза и дисперсности стеклопорошков [8–10]. При легировании стекла As₂Se₃ оловом [1, 11], свинцом [12] и другими специально подобранными добавками [13, 14] возможна объемная термокристаллизация полученных стекол в оптимальных условиях.

Влияние концентрации свинца на характер и кинетические параметры реконструктивной кристаллизации стекол AsSe_{1.5}Pb_x изучено недостаточно.

Цель данной работы — сравнительный анализ кинетики и механизма изотермической кристаллизации стекол AsSe₁ ₅Pb_x (x = 0, 0.025 и 0.130) с использованием данных [12] и дополнительного экспериментального исследования объемной кристаллизации чистого и легированного свинцом стекла As₂Se₃.

МЕТОДИКА ЭКСПЕРИМЕНТА

Стекла As₂Se₃, AsSe_{1.5}Pb_{0.025} и AsSe_{1.5}Pb_{0.13}, называемые ниже стеклами I, II и III, синтезировали методом вакуумной плавки из особо чистых элементных веществ с общей массой 5 г в интервале 700-900°C с последующей закалкой ампул с расплавами в воздухе от 700°С (стекла I и II) и в токе холодного воздуха от 900°С (стекла III с содержанием 5 ат. % Рb, близким к предельному [15]). Контроль стеклообразования и однородности закаленных сплавов проводили аналогично [11]. Методика поэтапной изотермической кристаллизации стекол в виде шлифованных дисков отличалась от примененной в работе [1]. Для исключения вклада поверхностной кристаллизации в измеряемые свойства стекол I и III после термообработки при 280-340°С проводили механическое удаление внешнего закристаллизованного слоя. Формирование этого слоя происходило наряду с более медленной объемной термокристаллизацией указанных стекол и нередко приводило к разрушению образцов при подготовке их к исследованию. Закаленные образцы (не менее двух для кристаллизации при выбранной температуре) шлифовали, полировали, просматривали и фотографировали с использованием микроскопа МИМ-8. Определение эффективной плотности d, микротвердости Н и рентгенофазовый анализ (РФА) стеклокристаллов проводили при комнатной температуре аналогично [1]. Для количественного рентгеновского определения кристаллической фазы As₂Se₃, а также фазы PbSe в стеклах III с погрешностью 3-5% использовали относительное изменение интенсивности аналитических линий, а также применяли метод внутреннего стандарта [7] с градуировкой по специально приготовленным стеклокристаллическим композициям. Удельную электропроводность о полупроводниковых сплавов измеряли в изотермических условиях в интервале 20-100 или 20-250°C с помощью моста постоянного тока Р4060.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кинетику медленной объемной изотермической кристаллизации стекол As₂Se₃ и AsSe_{1.5}Pb_{0.025} исследовали в низкотемпературном интервале (210–240°C) с повышенной склонностью к объемному зарождению кристаллов и низкой скоростью их роста [16]. Типичные экспериментальные данные представлены в табл. 1–2 и на рис. 1. При термообработке стекол II и III (T_g соответственно 176 и 178 ± 3°C) в низкотемпературном интервале 210–260°C наблюдали двухступенчатую кристаллизацию с выделением нанодисперсной кубической фазы PbSe на первой стадии и основной фазы α -As₂Se₃ на второй ступени (табл. 2, 3). На это указывали изотермы плотности закаленных стекол и стеклокристаллов на различных этапах термокристаллизации (рис. 2) и результаты PФА (рис. 3, межплоскостные расстояния *d*(hkl) интенсивных рефлексов для PbSe равны 3.54, 3.06, 2.16, 1.85, 1.77 и 1.53 Å; для α -As₂Se₃ соответственно 4.98, 2.88, 2.84, 1.80, 1.78 и 1.72 Å). Микроскопические наблюдения и результаты измерения микротвердости свидетельствовали об однородности стеклокристаллов и высокой дисперсности кристаллических фаз.

Кинетика превращений при изотермической объемной кристаллизации стекол AsSe_{1.5}Pb_x (x = 0, 0.025, 0.130). При термообработке монолитных стекол As₂Se₃ наблюдали сначала индукционный период кристаллизации τ_{uhd} (125 ± 15 ч при 210° C, 11 ± 2 ч при 240° C), в котором практически не изменялись плотность, микротвердость и параметры удельной электропроводности ε_{σ} , σ_0 и $-\lg\sigma_{293}$ в выражении $\sigma = \sigma_0 \exp(-\varepsilon_{\sigma}/2kT)$ для собственной проводимости полупроводников [13]. На последующих этапах термо-

№ этапа	Время, ч	<i>H</i> ±2, кг∕мм ²	-lgσ ₂₉₃ (Ом	$\lg \sigma_0 \pm 0.1$ $^{1} \text{ cm}^{-1}$)	$\epsilon_{\sigma} \pm 0.03, \\ \Im B$	$d \pm 0.003,$ Γ/cM^3	P_d	<i>P</i> _{<i>x</i>}	Фазовый состав по данным РФА
1	0	140	12.1	3.3	1.78	4.605		0	Аморфная фаза
2	50	140	12.1	3.4	1.80	4.604	0		
3	100	143	12.0	3.0	1.76	4.604	0	~0	
4	150	137	12.0	3.0	1.76	4.612	5		As ₂ Se ₃ и остаточная
5	176	131	12.0	2.9	1.77	4.614	7	~5	стеклофаза
6	241	118	12.1	3.1	1.79	4.627	15		
7	292	114	12.1	3.0	1.80	4.631	18	15	
8	420	100				4.660	38	35	
9	490		12.2	3.4	1.83	4.739	91	90	
10	560	91	12.4	3.3	1.85	4.749	98		
11	600	85				4.752	100		As ₂ Se ₃
12	716	68	13.5	3.1	1.95	4.750		100	

Таблица 1. Кинетические данные объемной кристаллизации стекла As_2Se_3 при 210°C*

* Данные Э.Ю. Бессоновой и автора.

Таблица 2. Кинетические данные ступенчатой объемной кристаллизации стекла $AsSe_{1.5}Pb_{0.025}$ при 210°C

No	Bnewg	H+2	$-lg\sigma_{293}$	$\textrm{lg}\sigma_0\pm0.1$	$\epsilon + 0.03$	$d \pm 0.003$	P_d	P_{x}	Фазовый состав
этапа	Ч	н ± 2, кг/мм ²	(Ом	¹ см ⁻¹)	эВ	и ± 0.005, г/см ³		%	по данным РФА
1	0	152	12.1	2.8	1.75	4.705	0	0	Аморфная фаза
2	0.5	172	12.1	3.2	1.80	4.719	70		PbSe и
3	1	170	12.0	3.2	1.78	4.724	95	~90 (PbSe)	стеклофаза
4	2	168	12.0	3.1	1.79	4.725	100		
5	4	167	11.9	3.0	1.76	4.720	100	100 (PbSe)	
6	21.5	172	10.8	2.5	1.56	4.716			As_2Se_3 ,
7	32	174	10.7	2.2	1.52	4.715	~0		PbSe и остаточная
8	60	167	9.6	1.2	1.27	4.717	1		стеклофаза
9	85	166	9.7	0.6	1.20	4.746	18	$12 (As_2Se_3)$	
10	106	170	9.5	0.1	1.11	4.782	38	33	
11	126	162				4.813	56		
12	151	127	9.0	-0.5	0.90	4.857	81	78	
13	200	110				4.889	99		
14	220	105	8.7	-0.2	0.81	4.890	100		
15	240	103	8.6	-0.6	0.80	4.889		100	

обработки (табл.1) видно постепенное повышение плотности на 3.3%, понижение микротвердости примерно в 2 раза и электропроводности на 1.5 порядка в результате кристаллизации моноклинной фазы α -As₂Se₃ с сохранением структуры ближнего порядка.

Рис. 1. Зависимости измеренных при 20°С величин плотности d, микротвердости H и параметров удельной злектропроводности кристаллизующихся стекол AsSe_{1.5}Pb_{0.025} от времени термообработки при 240°С.

Рис. 2. Зависимости измеренных при 20°С величин плотности *d* и микротвердости *H* кристаллизующихся стекол AsSe_{1.5}Pb_{0.13} от времени термообработки при 240 (I), 260 (II) и 280°С (III).

При кристаллизации стекол с 1 ат. % Рb выделение первичной фазы PbSe приводит к незначительному повышению плотности (до 0.4%) закаленных стеклокристаллов (табл. 2) без образования отчетливой ступени на изотермах плотности (рис. 1) в отличие от изотермической объемной кристаллизации стекол III с 5 ат. % Рb при 240 и 260°С (рис. 2). Согласно данным РФА, в исходных стеклах III в отличие от стекол II намечалась фаза PbSe.

F ·										
Νο	Bnewg	H+2	$-lg\sigma_{293}$	$\lg \sigma_0 \pm 0.1$	s + 0.03	$d \pm 0.002$	P_d	P_x	Фазовый	
этапа	и Ч	<i>п</i> ± 2, кг/мм ²	(Ом	¹ см ⁻¹)	е _б ± 0.05, эВ	<i>и</i> <u>г</u> 0.002, г/см ³	%		по данным РФА	
1	0	175	8.9	2.1	1.29	5.100	0	~0	Аморфная фаза	
2	1.0	177	8.8	2.2	1.29	5.105	15	20 (PbSe)	PbSe и	
	1.5	178	8.7	2.3	1.27	5.118	53		стеклофаза	
3	2.0	181	8.5	2.4	1.25	5.130	88	85		
4	2.5	182	8.4	2.4	1.23	5.133	97			
5	10	184	8.0	2.6	1.24	5.134	100	100		
6	20	185	7.9	1.9	1.15	5.134	0	~0	As_2Se_3 ,	
7	35	201	7.8	2.0	1.14	5.152	12		РbSеи остаточная	
8	45	187	7.8	1.4	1.08	5.176	28	22 (As_2Se_3)	стеклофаза	
9	60	153	8.2	2.0	1.20	5.242	71	65		
10	70	158	8.2	1.7	1.12	5.271	90	88		
11	85	150	9.3	1.3	1.30	5.285	99			
12	100	172	10.5	2.8	1.55	5.286	100			
13	141	156	11.7	2.3	1.62	5.283	97	100		
14	376	125-108	7.5*	-5.2*	0.28*	5.272	90	95		
			10.2	3.3	1.58					
15	486	120-102	13.1	4.2	2.02	5.260	83			

Таблица 3. Кинетические данные ступенчатой объемной кристаллизации стекла AsSe_{1.5}Pb_{0.13} при 260°C

* Параметры примесной проводимости в интервале 20-100°С.

При изотермической кристаллизации в низкотемпературном интервале $210-260^{\circ}$ С эффективная плотность закаленных стеклокристаллов возрастала на первой и второй ступенях, приближаясь к предельным значениям (рис. 1, 2, табл. 2, 3). Степень завершенности кристаллизации α_d определена, как и ранее [1, 2], согласно выражению

$$\alpha_d = (d_{\tau} - d_0) / (d_{\infty} - d_0), \tag{1}$$

где d_0 , d_{τ} и d_{∞} – плотность материала соответственно в исходном состоянии, в данный момент кристаллизации τ и в конце расстекловывания исследуемой фазы. Результаты определения процента кристаллизации $P_d = 100\alpha_d$ для чистого и легированного свинцом стекла As₂Se₃ представлены в табл.1–3. Значения P_d по данным измерения плотности удовлетворительно согласуются со значениями P_x , определенными методом РФА для фазы As₂Se₃.

Анализ изотерм $\alpha_d(\tau)$ в виде *S*-образных кривых с перегибом проведен на основе уравнения Колмогорова–Аврами [17], обобщенного на неполные [18] и ступенчатые [1, 13] изотермические фазовые превращения в следующем виде:

$$\alpha_i = 1 - \exp\left(-k_i \tau^n_{\text{KVH},i}\right),\tag{2}$$

где α_i — степень завершенности кристаллизации по отношению к анализируемой *i*-фазе, k_i , n_i — константа валовой скорости и кинетический параметр кристаллизации *i*-фазы; $\tau_{\text{кин}}$ — кинетическое время кристаллизации, определяемое разностью общего времени

Рис. 3. Рентгеновские дифрактограммы поликристаллов PbSe (*I*), As₂Se₃ (*2*) и стеклокристаллов AsSe_{1.5}Pb $_{0.13}$ после термообработки: 102 ч при 340°C (*3*), 90 ч при 310°C (*4*), 190 ч при 280°C (*5*), 376 ч при 260°C (*6*). Дифракционные максимумы фазы As₂Se₃ заштрихованы, остальные линии принадлежат фазе PbSe, излучение Cu K_{α} .

термообработки т и индукционного периода $\tau_{инд}$ кристаллизации *i*-фазы. При выводе уравнения Колмогорова—Аврами предполагали отсутствие индукционного периода превращения, неизменность скорости нуклеации или концентрации готовых зародышей, а также скорости роста кристаллов и стерического фактора в течение всего превращения. Следует заметить, что наличие индукционного периода на экспериментальных изотермах α (т) приводит к завышению значений параметра *n* валовой кристаллизации стекол [8, 9, 12].

В результате двойного логарифмирования уравнение (2) для анализируемой ступени переходит в выражение

$$\lg[-\lg(1-a)] = \lg(k/2.3) + n\lg\tau_{_{\rm KHH}},\tag{3}$$

дающее прямую линию в координатах $\lg[-\lg(1 - \alpha)] = f(\lg \tau_{кин})$. По прямолинейным участкам изотерм на рис. 4 и 5 определены кинетические параметры *n* и $-\lg k$ для кристаллизации фазы As₂Se₃ в стеклах I–III (табл. 4). Найденные значения кинетического параметра *n* свидетельствуют о преимущественно гетерогенном зарождении и двумерном росте кристаллов As₂Se₃ в исследуемых стеклах I–III, как и в стеклах AsSe_{1.5}Sn_x [1]. Морфология роста в виде пластинок характерна для монокристаллов As₂Se₃ [19] и установлена прямым методом электронной микроскопии для растущих индивидуальных кристаллов в стекле As₂Se₃ [8]. Однако с этим наблюдением не согласуются высокие значения параметра *n* > 4 и *n* > 3, полученные соответственно в работах [8] и [9] при исследовании кинетики валовой изотермической кристаллизации стеклопорошков As₂Se₃ методом ДСК. Анализ показывает, что после исключения индукционного

Рис. 4. Кинетические кривые изотермической объемной кристаллизации стекла $As_2Se_3(a)$ и вторичной основной фазы As_2Se_3 из стекол $AsSe_{1.5}Pb_{0.025}(a)$ при 210 (1) и 240°C (2). Различные обозначения точек относятся к разным образцам кристаллизующихся стекол.

периода на изотермах $\alpha(\tau)$ получаются значения кинетического параметра *n* (2.1–2.5), согласующиеся с моделью преимущественно гетерогенного зарождения и двумерного роста кристаллов в стеклопорошках As₂Se₃.

Оценка кинетического параметра *n* на первой ступени кристаллизации (фаза PbSe в стеклах III, табл. 3) дает значение ~3.6. В соответствии с теоретической моделью [17, 18] это может означать трехмерный линейный рост гомогенно образующихся и уже име-

Таблица 4. Кине	етические параметры изот	ермической кристал	лизации стекла As ₂ Se ₃	и фазы As ₂ Se ₃
из стекол AsSe _{1.5}	5Pb _x			

Стекло		As_2Se_3		AsSe _{1.5}	Pb _{0.025}	$AsSe_{1.5}Pb_{0.13}$			
$t \pm 1^{\circ} C$	210	240	250 [2]	210	240	240	260	280	310
$n \pm 0.1$	1.7	1.6	2.1	2.05	1.95	2.1	2.0	1.8	1.7
$-\lg k \pm 0.2$	10.9	89	9.9	11.0	9.27	11.1	9.8.	8.6	5.8 - 8.0
$-n^{-1}\lg k$	6.4	5.5	4.7	5.4	4.76	5.3	4.9 ± 0.3	4.8	4.1-3.8
$\lg \tau_{_{\rm HHJ}} \pm 0.1$	5.65	4.58	4.4	5.3	4.32	5.2 ± 0.3	4.65 ± 0.3	4.3	3.4
lg $\tau_{0.5,\rm KHH}\pm 0.1$	6.3	5.45	4.6	5.4	4.7	5.3	4.9	4.8	3.9

Рис. 5. Кинетические кривые изотермической объемной кристаллизации вторичной основной фазы As₂Se₃ из стекол AsSe_{1.5}Pb_{0.013} при 240 (*1*), 260°C (*2*) и 280°C (*3*). Различные обозначения точек относятся к разным образцам с указанными номерами.

ющихся ~40% готовых зародышей первичной фазы PbSe в стеклах III (см. табл. 3) в момент достижения заданной температуры кристаллизации. По-видимому, наноразмерные ассоциаты Pb(II)содержащих структурных единиц в стеклах II и III обеспечили при оптимальной термообработке преимущественно гомогенное зарождение кристаллов PbSe.

Низкотемпературная изотермическая кристаллизация фазы PbSe в стеклах с 1 ат. % Pb ускоряла кристаллизацию вторичной основной фазы As₂Se₃, уменьшая в 2 раза индукционный период начала выделения фазы As₂Se₃ (см. табл. 1, 2) и в 6–8 раз кинетический период полупревращения $\tau_{0-0.5, \text{ кин}}$ (табл. 4). Вероятно, это связано с высокой дисперсностью первичной фазы PbSe и близостью термических коэффициентов линейного расширения 2.0×10^{-5} и 2.2×10^{-5} K⁻¹ соответственно PbSe и As₂Se₃ [8, 20].

При термообработке стекол III с концентрацией Pb, близкой к предельной [15], наблюдали значительное влияние скорости закалки расплавов на скрытый период кристаллизации вторичной основной фазы As₂Se₃ (см. рис. 5 и табл. 4). При низкотемпературной кристаллизации стекол III с 5 ат. % Pb выделение тонкодисперсной первичной фазы PbSe, как и фазы SnSe в стеклах AsSe_{1.5}Sn_{0.13} с 5 ат. % Sn [1], инициировало

Степень	Стекло As_2Se_3	Стекло AsSe _{1.5} Pb _{0.13}		
кристаллизации α		Е, кДж/моль		
~0	170 ± 9	155 ± 7	144 ± 13	
0.25	144 ± 9	127 ± 6	129 ± 10	
0.50	140 ± 7	110 ± 5	109 ± 9	
0.75	143 ± 8	101 ± 5	105 ± 8	
0.90	141 ± 8	97 ± 4	101 ± 7	

Таблица 5. Эффективная энергия активации (E) изотермической объемной кристаллизации стекла As_2Se_3 и фазы As_2Se_3 из стекол $AsSe_1 _5Pb_x$ в интервале $210-260^{\circ}C$

гетерогенное объемное зарождение вторичной основной фазы As₂Se₃ с уменьшением термодинамического ΔG^* и кинетического барьера зарождения $\Delta G'_a$ [5, 21] по сравнению с чистым стеклом As₂Se₃. Из-за сильного различия ионности химических связей As–Se и Pb–Se (~4 и 21% по Полингу), диэлектрической проницаемости кристаллов As₂Se₃ и PbSe (~10 и 206 [22]) и менее выраженного кристаллохимического подобия этих фаз [13, 20] следует ожидать меньшую в сравнении с SnSe [1] эффективность первичной фазы PbSe как инициатора гетерогенного объемного зарождения кристаллов фазы As₂Se₃.

Из зависимостей $n^{-1} \lg k(T^{-1})$ по данным табл. 4 и методом сечения кинетических кривых на рис. 4–5 найдены значения эффективной энергии активации *E* для низкотемпературной кристаллизации фазы As₂Se₃ в стеклах I–III аналогично [1]. Из табл. 5 видно, что найденная из зависимостей $\lg \tau_{\rm инд} - T^{-1}$ энергия (энтальпия) активации *E*' зарождения ($\alpha \sim 0$) кристаллов фазы As₂Se₃ уменьшается при легировании стекла As₂Se₃ свинцом и превышает энергию активации *E*'' роста кристаллов вторичной фазы ($\alpha > 0$). По нашим данным поверхностной кристаллизации полированных стекол As₂Se₃ энтальпия активации зарождения кристаллов *E*'' (160 ± 10 кДж/моль) существенно превышает энтальпию роста кристаллического слоя As₂Se₃ (*E*'' = 130 ± 8 кДж/моль) в интервале 240–330°С. Исследование термокристаллизации стеклопорошков As₂Se₃ методом электронной микроскопии [8] приводит к значениям *E*'' от 150 до 130 кДж/моль в интервале 240–300°С.

Процесс реконструктивного роста кристаллов фазы As_2Se_3 из стекол II и III описывается интервалом уменьшающихся значений энергии активации *E* (табл. 5). Однако при увеличении концентрации Pb от 1 до 5 ат. % заметного ускорения кристаллизации основной фазы As_2Se_3 не наблюдается. Полученные результаты объясняются в основ-

Рис.6. Микрофотоснимки стеклокристаллов AsSe_{1.5}Pb_{0.013} (увеличение ×2000) после термообработки: 190 ч при 280°С (*a*), 102 ч при 340°С (*б*).

Рис. 7. Зависимости параметров удельной электропроводности кристаллизующихся стекол AsSe_{1.5}Pb_{0.13} от времени термообработки при 260 (1, 3, 5) и 310°C (2, 4, 6). Штриховые кривые относятся к примесной электропроводности в интервале 20–100°C.

ном тем, что выделение первичной фазы PbSe в стеклах III приводит к существенному отклонению состава остаточной стеклофазы от стехиометрического соотношения мышьяка и селена в соединении As₂Se₃ в соответствии с уравнениями ступенчатых превращений:

1.
$$AsSe_{1.5}Pb_{0.13}(c) = 0.13PbSe(\kappa) + AsSe_{1.37}(c),$$

2. $AsSe_{1.37}(c) = 0.5yAs_2Se_3(\kappa) + As_{1-y}Se_{1.37-1.5y}(c), y \le 0.69$

Для остаточной стеклофазы, приближающейся по составу к трудно кристаллизующейся эвтектике $AsSe_{1.1}$ системы As_2Se_3 —AsSe [20], характерна более низкая кристаллизационная способность, чем у стеклообразующих соединений As_2Se_3 и AsSe [2, 5].

При гетерогенном объемном зарождении и двумерном росте кристаллов фазы As_2Se_3 (n = 2 в уравнении (2)) константа валовой скорости кристаллизации определяется формулой [1, 18]

$$k = \pi l N u, \tag{4}$$

где l — толщина растущей пластинки кристалла (~10⁻⁷ см для As₂Se₃), N — объемная концентрация готовых центров кристаллизации. Оценка концентрации готовых центров N по формуле (4) с использованием данных k (табл. 4) дает значения 8×10^9 и 7×10^8 см⁻³ для объемной гетерогенной кристаллизации фазы As₂Se₃ на второй ступени при 240°C соответственно в стеклах II и III (при допущении постоянства в этих стеклах величины $u = (3.4 \pm 0.1) \times 10^{-7}$ см \cdot с⁻¹, согласно данным измерения в стекле As₂Se₃ при 240°C [8]). Аналогичная оценка по данным табл. 4 концентрации центров N для гетерогенной изотермической кристаллизации чистого стекла As₂Se₃ при 240°C дает 2×10^8 см⁻³, а по скорости гомогенного зарождения ($I \sim 3$ см⁻³ с⁻¹ [5]) и индукционному периоду – 2×10^5 см⁻³. Анализ известных формул [16, 21] для скорости стационарного зарождения пластинчатых кристаллов As₂Se₃ в стеклах AsSe_{1.5}Pb_x показывает, что при снижении термодинамического барьера зарождения кристаллов ΔG^* на 15% скорость гетерогенного зарождения на нанокристаллах PbSe может превысить скорость гомогенного зарождения кристаллах PbSe может по

добного увеличения (в ~450 раз) показана в работе [23] прямыми измерениями скорости стационарного зарождения кристаллов дисиликата лития на наночастицах Ag и в объеме чистого стекла $Li_2O \cdot 2SiO_2$.

Влияние концентрации Pb и температуры на характер кристализации и свойства кристализующихся стекол $AsSe_{1.5}Pb_x$ (x = 0, 0.025, 0.13). При постепенном легировании стекла As_2Se_3 свинцом до 6 ат. % повышаются плотность и микротвердость, электропроводность σ_{293} имеет минимум, а параметры ε_{σ} и σ_0 – максимум у стекла с 0.5–1 ат. % Pb [15]. Авторы более поздней работы [22] наблюдали такое же влияние концентрации Pb на микротвердость и параметры электропроводности *p*-типа закаленных и отожженных гомогенных стекол $AsSe_{1.5}Pb_x$ ($x \le 0.13$). Вероятно, указанные изменения свойств вызваны образованием в этих стеклах метастабильных тетраэдрических с. е. $PbSe_{4/2}$ и тригонально-пирамидальных с. е. $Se_{2/2}$ PbSe_{1/3}, аналогичных Sn-содержащим с. е. в стеклах $AsSe_{1.5}Pn_x$ [11]. В процессе ДТА стекол $AsSe_{1.5}Pb_x$ со скоростью нагревания 20 К/мин наблюдались экзоэффект кристаллизации и эндоэффект плавления, которые возрастали при увеличении концентрации Pb от 1 до 5 ат. % в закаленных стеклах и еще сильнее после термообработки вблизи T_g [22].

На начальных этапах низкотемпературной кристаллизации стекол II и III повышались микротвердость и электропроводность σ_{293} (табл. 2, 3, рис. 1, 2). Измеренная в соответствии с ГОСТ 743–41 химическая стойкость ситаллов, полученных кристаллизацией стекол III при 240°С, была в 10–20 раз выше, чем у исходных стекол и закристаллизованного стекла As_2Se_3 [24]. Средний размер серебристых кристаллов PbSe (рис. 6) при низкотемпературной объемной кристаллизации не превышал 1 мкм, как и в оксидных ситаллах. Микротвердость примерно в 2 раза превышала микротвердость As_2Se_3 (см. табл. 1–3).

При термообработке стекол III в высокотемпературном интервале $280-340^{\circ}$ C с повышенной скоростью поверхностного зарожденния и линейного роста кристаллов As₂Se₃ (максимум скорости роста при ~350°C) наблюдали фактически одновременную кристаллизацию фаз PbSe и As₂Se₃. Наряду с первичными процессами расстекловывания в объеме развивалась поверхностная кристаллизация фазы As₂Se₃. При длительной термообработке происходили вторичные диффузионные процессы собирательной рекристаллизации и срастания кристаллов с понижением дисперсности, а также частичного растворения фазы As₂Se₃ (рис. 3 и 6) с образованием твердого раствора на основе PbSe [20]. Отмеченные вторичные процессы в стеклокристаллах III понижали их эффективную плотность и микротвердость (рис. 2), а также химическую стойкость в кислотах и щелочах [24]. Протеканием сопряженных первичных и вторичных процессов при высокотемпературной кристаллизации стекол III можно объяснить максимумы на изотермах эффективной плотности и микротвердости (рис. 2).

На рис. 7 представлены типичные кривые изменения параметров удельной электропроводности при низкотемпературной (260°С) и высокотемпературной (310°С) кристаллизации стекол III с 5 ат. % Рb. Выделение первичной полупроводниковой фазы PbSe ($\sigma_{293} = 0.05 \text{ Om}^{-1} \text{ cm}^{-1}$, $\varepsilon_{\sigma} = 0.3 \text{ эВ}$ [15]) при 260°С вызывало постепенное повышение проводимости σ_{293} примерно на порядок с монотонным уменьшением энергии активации электропроводности ε_{σ} от 1.29 до 1.08 эВ (табл. 3). На второй ступени кристаллизации выделялась основная фаза As₂Se₃ с низкой электропроводностью *p*типа (lg $\sigma_{293} = -13.5$, $\varepsilon_{\sigma} = 1.95$ эВ, табл. 1), и проводимость ситаллов III постепенно понижалась на пять порядков (табл. 3). Параметр ε_{σ} ситаллов постепенно приближался (рис. 7, кривая *I*) к величине ε_{σ} матричной гетерогенной системы [25] на основе связной фазы As₂Se₃ с разобщенными включениями PbSe. При высокотемпературной кристаллизации (310–340°С) с одновременным выделением фаз PbSe и As₂Se₃ параметр ε_{σ} стеклокристаллов III уменьшался (рис. 7, кривая 2), приближаясь к величине ε_{σ} фазы PbSe по мере укрупнения и срастания кристаллов PbSe (рис. 6, δ). При этом происходило изменение носителей заряда с *p*-типа у As₂Se₃ на *n*-тип, как и у поликристалла PbSe. Параметры электропроводности стеклокристаллов II с 1 ат. % Pb имели промежуточные значения (рис. 1, табл. 1, 2) между параметрами фаз PbSe и As₂Se₃ изза малого содержания PbSe и медленного протекания вторичных процессов создания матричной гетерогенной системы.

ЗАКЛЮЧЕНИЕ

Исследована кинетика валовой объемной кристаллизации стекол $AsSe_1 SPb_x$ (x = 0, 0.025 и 0.130). Наличие индукционного периода на экспериментальных изотермах $\alpha(\tau)$ приводит к завышению значений кинетического параметра *п* валовой кристаллизации стекол. При изотермической кристаллизации стекла As₂Se₃, легированного свинцом, в низкотемпературном интервале 210-260°С существенно понижаются термодинамический и кинетический барьеры объемного гетерогенного зарождения пластинчатых кристаллов As_2Se_3 (параметр $n = 2.0 \pm 0.1$) на нанокристаллах первичной фазы PbSe. Добавка 1 ат. % Рb к стеклу As₂Se₃ уменьшает примерно в 2 раза индукционный период выделения фазы As₂Se₃ и в 6-8 раз кинетический период полупревращения. Энтальпия активации Е зарождения кристаллов фазы As₂Se₃ на 15-30% превышает энтальпию активации Е" двумерного роста кристаллов этой фазы. Реконструктивная ступенчатая кристаллизация стекол AsSe_{1.5}Pb_x связана с непрерывным изменением химического состава и характеризуется интервалом уменьшающихся значений энергии активации. При длительной высокотемпературной термообработке стекол As₂Se₃ с 5 ат. % Рb в интервале 280-340°С наблюдаются одновременно объемно-поверхностное расстекловывание фаз PbSe и As_2Se_3 и вторичные диффузионные процессы с понижением дисперсности, плотности, микротвердости и химической стойкости стеклокристаллов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Школьников Е.В. Кинетика ступенчатой объемной кристаллизации стекол AsSe_{1.5}Sn_x ($x \le 0.28$) // Физ. и хим. стекла. 2017. Т. 43. № 2. С. 172–183. [*Shkol'nikov E.V.* Kinetics of stepwise bulk crystallization of AsSe_{1.5}Sn_x ($x \le 0.28$) Glasse // Glass Physics and Chemistry. 2017. V. 43. № 2. Р. 137–145.].
- 2. Школьников Е.В. Исследование кинетики кристаллизации стеклообразного As₂Se₃ // Сб. Химия твердого тела. Л.: ЛГУ, 1965. С. 187–198. [*Shkol'nikov E.V.* Solid State Chemistry. N.Y. 1966. P. 132–141.].
- 3. *Thornburg D.D., Johnson R.I.* Thermal analysis of bulk amorphous arsenic triselenide // J. Non-Crystalline Solids. 1975. V. 17. № 1. P. 2–8.
- 4. *Svoboda R. a. Malek J.* Non-isothermal crystallization kinetics of As₂Se₃ glass studied by DSC // Thermochem. Data. 2014. V. 579. № 1. P. 56–63.
- Школьников Е.В. О взаимосвязи структурно-химических особенностей и кинетических параметров кристаллизации стекла // Стеклообразное состояние. Тр. VII Всес. Совещ. Л.: Наука, 1983. С. 131–135.
- Юрицын Н.С., Фокин В.М., Калинина А.М., Филипович В.Н. Зарождение и рост кристаллов при поверхностной кристаллизации кордиеритового стекла // Физ. и хим. стекла. 1994. Т. 20. № 2. С. 171–183.
- 7. Школьников Е.В., Румш М.А., Мюллер Р.Л. Рентгеновское исследование кристаллизации полупроводниковых стекол AsSe_xGe_y // Физика твердого тела. 1964. Т. 6. № 3. С. 798–800.
- Henderson D.W., Ast D.G. Viscosity and crystallization kinetics of As₂Se₃ // J. Non-Crystalline Solids. 1984. V. 64. № 1. P. 43–70.
- 9. Cernoskova E., Holubova J., Cernosek Z. Crystallization kinetics of glassy As₂Se₃ // J. Therm. Anal. Calorim. 1999. V. 56. № 2. P. 423–428.
- Malek J., Shanelova J., Martinkova S., Pilny P. A. Kostal P. Crystal growth velocity in As₂Se₃ supercooled liquid // Crystal Growth a. Design, 2017. V. 17. № 9. P. 4990–4999.

- 11. Школьников Е.В. Структурно-химические особенности кристаллизующихся стекол систем Se-Sn и As₂Se₃-Sn // Физ. и хим. стекла. 2013. Т. 39. № 4. С. 529-537. [Shkol'nikov E.V. Snructural-Chemical Features of Crystallizing Glasses of Se-Sn and As₂Se₃-Sn Systems // Glass Phys. a. Chem. 2013. V. 39. № 4. P. 364-371.]
- 12. Школьников Е.В., Борисова З.У. К кинетике кристаллизации полупроводниковых сплавов на основе селенидов мышьяка и свинца // Вестник Ленинградского университета. Серия физики и химии. 1972. № 16. С. 118–124.
- 13. Школьников Е.В. О механизме структурно-химических превращений при расстекловывании халькогенидных полупроводников // Структура и свойства некристаллических полупроводников. Труды Шестой Международной конференции по аморфным и жидким полупроводникам, Ленинград, СССР 18–24 ноября 1975 г. Л.: Наука, 1976. С. 78–82.
- 14. *Аббасова Р.Ф., Ильяслы Т.М., Вейсова С.М.* Кинетика растворения и объемная кристаллизация халькогенидных стекол на основе As₂Se₃ и AsSe // Успехи современного естествознания. 2016. № 8. С. 9–14.
- 15. Школьников Е.В., Борисова З.У. Электропроводность и микротвердость стеклообразных и стеклокристаллических AsSe_{1.5}Pb_x // Вестник Ленинградского университета. Серия физики и химии. 1965. № 4. С. 120–127.
- 16. Школьников Е.В. Полуэмпирический расчет кривых Таммана для кристаллизации стекол As₂X₃ и TlAsX₂(X–S, Se, Te) // Физ. и хим. стекла. 1980. Т. 6. № 3. С. 282–288.
- 17. Avrami M. Kinetics of phase change. 11. Transformation time relations for random distribution of nuclei // J. Chem. Phys. 1940. V. 8. № 2. P. 212–224.
- 18. *Hay J. N.* Application of the modified avrami equations to polymer crystallization kinetics // Brit. Polym. J. 1971. V. 3. № 3. P. 74–82.
- Kitao M., N. Asakura N.A. Yamada S. Preparation of As₂Se₃ single crystals // Jap. J. AppI. Phys. 1968. V. 8. P. 499–500.
- 20. Виноградова Г.З. Стеклообразование и фазовые равновесия в халькогенидных системах. Двойные и тройные системы. М.: Наука, 1984. 176 с.
- 21. Филипович В.Н., Калинина А.М., Фокин В.М., Юрицын Н.С., Сычева Г.А. Кинетические закономерности зарождения кристаллов в объеме и на поверхности силикатных стекол // Физ. и хим. стекла. 1999. Т. 25. № 2. С. 327–336.
- 22. *Trnovcova' V., Fura'r I*. Physical properties of vitreous As₂Se₃ doped with lead // J. Optoelectronics a. Advanced Materials. 2010. V. 12. № 10. P. 2092–2096.
- 23. Сычева Г.А. Гомогенное и гетерогенное зарождение кристаллов серебросодержащих стекол и их оптические свойства // Физ. и хим. стекла. 2015. Т. 41. № 4. С. 530–535.
- 24. Школьников Е.В. Полупроводниковые стеклокристаалы на основе селенидов мышьяка и свинца // Изв. АН СССР. Неорган.материалы. 1973. Т. 9. № 1. С. 18–22.
- 25. Оделевский В.И. Расчет обобщенной проводимости гетерогенных систем // Журн. техн. физики. 1951. Т. 21. № 6. С. 667–677.