ЭФФЕКТИВНЫЕ ЗАРЯДЫ АТОМОВ ВТСП КЕРАМИК La_{2 – x}Sr_xCuO₄, ОПРЕДЕЛЕННЫЕ В РЕЗУЛЬТАТЕ АНАЛИЗА ПАРАМЕТРОВ ЯДЕРНОГО КВАДРУПОЛЬНОГО ВЗАИМОДЕЙСТВИЯ

© 2019 г. А. В. Марченко¹, Ф. С. Насрединов², В. С. Киселев¹, П. П. Серегин^{1, *}, К. Б. Шахович¹

¹Российский государственный педагогический университет им. А.И. Герцена, 191186, Россия, Санкт-Петербург, наб. р. Мойки, 48

²Санкт-Петербургский политехнический университет Петра Великого, 195251, Россия, Санкт-Петербург, ул. Политехническая, 29 *e-mail: ppseregin@mail.ru

> Поступила в редакцию 11.01.2018 г. После доработки 13.04.2018 г. Принята к публикации 08.10.2018 г.

Методом сравнения рассчитанных (модель точечных зарядов) и экспериментальных (мессбауэровская спектроскопия и ядерный магнитный резонанс) параметров ядерного квадрупольного взаимодействия показано, что эффективные заряды всех атомов решеток сверхпроводящих керамик $La_{2-x}Sr_xCuO_4$ соответствуют стандартным степеням их окисления за исключением атомов плоскостного кислорода, пониженный заряд которых интерпретируется как результат локализации на них дырки, возникающей при замещении ионов La^{3+} на Sr^{2+} .

Ключевые слова: высокотемпературные сверхпроводники, ядерное квадрупольное взаимодействие, мессбауэровская спектроскопия, эффективные заряды **DOI:** 10.1134/S0132665119010141

введение

Замещение ионов La³⁺ на Sr²⁺ в структуре керамических твердых растворов La_{2-x}Sr_xCuO₄ сопровождается появлением сверхпроводимости и решающую роль в этом процессе играют дырки, возникающие при замещении [1] (под дыркой понимается незаполненная валентная связь, которая проявляет себя как положительный заряд, численно равный заряду электрона). Пространственную локализацию дырок в решетках La_{2-x}Sr_xCuO₄ можно установить путем сравнения экспериментальных параметров ядерного квадрупольного взаимодействия (ЯКВ), определенных методами эмиссионной мессбауэровской спектроскопии (ЭМС) или ядерного магнитного резонанса (ЯМР), и параметров тензора градиента электрического поля (ГЭП), рассчитанных в рамках модели точечных зарядов [2].

Параметрами диагонализированного тензора ГЭП на ядрах-зондах в кристаллической решетке являются его главная компонента U_{zz} и параметр асимметрии $\eta = (U_{xx} - U_{yy})/U_{zz}$, где компоненты тензора ГЭП U_{xx} , U_{yy} , U_{zz} связаны соотношениями $U_{xx} + U_{yy} + U_{zz} = 0$ и $|U_{xx}| \le |U_{yy}| \le |U_{zz}|$.

Параметрами ЯКВ являются постоянная квадрупольного взаимодействия $C = eQU_{zz}$ (здесь eQ – квадрупольный момент ядра-зонда) и η , причем в общем случае

$$eQU_{zz} = eQ(1-\gamma)V_{zz} + eQ(1-R)W_{zz}, \quad \eta = (1/U_{zz})[(1-\gamma)V_{zz}\eta_{lat} + (1-R)W_{zz}\eta_{val}], \quad (1)$$

где V_{zz} , W_{zz} , U_{zz} – главные компоненты тензоров решеточного, валентного и суммарного ГЭП, $\eta_{\text{lat}} = (V_x - V_{yy})/V_{zz}$, $\eta_{\text{val}} = (W_{xx} - W_{yy})/W_{zz}$ – параметры асимметрии тензоров решеточного и валентного ГЭП, γ и R – коэффициенты Штернхеймера, которые учитывают антиэкранирование и экранирование внутренними электронными оболочками атома-зонда ГЭП, создаваемого внешними зарядами.

Для зондов с полностью (или наполовину) заполненной валентной оболочкой $W_{zz} \approx 0$ (такой зонд называется кристаллическим), расчет тензора кристаллического ГЭП можно проводить в рамках модели точечных зарядов, а экспериментальные параметры ЯКВ C_{exp} и η_{exp} сопоставляются с расчетными параметрами тензора кристаллического ГЭП:

$$\eta_{\text{lat}}$$
 и $C = \alpha V_{zz}$, где $\alpha = eQ(1 - \gamma)$. (2)

Такое сопоставление при наличии данных для достаточного числа зондов позволяет определить эффективные заряды всех атомов решетки.

При исследовании твердых растворов La_{2 – x}Sr_xCuO₄ методом ЭМС условия кристалличности зондов выполняются для изотопов ⁶⁷Cu(⁶⁷Zn) и ⁶⁷Ga(⁶⁷Zn) [3]. После распада материнских ядер ⁶⁷Cu и ⁶⁷Ga в узлах меди или лантана оказывается зонд ⁶⁷Zn²⁺ со сферически симметричной 3*d*¹⁰-оболочкой. Время жизни мессбауэровского уровня ⁶⁷Zn составляет ~10⁻⁵ с, что недостаточно для образования дефектов, компенсирующих разницу зарядов мессбауэровского зонда и замещаемого иона. В результате локальное окружение примесных атомов цинка в решетках La_{2 – x}Sr_xCuO₄ оказывается таким же, как у замещаемых атомов меди и лантана. Все это позволяет определить параметры тензора кристаллического ГЭП, создаваемого в узлах лантана и меди ионами кристаллической решетки.

В настоящей работе пространственное распределение зарядов в решетках твердых растворов La_{2 – x}Sr_xCuO₄ определено путем сравнения рассчитанных (модель точечных зарядов) и экспериментальных параметров ЯКВ. Для определения эффективных зарядов всех атомов решетки данных ЭМС на изотопах ⁶⁷Cu(⁶⁷Zn) и ⁶⁷Ga(⁶⁷Zn) оказалось недостаточно, были привлечены данные ЯМР изотопе ¹⁷O [5]. В процедуре сравнения были использованы величины $\alpha = eQ(1 - \gamma)$ для зондов ¹⁷O²⁻ и ⁶⁷Zn²⁺, экспериментально определение в работе [4]. Чтобы дополнительно проверить полученное пространственное распределение электронных дефектов были измерены эмиссиионные мессбауэровские спектры на изотопах ⁵⁷Co(^{57m}Fe) и ¹⁵⁵Eu(¹⁵⁵Gd) в катионных узлах решеток La_{2 – x}Sr_xCuO₄ (x = 0.1-1.0) и проведен анализ зависимостей их параметров ядерного квадрупольного взаимодействия от состава твердых растворов.

Методика эксперимента. В решетках твердых растворов La_{2-x}Sr_xCuO₄ атомы лантана (стронция) и меди занимают единственные позиции, атомы кислорода занимают две неэквивалентные позиции, обозначаемые как O(1) (апикальный кислород) и O(2) (планарный кислород) (рис. 1) [6]. Решетки La_{2-x}Sr_xCuO₄, состоят из четырех подрешеток, что описывается структурной формулой (La,Sr)₂CuO(l)₂O(2)₂. Расчет компонент тензора кристаллического ГЭП проведен на ЭВМ в рамках модели точечных зарядов:

$$V_{\alpha\alpha} = \sum_{k} e_k \sum_{n} \frac{1}{r_{kn}^3} \left(\frac{3\alpha_{kn}^2}{r_{kn}^2} - 1 \right) = \sum_{k} e_k G_{\alpha\alpha k}, \quad V_{\alpha\beta} = \sum_{k} e_k \sum_{n} \frac{3\alpha_{kn}\beta_{kn}}{r_{kn}^5} = \sum_{k} e_k G_{\alpha\beta k}, \tag{3}$$

где k – индекс суммирования по подрешеткам, n – индекс суммирования по узлам подрешетки, α и β – декартовы координаты, e_k – эффективные заряды атомов k-подрешетки, r_{kn} – расстояние от kn-иона до рассматриваемого узла. Суммирование про-

Рис. 1. Элементарная ячейка $La_{2-x}Sr_{x}CuO_{4}$.

водили внутри сферы радиуса 30 Å (больший радиус суммирования не давал изменения в результатах). Зависимости параметров элементарной ячейки от *x* взяты из [7], положение атомов в элементарной ячейке задавали согласно [6], а индекс суммирования в (3) по подрешеткам *k* принимал следующие значения: для La k = 1, для Cu – 2, O(1) – 3, O(2) – 4.

Эффективные заряды e_k — это заряды, которые требуются для описания электрического поля ионов кристаллической решетки с помощью кулоновского потенциала. Заряды e_k не следует рассматривать как точные значения электрических зарядов ионов в узлах кристаллической решетки. Есть два обстоятельства, которые необходимо учитывать при оценке полученных значений эффективных зарядов: величины e_k получены в предположении отсутствия валентного ГЭП на ядрах-зондах (для реальных зондов это условие выполняется только с некоторой точностью). Модель точечных зарядов требует сферичности ионов — источников ГЭП (отклонение распределения заряда в ионах хотя бы одной из подрешеток от сферического будет описываться как отклонение эффективных зарядов от "истинных"для ионов во всех узлах). Эффективные заряды дают хорошее представление о валентных состояниях ионов в узлах решетки и о существенных отклонениях от стандартных валентных состояний.

Для исследований были использованы образцы $La_{2-x}Sr_xCuO_4$;⁵⁷Co, $La_{2-x}Sr_xCuO_4$;⁶⁷Cu, $La_{2-x}Sr_xCuO_4$;⁶⁷Ga и $La_{2-x}Sr_xCuO_4$;¹⁵⁵Eu (x = 0.1-1.0). Синтез образцов $La_{2-x}Sr_xCuO_4$ проводили по керамической технологии [7]. Шихту составляли из смеси оксидов меди, лантана и карбонатов бария и стронция. Все реактивы марки "х. ч." Полученные образцы с $x \le 0.3$ были однофазными, имели структуру типа K_2NiF_4 с температура-

Рис. 2. Мессбауэровские спектры $La_{2-x}Sr_xCuO_4$:⁵⁷Со для x = 0.1, 0.5 и 1.0 при 80 К.

ми перехода в сверхпроводящее состояние $T_c = 25, 37, 32$ и <4.2 К соответственно для x = 0.1, 0.15, 0.2 и 0.3 (и это согласуется с литературными данными [7]). Образцы с $x \ge 0.4$ содержали небольшое количество второй фазы (<5%) [7].

Мессбауэровские источники ⁵⁷Со и ¹⁵⁵Еи готовили путем добавления нитратов кобальта или европия, меченые радиоактивными изотопами ⁵⁷Со и ¹⁵⁵Еи в исходную шихту. Мессбауэровские источники ⁶⁷Си и ⁶⁷Ga готовили методом диффузии соответ-

Узел	Зонд	Метод	$C_{\rm exp}$, MHz	η_{exp}	Ссылка
La, Sr	$^{67}Zn^{2+}$	ЭМС ⁶⁷ Ga(⁶⁷ Zn)	-2.7 (2)	≤0.2	[*]
Cu	$^{67}Zn^2$	ЭМС ⁶⁷ Cu(⁶⁷ Zn)	11.4 (5)	≤0.2	[*]
O(1)	$^{17}O^{2-}$	ЯМР ¹⁷ О	1.33 (13)	0.0	[5]
O(2)	¹⁷ O ^{2–}	ЯМР ¹⁷ О	4.6 (2)	0.36 (2)	[5]

Таблица 1. Экспериментальные параметры ЯКВ в узлах решетки La₁₈₅Sr₀₁₅CuO₄

[*] – Результаты настоящей работы.

Рис. 3. Мессбауэровские спектры $La_{2-x}Sr_xCuO_4$:⁶⁷Cu для x = 0.1, 0.5 и 1.0 при 4.2 К.

ствующих короткоживущих изотопов в готовую керамику. Для нелегированных образцов La_{2 – x}Sr_xCuO₄ отжиг в аналогичных условиях не привел к изменению величин T_c .

Мессбауэровские спектры снимали при 80 К (⁵⁷Co, ¹⁵⁵Eu) и 4.2 К (⁶⁷Cu, ⁶⁷Ga) с поглотителями K_4^{57} Fe(CN)₆ · 3H₂O, ¹⁵⁵GdPd₃ и ⁶⁷ZnS соответственно.

Экспериментальные результаты и их обсуждение. Типичные эмиссионные мессбауэровские спектры $La_{2-x}Sr_xCuO_4$:⁵⁷Co, $La_{2-x}Sr_xCuO_4$:⁶⁷Cu, $La_{2-x}Sr_xCuO_4$:⁶⁷Ga и $La_{2-x}Sr_xCuO_4$:¹⁵⁵Eu приведены на рис. 2–5, а результаты их обработки сведены в табл. 1 и на рис. 6 и 7.

Для определения эффективных зарядов решетки La_{2 – x}Sr_xCuO₄ была составлена система четырех уравнений. Уравнение электронейтральности

$$2e_1 + e_2 + 2e_3 + 2e_4 = 0. (4)$$

Уравнение для рассчитанной главной компоненты тензора ГЭП и экспериментальной постоянной квадрупольного взаимодействия зонда ⁶⁷Zn в узлах лантана

Рис. 4. Мессбауэровские спектры $La_{2-x}Sr_{x}CuO_{4}$.⁶⁷Ga для x = 0.1, 0.5 и 1.0 при 4.2 К.

$$\alpha_{Zn} \sum_{k=1}^{k=4} e_k G_{zzk1} = C_1.$$
(5)

Уравнение для рассчитанной главной компоненты тензора ГЭП и экспериментальной постоянной квадрупольного взаимодействия зонда ⁶⁷Zn в узлах меди

$$\alpha_{Zn} \sum_{k=1}^{k=4} e_k G_{zzk2} = C_2.$$
 (6)

Уравнение для рассчитанной главной компоненты тензора ГЭП и экспериментальной постоянной квадрупольного взаимодействия зонда ¹⁷О в узлах апикального кислорода O(1)

$$\alpha_{\rm O} \sum_{k=1}^{k=4} e_k G_{zzk3} = C_3, \tag{7}$$

Рис. 5. Мессбауэровские спектры $La_{2-x}Sr_xCuO_4$: ¹⁵⁵Eu для x = 0.1, 0.5 и 1.0 при 80 К.

где величины α_0 и α_{Zn} были определены в [4] путем сравнения экспериментального значения постоянной квадрупольного взаимодействия в узлах O(1), Y и Cu решетки YBa₂Cu₃O₇ (данные ЯМР и ЭМС) а также расчетных значений V_{zz} для этих узлов.

Для формирования последнего уравнения мы использовали данные ЯМР на изотопе ¹⁷О для состава La_{1.85}Sr_{0.15}CuO₄ [5] (см. табл. 1). Для решетки La_{1.85}Sr_{0.15}CuO₄ тензоры кристаллического ГЭП аксиально симметричны для узлов как апикального O(1), так и планарного O(2) кислорода. Согласно данным ЯМР на изотопе ¹⁷О, параметр асимметрии тензора ГЭП для узлов планарного кислорода отличен от нуля (табл. 1), что свидетельствует о валентном вкладе в суммарный ГЭП для этих узлов. Иными словами, уравнение (7) должно быть записано для центров апикального кислорода O(1).

Эффективные заряды, полученные с использованием данных таблицы и величин $\alpha_{Zn} = 20.1 \text{ MHz Å}^3/e \text{ i} \alpha_0 = 14.9 \text{ MHz Å}^3/e [4]$, отвечают пониженному заряду атомов O(2), что может быть интерпретировано как существование дырки в энергетической зоне, образованной преимущественно электронными состояниями планарного кислорода. Отклонения зарядов всех атомов (кроме атомов планарного кислорода) от стандартных степеней окисления относительно малы, и, варьируя значения экспериментальных величин в пределах их погрешностей, можно получить заряды, отвечающие стандартным степеням окисления:

Рис. 6. Зависимости P(x) (кривые) и $P_{exp}(x)$ для узлов меди La_{2 – x}Sr_xCuO₄. Дырка находится в подрешетке меди (1); дырка находится в подрешетке апикального кислорода (2); дырка распределена между подрешетками апикального и планарного кислорода (3); дырка находится в подрешетке планарного кислорода (4).

Рис. 7. Зависимости P(x) (кривые) и $P_{exp}(x)$ (светлые и залитые квадраты) для узлов лантана $La_{2-x}Sr_{x}CuO_{4}$: дырка находится в подрешетке меди (1); дырка находится в подрешетке апикального кислорода (2); дырка распределена между подрешетками апикального и планарного кислорода (3); дырка находится в подрешетке планарного кислорода (4).

$$(La_{1.85}Sr_{0.15})^{2.925+}Cu^{2+}O(1)_2^{2-}O(2)_2^{1.925-}$$

Подтверждение предложенной модели пространственного распределения электронных дефектов в решетках $La_{2-x}Sr_xCuO_4$ (x = 0.1-1.0) было получено в результате сравнения расчетных зависимостей $P(x) = [V_{zz}]_x/[V_{zz}]_x = 0.1$ и экспериментальных зави-

симостей $P_{\exp}(x) = [eQU_{zz}]_x/[eQU_{zz}]_{x=0}$ в катионных узлах. Экспериментальные зависимости были получены с использованием ЭМС на изотопах ⁵⁷Co(^{57m}Fe), ⁶⁷Cu(⁶⁷Zn), ⁶⁷Ga(⁶⁷Zn) и ¹⁵⁵Eu(¹⁵⁵Gd). К данным, соответствующим $x \ge 0.4$, следует относиться с некоторой осторожностью, т.е. эти составы были двухфазными. В измеренных мессбауэровских спектрах дополнительных линий не было обнаружено. Зависимости P(x)и $P_{\exp}(x)$ для узлов меди и лантана приведены на рис. 6 и 7. Расчет P(x) проведен для четырех моделей.

Зависимости P(x) для всех узлов аппроксимированы квадратичными полиномами, в то время как в работе [3] в области составов $0 \le x \le 0.3$ было достаточно линейной аппроксимации.

Как видно из рис. 6 и 7, уменьшение величины eQU_{zz} в узлах меди и лантана с ростом *х* для центров ⁶⁷Zn²⁺, ^{57m}Fe³⁺ и ¹⁵⁵Gd³⁺ может быть количественно объяснено, если дырка локализуется преимущественно в позициях атомов планарного кислорода.

ЗАКЛЮЧЕНИЕ

Параметры ядерного квадрупольного взаимодействия в катионных узлах решеток $La_{2-x}Sr_xCuO_4$ определены с использованием эмиссионной мессбауэровской спектроскопии на изотопах ⁵⁷Co(^{57m}Fe), ⁶⁷Cu(⁶⁷Zn), ⁶⁷Ga(⁶⁷Zn) и ¹⁵⁵Eu(¹⁵⁵Gd) (постоянная квадрупольного взаимодействия *C* и параметр асимметрии η_{exp}) и рассчитаны в рамках модели точечных зарядов (главная компонента тензора градиента электрического поля V_{zz} и параметр асимметрии η_{lat}). Методом сравнения рассчитанных и экспериментальной зависимостей *C* и V_{zz} от *x* показано, что эффективные заряды всех атомов решеток $La_{2-x}Sr_xCuO_4$ соответствуют стандартным степеням их окисления за исключением атомов планарного кислорода, находящихся в одной плоскости с атомами меди. Пониженный заряд этих атомов объясняется локализации на них дырок, возникающих при замещении ионов La^{3+} на ионы Sr^{2+} .

СПИСОК ЛИТЕРАТУРЫ

- Мицен К.В., Иваненко О.М. Фазовые диаграммы купратов и пниктидов как ключ к пониманию механизма высокотемпературной сверхпроводимости // Успехи физических наук. 2017. Т. 187. С. 431–441.
- Seregin N., Marchenko A., Seregin P. Emission Mössbauer spectroscopy. Electron defects and Bose-condensation in crystal lattices of high-temperature superconductors. Verlag: LAP Lambert. Academic Publishing GmbH & Co. KG Saarbrücken. 2015. 325 p.
- 3. *Марченко А.В., Николаева А.В., Доронин В.А., Серегин Н.П.* Пространственная локализация точечных дефектов в La_{2 – x}Sr_xCuO₄ // Физ. и хим. стекла. 2014. Т. 40. С. 827–836.
- Марченко А.В., Насрединов Ф.С., Киселев В.С., Серегин П.П. Анализ параметров мессбауэровских спектров и спектров ядерного квадрупольного резонанса сверхпроводящей керамики YBa₂Cu₃O₇ // Физ. и хим. стекла. 2018. Т. 44. (В печати).
- 5. *Ishida K., Kitaoka Y., Zheng G.* ¹⁷O and ⁶³Cu NMR Investigations of high- T_c superconductor La_{1.85}Sr_{0.15}CuO₄ with $T_c = 38 \text{ K} // \text{Phys. Soc. Jap. 1991. V. 60. P. 1516–1524.$
- 6. Yvon K., Francois M. Crystal structure of high-T_c oxides // Z. Phys. B. 1989. V. 76. P. 415–456.
- Tarascon J.M., Greene L.H. Superconductivity at 40 K in the oxygen-defect La_{2-x}Sr_xCuO_{4-y}// Science. 1987. V. 236. P. 1373–1380.