ТЕРМИЧЕСКОЕ ПОВЕДЕНИЕ АНТИФЕРРОМАГНЕТИКОВ FeBO₃ И Fe₃BO₆ ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ

© 2019 г. Я. П. Бирюков¹, Р. С. Бубнова^{1, 2, *}, Н. В. Дмитриева^{1, 2}, С. К. Филатов²

¹Институт химии силикатов им. И.В. Гребенщикова РАН, Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2

²Санкт-Петербургский государственный университет, ИНо3, каф. кристаллографии, Россия, 199034, Санкт-Петербург, Университетская наб., 7/9

*e-mail: rimma bubnova@mail.ru

Поступила в редакцию 19.09.2018 г. После доработки 21.11.2018 г. Принята к публикации 05.12.2018 г.

В настоящей работе представлены результаты исследования термического поведения антиферромагнетиков FeBO₃ и Fe₃BO₆ по данным низкотемпературной терморентгенографии. Параметры элементарной ячейки при различных температурах уточнены методом Ритвельда. Рассчитаны коэффициенты термического расширения. Описана взаимосвязь расширения с кристаллическим строением.

Ключевые слова: бораты железа, антиферромагнетики, терморентгенография, термическое расширение, низкие температуры

DOI: 10.1134/S0132665119020033

введение

Благодаря редкому сочетанию магнитных [1], магнитоакустических [2], резонансных [3], электрических и электрохимических [4] свойств, антиферромагнетики FeBO₃ и Fe₃BO₆ являются объектами многочисленных исследований, находят свое применение в источниках синхротронного излучения [3], магнитных элементах памяти [5], анодных материалах для Li- и Na-ионных аккумуляторов [4, 6], электродах в газовых сенсорах [7], могут являться перспективными материалами для спинтроники.

Кристаллическая структура данных боратов состоит из октаэдров FeO₆ и борокислородных анионных групп, таких как изолированные треугольники в FeBO₃ (#34474-ICSD, тригональная сингония, пр. гр. *R*-3*c*, структурный тип кальцита, a = 4.626(1) Å, c = 14.493(6) Å, V = 268.6(6) Å³, Z = 6 [8]) и изолированные тетраэдры в Fe₃BO₆ (#1910-ICSD, ромбическая сингония, пр. гр. *Pnma*, изоструктурен норбергиту, a = 10.048(2) Å, b = 8.531(2) Å, c = 4.466(1) Å, V = 382.82 Å³, Z = 4 [9]). В структуре Fe₃BO₆ можно выделить анионоцентрированные треугольники OFe₃ [10].

Цель данной работы — исследование термического поведения $FeBO_3$ и Fe_3BO_6 в условиях отрицательных температур методом терморентгенографии, рассчет значений коэффициентов термического расширения α в широком интервале температур.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Образцы FeBO₃ и Fe₃BO₆ были получены методом твердофазного синтеза из реактивов Fe₂O₃ (99.99%) "ос. ч" и H₃BO₃ (99.90%) "х. ч". Полученные смеси компонентов тщательно перетирали в агатовой ступке в течение 1 ч, после чего прессовали таблетки в механическом прессе под давлением 80 кг/см². Для получения FeBO₃ суммарное время выдержки при температуре 670°C составило 100 ч, для Fe₃BO₆ – 900°C и 20 ч. Синтез был осуществлен в высокотемпературной печи Nabertherm HTC. Фазовый состав полученных образцов определен методом порошковой рентгеновской дифракции (Rigaku MiniFlex II, Со $K\alpha$, $2\theta = 5^{\circ}$ –70°). Параметры элементарной ячейки боратов и количественный фазовый анализ образцов определены при уточнении кристаллической структуры методом Ритвельда (при 25°C). Образец 1 : 1 содержал 93 мас. % FeBO₃ и 7 мас. % примеси Fe₂O₃, *a* = 4.623(3) Å, *c* = 14.482(6) Å, *V* = 268.1(6) Å³; Fe₃BO₆ был однофазным, *a* = 10.042(4) Å, *b* = 8.531(2) Å, *c* = 4.464(1) Å, *V* = 382.4(3) Å³.

Терморентгенография. Терморентгенографические съемки образцов FeBO₃ и Fe₃BO₆ выполняли с использованием дифрактометра Rigaku Utima IV со следующими параметрами: низкий вакуум, охлаждение азотом, Co K_{α} , 40 кB/35 мA, геометрия на отражение, высокоскоростной энергодисперсионный детектор D/teX Ultra. FeBO₃ исследовали в интервале температур от -180 до 70°C с шагом 10°C в диапазоне углов $2\theta = 10^{\circ}-90^{\circ}$, Fe₃BO₆ в интервале от -150 до 150°C, шаг 20°C, $2\theta = 10^{\circ}-70^{\circ}$. Обработку экспериментальных данных, вычисление параметров элементарной ячейки, аппроксимацию в функции от температуры и определение коэффициентов и фигур коэффициентов термического расширения проводили с использованием программного комплекса Rietveld To Tensor [11]. Кристаллические структуры были визуализированы с использованием программы VESTA [12].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В интервале температур исследования образцы $FeBO_3$ и Fe_3BO_6 не претерпевали фазовых превращений. На рис. 1, *а*, *б* приведены графики зависимостей параметров элементарной ячейки от температуры.

Параметры элементарной ячейки и объем ячейки FeBO₃ и Fe₃BO₆ были аппроксимированы полиномами второй степени во всем интервале температур исследования. Вычисленные по этим полиномам коэффициенты термического расширения при некоторых температурах приведены в табл. 1.

Из табл. 1 видно, что FeBO₃ расширяется резко анизотропно, что ожидаемо для соединения со структурой типа кальцита (рис. 2, *a*). Можно отметить, что и в области минимальных температур данное соединение не испытывает отрицательного теплового расширения (сжатия). Степень анизотропии $\alpha_{max}/\alpha_{min}$ уменьшается с ростом температуры.

 Fe_3BO_6 расширяется анизотропно (табл. 1), с ростом температуры наблюдается увеличение степени анизотропии. Сопоставление кристаллической структуры Fe_3BO_6 с фигурами коэффициентов тензора термического расширения приведено на рис. 2, *б*. Полученные данные сопоставимы с опубликованными ранее результатами исследования термического поведения Fe_3BO_6 в интервале температур 20–900°C [9].

Термическое расширение обоих соединений обусловлено, главным образом, особенностями их кристаллического строения. Так, максимальное расширение $FeBO_3$ наблюдается вдоль оси *c*, т.е. перпендикулярно плоскости изолированных борокислородных треугольников, минимальное — в плоскости *ab*, в которой они находятся, что

Рис. 1. Температурные зависимости параметров и объема элементарной ячейки FeBO₃ (a) и Fe₃BO₆ (b).

ожидаемо для кальцитоподобных соединений [13]. Fe_3BO_6 расширяется практически изотропно в направлении *ab*, что обусловлено присутствием изолированных тетраэдров BO_4 , связи B-O внутри которых распределены в трехмерном пространстве относительно равномерно, что приводит к практически изотропному расширению вдоль данного направления. В то же время можно заключить, что располагающиеся вдоль оси *c* цепочки, сложенные треугольниками OFe_3 , практически не испытывают сжатия

Коэффициент $\alpha (10^{-6} °C^{-1}) FeBO_3$	Температура (°С)		
	-180	-80	30
$\alpha_a = \alpha_b$	1.4(2)	2.8(1)	4.7(3)
α_c	5.5(3)	8.1(2)	11.7(5)
α_V	8.3(4)	13.8(2)	21.3(6)
$\alpha_{max}/\alpha_{min}$	4	3	2.5
Коэффициент $\alpha (10^{-6} \circ C^{-1}) Fe_3 BO_6$	Температура (°С)		
	-150	-50	30
α _a	7.1(6)	8.8(3)	10.1(2)
α_b	5.5(1)	7.2(4)	8.5(3)
α_c	4.3(6)	4.4(3)	4.4(3)
α_V	17.1(6)	20.9(4)	23.1(5)
$\alpha_{max}/\alpha_{min}$	1.6	2	2.3

Таблица 1. Коэффициенты термического расширения FeBO₃ при некоторых температурах

Рис. 2. Кристаллические структуры в сопоставлении с фигурами тензора термического расширения: структура FeBO₃ (*a*) представлена в виде изолированных треугольников BO₃ и октаэдров FeO₆, структура Fe₃BO₆ (∂) – изолированных тетраэдров BO₄ и цепочек, сложенных оксоцентрированными треугольниками OFe₃ (сплошными линиями на фигурах коэффициентов тензора термического расширения обозначены минимальные температуры, пунктирными – 30°C).

или распрямления вдоль оси c, что подтверждается слабым изменением коэффициента α_c с температурой.

ЗАКЛЮЧЕНИЕ

Показано, что бораты $FeBO_3$ и Fe_3BO_6 не претерпевают фазовых превращений, т.е. стабильны во всем интервале температур исследования. Термическое расширение обоих соединений обусловлено, главным образом, особенностями их кристаллического строения.

Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 18-33-00644. Рентгенография проводилась в ресурсном центре СПбГУ "Рентгенодифракционные методы исследования". Авторы признательны к.г.-м.н., доценту М.Г. Кржижановской за выполнение терморентгенографического эксперимента.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sokolov B.Yu.* Effect of Low-symmetry mechanical stresses on the magnetic properties of iron borate // Technical Physics. 2006. 51(5). P. 589–594.
- Buchel'nikov V.D., Dan'shin N.K., Dolgushin D.M., Izotov A.I., Shavrov V.G., Tsymbal L.T., Takagi T. Specific features of magnetoacoustic waves in Fe₃BO₆ // Physics of the Solid State. 2005. 47(10). P. 1886–1891.
- 3. Potapkin V., Chumakov A.I., Smirnov G.V., Celse J.P., Rüffer R., McCammon C., Dubrovinsky L. The 57Fe synchrotron mossbauer source at the ESRF // J. Synchrotron Radiation. 2012. 19. P. 559–569.
- Jianliya Tian, Baofeng Wang, Fei Zhao, Xiao Ma, Yong Liu, Hua Kun Liu, Zhenguo Huang. Highly active Fe₃BO₆ as an anode material for sodium-ion batteries // Chemical Communications. 2017. 53. P. 4698–4701.
- Yagupov S., Strugatsky M., Seleznyova K., Mogilenec Yu., Milyukova E., Maksimova E., Nauhatsky I., Drovosekov A., Kreines N., Kliava J. Iron borate films: Synthesis and characterization // J. Magnetism and Magnetic Materials. 2016. 417(1). P. 338–343.

- Shouli Li, Liqiang Xu, Yanjun Zhai, Hongxiao Yu. Co-pyrolysis synthesis of Fe₃BO₆ nanorods as high performance anodes for lithium-ion batteries // RSC Advances. 2014. 4. P. 8245–8249.
- 7. *Ram S., Kumari K., Kotnala R.K.* Synthesis of norbergite Fe₃BO₆ of single crystallites from a borate Glass // Transactions of the Indian Ceramic Society. 2010. 69(3). P. 165–170.
- *Diehl R*. Crystal structure refinement of ferric borate, FeBO₃ // Solid State Communications. 1975. 17. P. 743–745.
- 9. White J.G., Miller A., Nielsen R.E. Fe₃BO₆, a borate isostructural with the mineral norbergite // Acta Crystallographica. 1965. 19(1). P. 1060–1061.
- Biryukov Ya.P., Bubnova R.S., Filatov S.K., Goncharov A.G. Synthesis and thermal behavior of Fe₃O₂(BO₄) oxoborate // Glass Physics and Chemistry. 2016. 42(2). P. 202–206.
- Bubnova R.S., Firsova V.A., Filatov S.K., Volkov S.N. RietveldToTensor: program for processing powder X-Ray diffraction data under variable conditions // Glass Physics and Chemistry. 2018. 44(1). P. 33–40.
- Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data // J. Applied Crystallography. 2011. 44. P. 1272–1276.
- Bubnova R.S., Filatov S.K. Self-assembly and high anisotropy thermal expansion of compounds consisting of TO₃ triangular radicals // Structural Chemistry. 2016. 27(6). P. 1647–1662.