ВЛИЯНИЕ КОНЦЕНТРАЦИИ ВИСМУТА И ТЕПЛОВОЙ ОБРАБОТКИ НА СВОЙСТВА ВИСМУТ-СОДЕРЖАЩИХ ВЫСОКОКРЕМНЕЗЕМНЫХ СТЕКОЛ. II. ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА

© 2019 г. М. А. Гирсова^{1, *}, С. В. Фирстов², Т. В. Антропова¹

¹Институт химии силикатов имени И.В. Гребенщикова РАН, Россия, 199034, Санкт-Петербург, наб. Макарова, 2 ²Научный центр волоконной оптики РАН, Россия, 119333, Москва, ул. Вавилова, 38 *e-mail: girsovamarina@rambler.ru

> Поступила в редакцию 08.06.2018 г. После доработки 04.12.2018 г. Принята к публикации 05.12.2018 г.

Проведено исследование люминесцентных свойств висмут-содержащих высококремнеземных стекол, полученных в результате пропитки матриц из пористых стекол в азотнокислых растворах пентагидрата нитрата висмута в течение 24–48 ч и последующей термообработки в интервале от 400 до 890°С. Обнаружено, что влияние концентрации Bi(NO₃)₃ в пропитывающем растворе на содержание висмута в синтезированных образцах является определяющим по сравнению с длительностью пропитки и температурой термообработки. Установлено, что все изученные в настоящей работе образцы обладают сине-зеленой люминесценцией ($\lambda_{люм} = 420-520$ нм при $\lambda_{воз6} = 300$ нм), обусловленной присутствием ионов Bi³⁺. При увеличении концентрации висмута в образцах наблюдается длинноволновый сдвиг максимума полосы люминесценции, а при повышении температуры тепловой обработки – коротковолновый сдвиг. У образцов с большим содержанием висмута (1.17–1.18 мас. % Bi₂O₃), термообработанных на воздухе при ~700 и 750°С, наблюдается желто-оранжевая люминесценция с максимумом в диапазоне $\lambda_{люм} = 576-582$ нм ($\lambda_{воз6} = 480$ нм), связанная с присутствием Bi²⁺ ионов.

Ключевые слова: висмут-содержащее высококремнеземное стекло, люминесценция **DOI**: 10.1134/S0132665119020069

ВВЕДЕНИЕ

Развитие информационных технологий требует создания новых материалов, использование которых для разработки оптических усилителей позволит расширить диапазон волн, в котором осуществляется передача данных [1]. К числу потенциальных сред такого типа можно отнести кварцевые стекла, легированные висмутом, которые получают с помощью известных методов варки из шихты либо осаждения из газовой фазы (см. обзор в [2]).

В основе другого перспективного способа получения высококремнеземных висмутсодержащих стекломатериалов, позволяющего регулировать степень окисления висмута, а, следовательно, формирование висмутового активного центра (ВАЦ) с определенными спектрально-люминесцентными свойствами, лежит использование матриц из силикатных наноструктурированных пористых стекол (ПС) [3], в которые внедряют соединения висмута из водно-солевых растворов [2, 4–7]. Исследование спектральных зависимостей пропускания таких композиционных стекломатериалов, проведенное в [8] методами оптической и ближней ИК спектроскопии, показало, что в зависимости от их тепловой предыстории и концентрации вводимого висмута в синтезированных образцах возможно присутствие висмута в различной степени окисле-

ния (Bi³⁺-, Bi²⁺-, Bi⁺-ионы и Bi₅³⁺ кластеры). Благодаря формированию различных ВАЦ композиты, синтезированные путем внедрения висмута из водно-солевых растворов в поровое пространство ПС-матриц с последующей термообработкой, обладают люминесценцией в широком спектральном диапазоне, включая ближнюю ИК-область [9, 2, 7].

Известно, что спектрально-люминесцентные свойства висмут-содержащих стекол зависят от содержания в них висмута [10–12], от режима их тепловой обработки [13–15], а также от длины волны возбуждения [16–18, 10]. Благодаря своим физико-химическим свойствам висмут имеет высокую тенденцию к окислению или восстановлению при термообработке [19, 20, 10, 13, 15]. При высокотемпературных обработках стекол может происходить агломерация ионов висмута с образованием металлических кластеров [10, 19, 20].

В данной работе исследовано влияние концентрации висмута и температуры тепловой обработки висмут-содержащих высококремнеземных стекол на их люминесцентные свойства в видимом спектральном диапазоне. При обсуждении полученных данных использованы результаты исследования подобных стекол методами оптической и ИК-спектроскопии [8].

МЕТОДИЧЕСКАЯ ЧАСТЬ

Висмут-содержащие пористые стекла (ВПС) и кварцоидные стекла (ВКС) были получены в соответствии с процедурой, подробно описанной в [7, 8]. Она заключается в пропитке пористых стеклообразных матриц водными азотнокислыми 0.01, 0.05 и 0.5 M растворами Bi(NO₃)₃ в течение 24—72 ч с при комнатной температуре с последующим высушиванием и термообработкой на воздухе. Растворы азотнокислого висмута были приготовлены на основе водного 2 M раствора HNO₃ и соли Bi(NO₃)₃ · 5H₂O марки "ч. д. а".

Матрицами для пропитки являлись высушенные на воздухе при 120°С плоско-параллельные пластины толщиной 1.50 \pm 0.15 мм из высококремнеземного пористого стекла (ПС) состава (по анализу, мас. %): 0.30 Na₂O, 3.14 B₂O₃, 0.11 Al₂O₃, 96.45 SiO₂ [21], аналогичные матрицам, использованным в [8]. ПС было получено в результате сквозного выщелачивания двухфазного стекла 8В-НТ состава (по анализу, мас. %): 6.74 Na₂O, 20.52 B₂O₃, 0.15 Al₂O₃, 72.59 SiO₂ [21], изготовленного в заводских условиях по технологии варки оптических стекол с последующим просветлением при 810°С и термообработкой при 550°С в течение 144 ч в лабораторной электрической печи для наведения двухкаркасной структуры.

После пропитки ПС и сушки на воздухе при 50 ± 15°С полученные образцы ВПС были термообрабоотаны в электрической печи на воздухе по специально разработанным температурно-временным режимам [2, 7]. Средние значения температуры и длительность выдержки образцов при максимальной температуре тепловой обработки ($T_{\rm TO}$) приведены в таблице. Отклонение температуры изотермической выдержки от среднего значения, обусловленное инерционностью печи, составляло ±(3–6)°С, а в случае обработки при $T_{\rm TO}$ = 400°С не превышало ±10°С. Разная длительность изотермической выдержки образцов обусловлена тем, что, как было установлено нами ранее, для стабилизации формирующейся висмут-содержащей фазы при более низкой $T_{\rm TO}$ требуется более длительное время.

По данным химического анализа ВПС и ВКС содержали (в пересчете на оксиды, мас. %): (0.12–0.22) Na₂O, (2.80–3.43) B₂O₃, (91.15–96.71) SiO₂, (0.02–1.18) Bi₂O₃, $\leq 0.10 \text{ Al}_2\text{O}_3$ [8]. Концентрация висмута в исследованных образцах по данным [8] приведена в таблице 1.

В качестве образцов сравнения были использованы не содержащие висмут пластины высококремнеземного (кварцоидного) стекла (КС) состава (по анализу, мас. %): 0.23 Na₂O, 3.48 B₂O₃, 96.19 SiO₂, \leq 0.10 Al₂O₃, полученные путем спекания ПС при 890°C [2].

Спектры люминесценции были измерены при комнатной температуре с помощью оптического спектрофлюориметра FLSP920 (фирма Edinburgh Instruments) со спектральным разрешением 10 нм. Регистрация видимой люминесценции осуществлялась фотоэлектронными умножителями фирмы Hamamatsu, в перпендикулярном направлении по отношению к направлению возбуждающего излучения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно результатам химического анализа висмут-содержащих образцов после термообработки (табл. 1) [8], при одной и той же длительности пропитки ПС-матриц (24 ч) увеличение концентрации висмута в пропитывающем растворе от 0.01 до 0.5 М приводит к увеличению его содержания (в пересчете на Bi_2O_3) в синтезированных образцах для любой температуры последующей термообработки в интервале от ~400 до ~890°C (табл. 1). В ходе пропитки ПС раствором нитрата висмута с наибольшей концентрацией (0.5 М) при двукратном увеличении времени пропитки от 24 до 48 ч содержание Bi_2O_3 в ВКС не изменяется, а при большем времени пропитки (72 ч) увеличивается.

На рис. 1 представлены спектры люминесценции ($\lambda_{B036} = 300$ нм) образцов КС и висмут-содержащих высококремнеземных стекол. Видно, что КС (образец 1) излучает в УФ области (виден край полосы на 350 нм). Ранее было установлено, что базовые матрицы ПС и КС без висмута излучают в области 320 нм ($\lambda_{B036} = 250$ нм и 280 нм) [5, 6]. Наблюдаемая люминесценция при 320 и 350 нм может быть обусловлена кремниевыми дефектными центрами (=Si⁰) в кремнеземной матрице стекла (электронный переход $S_1 \rightarrow S_0$) [22].

Из рис. 1 видно, что у всех образцов ВПС и ВКС в спектре люминесценции наблюдается одна широкая полоса в диапазоне $\lambda_{\pi NOM} = 420-520$ нм, на интенсивность и положение максимума которой оказывает влияние концентрация висмута в образце и температура его тепловой обработки. Такая сине-зеленая люминесценция соответ-

ствует электронному переходу ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$, характерному для ионов Bi³⁺ [23, 24, 4, 15]. При одной и той же $T_{\rm ro} \sim 400^{\circ}$ С с увеличением концентрации Bi₂O₃ от 0.02 до

При одной и той же $T_{\rm ro} \sim 400$ C с увеличением концентрации ${\rm Bi}_2{\rm O}_3$ от 0.02 до 0.13 мас. % (табл. 1) для образцов ВПС характерен сдвиг максимума сине-зеленой люминесценции в длинноволновую область (от 452 нм (рис. 1, образец 2) до 521 нм (рис. 1, образец 4)) и снижение её интенсивности. При более высокой $T_{\rm ro}$ (875–890°C) увеличение концентрации висмута в образцах ВКС в ряду $0.02 \rightarrow 0.12 \rightarrow 1.17$ мас. % ${\rm Bi}_2{\rm O}_3$ (табл. 1) приводит к увеличению интенсивности люминесценции и красному сдвигу максимума от 420 нм (рис. 1, образец 3) до 440–445 нм (рис. 1, образцы 6, 10), соответственно. Наблюдаемые изменения в спектрах люминесценции, вероятнее всего, обусловлены структурными изменениями локального окружения ионов ${\rm Bi}^{3+}$, возникающими в процессе отжига.

У стекол с одинаковым содержанием (0.01–0.02 или 0.12–0.13 мас. %) Bi_2O_3 (табл. 1, образцы 2, 3 или 4, 5, 6, соответственно) при повышении T_{TO} образцов от ~400°C до ~890°C наблюдается синий сдвиг максимума полос люминесценции и снижение её

Номер образца	Тип образ- ца	Концентра- ция пропи- тывающего раствора Bi(NO ₃) ₃ , M	Длитель- ность про- питки, ч	Темпера- тура тепловой обработки образца, <i>T</i> _{то} , °С	Длитель- ность тепловой обработки образца, мин	Концентра- ция Ві ₂ О ₃ в образце по данным химического анализа, мас. % [8]	Длина волны возбужде- ния лю- минес- ценции $\lambda_{возб}$, нм	Положе- ние макси- мума спек- тра люми- несценции λ, нм
1	KC	Без пропитки		890	15	Не содер- жится	300	~350 (край)
2	ВПС	0.01	24	400	120	0.02	300	452
3	BKC			875	15	0.02	300	420
4	ВПС	0.05	24	400	120	0.13	300	520
5	ВПС			730	33	0.13	300	350, 470
6	BKC			875	15	0.12	300	440
7	ВПС	0.5*	48	690	15	1.18	480	582
8	ВПС			750	15	1.17	480	576
9	ВПС			800	15	1.18	480	538
10	BKC			890	15	1.17	300	445
11	BKC		72	875	17	1.60	480	610, 750

Таблица 1. Типы исследованных стекол, условия их получения, концентрация висмута в образцах и их люминесцентные свойства

* Концентрация Bi_2O_3 в образце, пропитанном в течение 24 ч и термообработанном при 50°C, составляет 1.17 мас. %.

интенсивности (рис. 1). При этом у стекол с меньшим содержанием висмута максимум полосы люминесценции смещается от 452 нм (образец 2) до 420 нм (образец 3), а у стекол с большим содержанием висмута – от 520 нм (образец 4) до ~470 нм (образец 5) и 440 нм (образец 6). При этом заслуживает внимания то, что образец 5 отличается по люминесцентным свойствам от остальных висмут-содержащих стекол. Отличие заключается в том, что, помимо люминесценции в диапазоне длин волн $\lambda \sim 450-550$ нм (что отмечается и для других образцов благодаря присутствию в них ионов Bi³⁺), для данного образца характерно появление более интенсивной УФ люминесценции (виден край полосы на 350 нм). Весьма вероятно, что, по аналогии с наблюдавшимся излучением кварцоидного стекла без пропитки (рис. 1, a, образец 1), УФ люминесценция в образце 5 может быть обусловлена кремниевыми дефектными центрами (=Si⁰) в кремнеземной матрице стекла (электронный переход $S_1 \to S_0$) [22]. Для установления причины такого поведения образца 5, термообработанного при $T_{TO} = 730^{\circ}$ С, необходимо дополнительное исследование. При этом надо принять к сведению тот факт, что в режиме нагревания оксида висмута при этой T_{TO} происходит фазовый переход δ -Bi₂O₃ $\rightarrow \alpha$ -Bi₂O₃ (см. обзор в [2]).

Следует отметить, что для образцов ВКС с высокотемпературной тепловой обработкой при $T_{\rm ro} = 890^{\circ}$ С увеличение содержания висмута от 0.12 мас. % (образец 6) до 1.17 мас. % Bi₂O₃ (образец 10) практически не влияет на положение максимума полосы люминесценции.

На рис. 2, *а* приведены спектры люминесценции висмут-содержащих образцов с высоким содержанием висмута (1.17–1.18 мас. % Bi_2O_3) при большей длине волны возбуждения ($\lambda_{B036} = 480$ нм), чем на рис. 1, в зависимости от T_{TO} . Видно, что у этих стекол, термообработанных на воздухе при температурах ~700–800°С, в спектрах люминесценции присутствует широкая полоса в диапазоне длин волн 538–582 нм (рис. 2, *a*), которая,

Рис. 1. Спектры люминесценции стекол при λ_{возб} = 300 нм. Номера кривых соответствуют номерам образцов в таблице.

наиболее вероятно, возникает в результате электронного перехода ${}^2P_{1/2} \rightarrow {}^2P_{3/2}(2)$ между энергетическими уровнями иона Bi^{2+} [25]. С повышением T_{ro} образцов в рассматриваемом температурном интервале происходит снижение интенсивности люминесценции и синий сдвиг максимума от 582 нм (образец 7) до 576 нм (образец 8) и 538 нм (образец 9), что качественно согласуется с результатами, полученными при более коротковолновом возбуждении (рис. 1). По литературным данным появление указанных полос желто-оранжевой люминесценции также может быть связано с присутствием Bi^{2+} ионов (электронный переход ${}^2P_{3/2}(1) \rightarrow {}^2P_{1/2}$) [25–28]. Наличие сине-зеленой люминесценции с максимумом при 538 нм обусловлено присутствием Bi³⁺ ионов [24]. Это согласуется с результатами исследования подобных образцов методами оптической спектроскопии [8], согласно которым подтверждением существования Bi³⁺ и Bi²⁺ ионов в образцах ВПС и ВКС является характерное для них сильное поглощение при λ = 258–264 нм, 279–287 нм, 295–303 нм и 393–396 нм. О присутствии изолированных ${\rm Bi}^{2+}$ центров в образцах с высокой $T_{\rm ro} \ge 730^{\circ}{\rm C}$ свидетельствуют наблюдавшиеся в [8] полосы поглощения в диапазонах $\lambda = 488-493$ нм и 563-568 нм. Следует отметить, что по данным спектрально-оптических исследований в образцах ВПС и ВКС помимо Bi^{3+} и Bi^{2+} ионов возможно образование монокатиона Bi^+ при T_{TO} =

Рис. 2. Спектры люминесценции стекол при $\lambda_{BO3G} = 480$ нм. Номера кривых соответствуют номерам образцов в таблице. Спектр люминесценции образца 11 приведен по данным [5].

400°С и 730°С и поликатиона Bi_5^{3+} при $T_{TO} = 875$ °С [8]. О присутствии Bi^+ в образцах свидетельствует положение края фундаментальной полосы поглощения ($\lambda = 320$ нм) и наличие на ИК-спектрах полос при 4445–4443, 4433 и 4417–4415 см⁻¹. Для поликатиона Bi_5^{3+} характерны полосы поглощения, наблюдавшиеся в области 393–396 нм. Для упомянутых висмутовых центров Bi^+ и Bi_5^{3+} характерна ИК-люминесценция с максимумами вблизи 1200 нм и 1600 нм соответственно (см. обзоры [29, 30]). Однако, в условиях проведенного эксперимента ИК люминесценции у синтезированных образцов не выявлено.

Анализ спектров люминесценции образцов с содержанием висмута 1.17–1.18 мас. % Bi_2O_3 (рис. 1, *a*, образец 10; рис. 2, *a*, образцы 7, 8, 9) в зависимости от тепловой истории образцов показывает, что повышение T_{ro} от 690 до 750°С оказывает существенно меньшее влияние на форму спектра и положение максимума полосы люминесценции, чем повышение T_{ro} от 750 до 800°С, в результате которого происходит сине-зеленый сдвиг максимума полосы люминесценции. При дальнейшем повышении T_{ro} от 800°С (образец 10) характер сдвига максимума полосы люминесценции в коротковолновую область сохраняется. При этом, однако, следует учитывать возможное влияние $\lambda_{воз6}$ на положение максимумов полос люминесценции (см., например, [31, 32]), поскольку в случае образца 10 имело место более коротковолновое возбуждение ($\lambda_{воз6} = 300$ нм) по сравнению с образцом 9 ($\lambda_{воз6} = 480$ нм).

В условиях указанной высокотемпературной обработки увеличение содержания висмута до 1.60 мас. % Bi₂O₃ (образец 11) за счет существенного увеличения времени

пропитки ПС (72 ч) в наиболее концентрированном 0.5 М растворе Bi(NO₃)₃ приводит к тому, что при $\lambda_{B036} = 480$ нм происходит существенное изменение спектра люминесценции (рис. 2, δ) [5]. Помимо характерного уменьшения интенсивности и длинноволнового сдвига (до 610 нм) максимума полосы люминесценции, что наблюдалось при увеличении концентрации висмута и в образцах с меньшим общим содержанием Bi₂O₃ (рис. 1), появляется полоса красной люминесценции с максимумом при 750 нм, которая так же, как и в случае желто-оранжевой люминесценции (рис. 2, *a*), обусловлена присутствием Bi²⁺ ионов (электронный переход ²P_{3/2}(1) \rightarrow ²P_{1/2}) [33, 16].

Таким образом, у ВПС и ВКС, содержащих 1.17–1.60 мас. % Ві₂О₃, в зависимости от температуры тепловой обработки наблюдается сине-зеленая, желто-оранжевая и красная люминесценция.

ЗАКЛЮЧЕНИЕ

На основе матриц из пористых стекол синтезированы высококремнеземные стекла, содержащие от 0.02 до 1.60 мас. % Bi_2O_3 , которые в ходе синтеза были подвергнуты тепловой обработке при температурах в диапазоне от 400 до 890°С.

Исследованы спектрально-люминесцентные свойства синтезированных стекол в зависимости от их тепловой обработки и концентрации в них висмута.

Установлено, что образцы висмут-содержащих пористых и кварцоидных стекол обладают сине-зеленой люминесценцией с максимумами в области 420–520 нм, которая связана с наличием Bi^{3+} ионов. У висмут-содержащих стекол, термообработанных на воздухе при температурах в диапазоне 700–800°С, выявлена желто-оранжевая ($\lambda_{люм} = 576-582$ нм) и сине-зеленая ($\lambda_{люм} = 538$ нм) люминесценция, которая связана с при-сутствием Bi^{2+} и Bi^{3+} ионов, соответственно.

Обнаружено, что при прочих равных условиях увеличение концентрации висмута в изученных стеклах и понижение температуры их тепловой обработки приводит к увеличению интенсивности люминесценции образцов и сдвигу максимума полосы люминесценции в длинноволновую область.

Работа выполнена частично при финансовой поддержке РФФИ (проект № 18-03-01206). Образцы были изготовлены в рамках государственного задания по Программе фундаментальных научных исследований государственных академий наук на 2013-2020 годы (тема № 0097-2015-0021).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Дианов Е.М.* Новые оптические материалы // Вестник Российской академии наук. 2009. Т. 79. № 12. С. 1059–1081.
- 2. *Гирсова М.А.* Синтез, структура и спектрально-оптические свойства композиционных материалов на основе силикатных пористых стекол, содержащих галогениды серебра или оксиды висмута. Дис. ... канд. хим. наук. СПб., 2015. 170 с.
- Антропова Т.В. Неорганические функциональные стеклообразующие материалы на основе ликвирующих щелочноборосиликатных систем / В кн. "ИХС РАН-80 лет. Современные проблемы неорганической химии". Под общей редакцией академика В.Я. Шевченко. СПб.: Арт-Экспресс, 2016. С. 117–137.
- Zhou S., Lei W., Jiang N., Hao J., Wu E., Zeng H., Qiu J. Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser // J. Materials Chemistry. 2009. V. 19. P. 4603–4608.
- 5. Гирсова М.А., Фирстов С.В., Анфимова И.Н., Головина Г.Ф., Куриленко Л.Н., Костырева Т.Г., Полякова И.Г., Антропова Т.В. Высококремнеземные стекла, легированные висмутом // Физ. и хим. стекла. Письма в журнал. 2012. Т. 38. № 6. С. 861–863.
- 6. Фирстов С.В., Гирсова М.А., Дианов Е.М., Антропова Т.В. Люминесцентные свойства термоиндуцированных активных центров в кварцоидных стеклах, активированных висмутом // Физ. и хим. стекла. 2014. Т. 40. № 5. С. 689–695.

- 7. Пат. 2605711 Российская Федерация, МПК-2006.01 С 09 К 11/08, С 09 К 11/74, С 03 С 4/12; МПК-2011.01 В 82 Y 40/00. Способ изготовления люминесцентного висмут-содержащего кварцоидного материала на основе высококремнеземного пористого стекла / Антропова Т.В., Гирсова М.А., Анфимова И.Н., Головина Г.Ф., Куриленко Л.Н., Фирстов С.В.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук. – № 2015117713/05; заявл. 12.05.2015; опубл. 27.12.2016, Бюл. № 36. – 17 с.: ил.
- Гирсова М.А., Головина Г.Ф., Анфимова И.Н., Куриленко Л.Н. Свойства висмут-содержащих высококремнеземных стекол в зависимости от концентрации висмута и режима тепловой обработки. І. Спектрально-оптические свойства // Физика и химия стекла. 2018. Т. 44. № 5. С. 464–472.
- Girsova M.A., Firstov S.V., Antropova T.V. Structural and optical properties of the bismuth-containing quartz-like glasses // J. Physics: Conference Series. 2014. V. 541. article 012022. doi 10.1088/1742-6596/541/1/012022
- Xu B., Zhou S., Tan D., Hong Z., Hao J., Qiu J. Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germinate glasses // J. Applied Physics. 2013. V. 113. № 8. P. 083503. https://doi.org/10.1063/1.4791698.
- 11. Denker B.I., Galagan B.I., Shulman I.L., Sverchkov S.E., Dianov E.M. Bismuth valence states and emission centers in Mg–Al-silicate glass // Appl. Phys. B. 2011. V. 103. № 3. P. 681–685.
- 12. Fujimoto Y. Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass // J. the American Ceramic Society. 2010. V. 93. № 2. P. 581–589. doi 10.1111/j.1551-2916.2009.03419.x
- 13. Wan R., Song Z., Li Y., Zhou Y., Liu Q., Qiu J., Yang Z., Yin Z. Investigation on the near-infrared-emitting thermal stability of Bi activated alkaline-earth aluminoborosilicate glasses // Journal of Applied Physics. 2015. V. 117. № 5. P. 053107. https://doi.org/10.1063/1.4907565.
- 14. *Truong V.G., Bigot L., Lerouge A., Douay M., Razdobreev I.* Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications. Appl. Phys. Lett. 2008. V. 92. № 4. P. 041908. https://doi.org/10.1063/1.2828035.
- Nielsen K.H., Smedskjaer M.M., Peng M., Yue Y., Wondraczek L. Surface-luminescence from thermally reduced bismuth-doped sodium aluminosilicate glasses // J. Non-Crystalline Solids. 2012. V. 358. № 23. P. 3193–3199.
- 16. Ren J., Dong G., Xu S., Bao R., Qiu J. Inhomogeneous Broadening, Luminescence Origin and Optical Amplification in Bismuth Doped Glass // J. Phys. Chem. A. 2008. V. 112. № 14. P. 3036–3039. doi 10.1021/jp709987r
- Razdobreev I., Hamzaoui H.El., Arion V.B., Bouazaoui M. Photoluminescence in Ga/Bi co-doped silica glass // Optics Express. 2014. V. 22. № 5. doi 10.1364/OE.22.005659
- Laguta O.V., Hamzaoui I H.El., Bouazaoui M., Arion V.B., Razdobreev I.M. On the nature of photoluminescence in Bismuth-doped silica glass // Scientific Reports. 2017. 7: 317. doi 10.1038/s41598-017-03464-8
- 19. Fan X., Su L., Ren G., Jiang X., Xing H., Hu J., Tang H., Li H., Zheng L., Qian X., Feng H. Influence of thermal treatment on the near-infrared broadband luminescence of Bi:CsI crystals // Optical Materials Express. 2013. V. 3. № 3. P. 400–406.
- 20. *Hashimoto T., Shimoda Y., Nasu H., Ishihara A.* ZnO–Bi₂O₃–B₂O₃ glasses as molding glasses with high refractive indices and low coloration codes // J. American Ceramic Society. 2011. V. 94. № 7. P. 2061–2066.
- Antropova T., Girsova M., Anfimova I., Drozdova I., Polyakova I., Vedishcheva N. Structure and spectral properties of the photochromic quartz-like glasses activated by silver halides // J. Non-Crystalline Solids. 2014. V. 401. P. 139–141.
- 22. Sokolov V.O., Sulimov V.B. Theory of twofold coordinated silicon and germanium atoms in solid silicon dioxide // Phys. Stat. Sol. B. 1994. V. 186. № 3. P. 185–198.
- 23. *Gaft M., Reisfeld R., Panczer G., Boulon G., Saraidarov T., Erlish S.* The luminescence of Bi, Ag and Cu in natural and synthetic barite BaSO₄ // Optical Materials. 2001. V. 16. № 1–2. P. 279–290.
- 24. Gui S.C.R., Imakita K., Fujii M., Bai Z., Hayashi S. Near infrared photoluminescence from bismuthdoped nanoporous silica thin films // J. Applied Physics. 2013. V. 114. № 3. P. 033524. https://doi.org/10.1063/1.4815939.
- 25. Cao R., Zhang F., Liao C., Qiu J. Yellow-to-orange emission from Bi²⁺-doped RF₂ (R = Ca and Sr) phosphors // Opt. Express. 2013. V. 21. № 13. P. 15728–15733.
- 26. Blasse G., Meijerink A., Nomes M., Zuidema J. Unusual bismuth luminescence in strontium tetraborate (SrB₄O₇:Bi) // J. Phys. Chem. Solids. 1994. V. 55. № 2. P. 171–174.
- Jong M. de, Meijerink A. Color tuning of Bi²⁺ luminescence in barium borates // J. Luminescence. 2016. V. 170. Part 1. P. 240–247. doi 10.1016/j.jlumin.2015.10.036

- Peng M., Lei J., Li L., Wondraczek L., Zhang Q., Qiu J. Site-specific reduction of Bi³⁺ to Bi²⁺ in bismuth-doped over-stoichiometric barium phosphates // J. Materials Chemistry C. 2013. V. 1. № 34. P. 5303–5308. doi 10.1039/c3tc31069h
- 29. Вебер А.А. О природе люминесцентных центров в легированных висмутом материалах. Дис. ... канд. физ.-мат. наук. Москва, 2012. 148 с.
- 30. *Филипповский Д.В.* Спектроскопические свойства легированных висмутом халькогенидных стекол и простейших галогенидных кристаллов. Дис. ... канд. физ.-мат. наук. Москва, 2014. 89 с.
- 31. *Gladskikh I.A., Gladskikh P.V., Vartanyan T.A.* Absorption and photoluminescence properties of silver clusters in SiO₂ matrix // Optical and Quantum Electronics. 2017. V. 49. № 1. Article 41. doi 10.1007/s11082-016-0872-8
- 32. Булатов Л.И., Машинский В.М., Двойрин В.В., Кустов Е.Ф., Дианов Е.М. Люминесцентные свойства висмутовых центров в алюмосиликатных световодах // Квантовая электроника. 2010. Т. 40. № 2. С. 153–159.
- 33. Hamstra M.A., Folkerts H.F., Blasse G. Red bismuth emission in alkaline-earth-metal sulfates // J. Mater. Chem. 1994. V. 4. № 8. P. 1349–1350.