СТРОЕНИЕ БИНАРНЫХ И ЖЕЛЕЗОСОДЕРЖАЩИХ ZnO-B₂O₃ СТЕКОЛ ПО ДАННЫМ ИК, КР И МЕССБАУЭРОВСКОЙ СПЕКТРОСКОПИИ

© 2019 г. Л. М. Осипова^{1, *}, А. А. Осипов¹, А. А. Осипов²

¹Институт минералогии УрО РАН, 456317, Миасс, Россия

²Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого", Россия, 195251, Санкт-Петербург, ул. Политехническая, 29

*e-mail: leyla@mineralogy.ru

Поступила в редакцию 15.10.2018 г. После доработки 31.01.2019 г. Принята к публикации 05.02.2019 г.

Методами колебательной и Мессбауэровской спектроскопии изучено строение бинарных, $xZnO-(100 - x)B_2O_3$, и железосодержащих, $2.5Fe_2O_3-97.5[xZnO-(100 - x)B_2O_3]$ стекол с x = 40, 45, 50 и 55 мол. %, синтезированных методом закалки расплава. Показано, что закономерности трансформации локальной структуры стекол, как функции содержания оксида цинка, идентичны для стекол обеих серий. Добавление оксида железа, в относительно небольшом количестве, приводит к изменению строения стекол на уровне надструктурных группировок и к изменению в распределении тригональных базовых боратных единиц. Концентрации двух и трехвалентных ионов железа практически не зависят от состава матрицы стекла, тогда как координационное состояние ионов Fe^{3+} является функцией содержания оксида цинка в изученных стеклах.

Ключевые слова: цинковоборатные стекла, железо, колебательная спектроскопия, Мессбауэровская спектроскопия, структура

DOI: 10.1134/S0132665119030077

ВВЕДЕНИЕ

Оксиды переходных металлов в сочетании с стеклообразующими оксидами способны образовывать стабильные стекла в достаточно широком диапазоне составов. Стекла с оксидами переходных металлов, и в частности боратные или борсодержащие стекла, обладают высоким потенциалом практического использования [1] в различных областях промышленности по причине наличия у них полезных электрических, оптических, магнитных и других свойств, а также высокой химической устойчивости. Такие стекла интересны и с фундаментальной точки зрения, т.к. оксиды переходных металлов могут выступать как в роли модификатора, так и в роли сеткообразователя в зависимости, от состава стекла. Добавление оксидов переходных металлов к типичному оксиду-стеклообразователю может влиять на неупорядоченную сетку стекла достаточно сложным образом, причем структурная роль катионов переходных металлов в матрице стекла плохо поддается теоретическому прогнозированию.

В предыдущих работах [2, 3] были представлены результаты исследования строения стекол состава $xFe_2O_3-(100 - x)[40ZnO \cdot 60B_2O_3]$, в которых содержание оксида железа варьировало от 0 до 10 мол. %. Было показано, что добавление небольшого количества Fe_2O_3 (менее 1 мол. %) к матрице $40ZnO \cdot 60B_2O_3$ приводит к изменению строения не-

упорядоченной сетки стекла в области среднего порядка. Происходит уменьшение концентрации надструктурных боратных группировок различного типа вплоть до их полного исчезновения. При $x \le 2.5$ мол. % существенных изменений в соотношении долей трех- и четырехкоординированных атомов бора обнаружено не было. При x > 2.5 мол. % происходит постепенное уменьшение доли тетрагональных боратных единиц и наблюдается рост концентрации тригональных боратных единиц. В стеклах с x = 2.5-10 (мол. %), ионы железа находятся в основном в трехвалентном состоянии (~84%). Существенных изменений в концентрации и онов Fe³⁺ и Fe²⁺, при изменении содержания Fe₂O₃, не происходит. С увеличением концентрации железа уменьшается доля ионов Fe³⁺ в тетраэдрическом окружении атомами кислорода. Происходит увеличение концентрации трехвалентных ионов железа, находящихся в октаэдрическом окружении, что свидетельствует об увеличении модифицирующей роли Fe₂O₃.

Цель данной работы — изучение валентного и координационного состояния железа в цинковоборатных матрицах различного состава, а также модификации структуры исходных, не содержащих железа цинковоборатных стекол, при добавлении к ним фиксированного количества Fe_2O_3 .

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Стекла состава $2.5Fe_2O_3 - 97.5[xZnO - (100 - x)B_2O_3]$, где x = 40, 45, 50 и 55 мол. %, были синтезированы методом закалки расплава на воздухе. Оксиды ZnO, Fe_2O_3 и B_2O_3 (все квалификации "х. ч."), взятые в необходимых пропорциях, тщательно перемешивали, а затем плавили при температуре 1200°С в платиновом тигле в течение 2 ч в электрической печи. Масса шихты во всех случаях составляла 10 г. После плавления расплав переливали на стальную изложницу с углублением (диаметр 18 мм, глубина 8 мм) и охлаждали до комнатной температуры. При закалке исходных бинарных и железосодержащих стекол с x = 40 и 45 мол. % происходило формирование тонкой белой корочки по всей поверхности стекла. При закалке расплавов с более высокой концентрацией оксида цинка такая корочка не образовывалась. Формирование этой корочки на поверхности образцов с пониженным содержанием ZnO связано с наличием широкой области несмесимости в системе $ZnO-B_2O_3$ при $x \le 50$ мол. % [4]. Расплав расслаивается на две жидкости, одна из которых близка по составу к чистому B_2O_3 , и при охлаждении расплава выпадет на поверхности образцов в виде, легко удаляемой механически, белой корочки. Все бинарные стекла были бесцветными и прозрачными, тогда как трехкомпонентные стекла имели темно-коричневый цвет. Белая корочка тщательно удалялась с поверхности стекол до проведения исследований. Аморфная природа синтезированных образцов подтверждена данными порошковой рентгеновской дифракции, полученными с использованием дифрактометра Shimadzu XRD-6000.

Инфракрасные (ИК) спектры поглощения были измерены в диапазоне 400–1800 см⁻¹ с разрешением 4 см⁻¹ с использованием однолучевого ИК-Фурье спектрометра NEXUS-6700 с применением стандартной методики прессования исследуемого вещества со спектрально чистым KBr.

Регистрацию спектров комбинационного рассеяния света (КР) бинарных $ZnO-B_2O_3$ стекол проводили в 180° геометрии с использованием двойного монохроматора ДФС-24. Спектры возбуждались линией 488 нм аргонового лазера ЛГН-503. Мощность линии возбуждения составляла около 400 мВт. Детектором рассеянного излучения служил фотоэлектронный умножитель ФЭУ-79, работающий в режиме счета фотонов. Спектральная ширина щели равна 6 см⁻¹. Измерение спектров КР железосодержащих стекол было выполнено на спектрометре iHR320 Horiba Jobin Yvon, сопряженным с оптическим микроскопом Olympus B×41. В этом случае спектры возбуждались линией 632.8 нм гелий-неонового лазера с выходной мощностью излучения 15 мВт.

чения ⁵⁷Со в матрице Rh в режиме постоянных ускорений в геометрии пропускания при комнатной температуре. Препараты для регистрации спектров представляли собой навеску, нанесенную на фольгу с помощью клеевой основы, которую помещали в кювету из органического стекла. Эффективная толщина образца составляла 10 мг/см², что соответствует приближению тонкого поглотителя. Параметры спектров определяли с помощью программы Univem 2.01.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

ИК спектры поглощения бинарных и железосодержащих цинковоборатных стекол представлены на рис. 1, *a*, *b*, соответственно. Для обозначения состава стекол использованы сокращенные обозначения: NZ (бинарные стекла) и NZF (стекла с добавкой 2.5 мол. % Fe₂O₃), где N – концентрация оксида цинка, выраженная в мол. %. В спектрах стекол обеих серий, NZ и NZF, можно выделить четыре группы полос: относительно слабую полосу с максимумом в области 445–465 см⁻¹, более интенсивную полосу поглощения, расположенную в диапазоне волновых чисел 510–770 см⁻¹, и два широких спектральных контура в области 780–1150 и 1150–1800 см⁻¹, соответственно. Как в NZ, так и в NZF серии, увеличение содержания ZnO в цинковоборатной матрице приводит, главным образом, к уменьшению поглощения на участке 780–1150 см⁻¹. Эта тенденция более сильно выражена для спектров железосодержащих стекол. Спектры образцов 40Z и 40ZF идентичны. Другие спектры серии NZF отличаются от своих бинарных аналогов (по содержанию ZnO) повышенной интенсивностью полосы 445–465 см⁻¹ и более четким разрешением полосы ~615 см⁻¹, которая в спектрах бинарных стекол практически не разрешается.

На сегодняшний день общепринято, что группа полос, образующих высокочастотный контур поглощения (1150–1800 см⁻¹), связана с валентными колебаниями В–О связей тригональных боратных единиц. Поглощение в диапазоне 780–1150 см⁻¹ обусловлено валентными колебаниями В–О связей [ВØ₄]⁻ единиц (Ø – мостиковый атом кислорода), асимметричная линия в области 510–770 см⁻¹ соответствует деформационным колебаниям мостиков В–О–В [5–9]. Наименее интенсивная линия в области 445–465 см⁻¹ указывает на присутствие в структуре стекол NZ тетраэдров [ZnØ₄]²⁻ [10–14]. В случае железосодержащих стекол, увеличение интенсивности этой полосы не может быть однозначно приписано росту концентрации тетраэдрически координированных атомов цинка, поскольку колебания ионов железа в октаэдрическом окружении [15–17] также могут давать вклад в увеличение интенсивности. На основании данных ИК спектроскопии различить вклады колебаний единиц ZnO₄ и FeO₆ в интенсивность поглощения в области 445–465 см⁻¹ не представляется возможным.

В работах [18, 19] показано, что интенсивности полос поглощения в областях 780— 1150 и 1150—1800 см $^{-1}$ могут быть использованы для определения концентрации четырехкоординированных атомов бора:

$$N_4 = \frac{A_r}{\alpha + A_r},\tag{1}$$

где $A_r = I_{780-1150}/I_{1150-1800}$ — отношение интегральных интенсивностей полос поглощения, связанных с присутствием в структуре стекла тригональных ($I_{1150-1800}$) и тетраэдрических ($I_{780-1150}$) боратных единиц. Значение коэффициента α зависит от типа катиона, для цинковоборатных стекол $\alpha = 1.36$ [20]. Для определения интегральных интенсивностей экспериментальные ИК спектры были воспроизведены в виде

Рис. 1. ИК спектры поглощения бинарных (а) и железосодержащих (б) цинковоборатных стекол.

суперпозиции гауссовских линий, согласно модели, представленной в работе [3]. Полагая, что добавление 2.5 мол. % Fe_2O_3 не сильно изменит значение коэффициента α , расчеты концентрации боратных тетраэдров были выполнены и для стекол серии

× MOH %	NZ	2	NZF			
х, мол. 70	A_r	N4, %	A _r	$N_4, \%$		
40	0.65	32	0.64	32		
45	0.60	31	0.57	30		
50	0.57	30	0.53	28		
55	0.46	25	0.41	23		

Таблица 1. Значения отношения интегральных интенсивностей A_r и концентрации боратных тетраэдров N_4 в бинарных и железосодержащих цинковоборатных стеклах

NZF. Искомые значения представлены в табл. 1. С увеличением содержания ZnO в стеклах системы ZnO–B₂O₃ наблюдается понижение координационного числа атомов бора [21]. Величины N_4 (табл. 1) согласуются с данными [21]. Сравнение полученных нами величин с литературными данными ($N_4 = 36.5\%$ для состава 45ZnO–55B₂O₃ [22], $N_4 = 24\%$ для 55ZnO–45B₂O₃ [20]) показало, что в пределах погрешности эксперимента и допущений, сделанных при пересчете интенсивностей полос поглощения в концентрации боратных тетраэдров, наблюдается хорошее соответствие. Тенденция к уменьшению количества боратных тетраэдров с ростом *x* сохраняется и в железосодержащих стеклах. Добавление 2.5 мол. % оксида железа делает ее еще более ярко выраженной. Увеличение разницы $\Delta N_4 = N_4^{NZ} - N_4^{NZF}$, как функции содержания оксида цинка, свидетельствует о том, что роль Fe₂O₃ определяется не только его содержанием [2, 3, 23], но и составом исходной матрицы стекла к которому добавляется оксид железа. В нашем случае можно говорить об увеличении модифицирующей роли Fe₂O₃ с ростом *x*.

Спектры КР бинарных и железосодержащих стекол показаны на рис. 2, а, б. В диапазоне волновых чисел 600-1100 см⁻¹ в спектре стекла 40Z (рис. 2, *a*) можно выделить четыре полосы с максимумами около 690, 800, 840 и 950 см⁻¹, и слаборазрешенное плечо вблизи 775 см⁻¹. Высокочастотная область (1200–1600 см⁻¹) этого спектра представлена широкой, интенсивной, асимметричной полосой, форма которой предполагает наличие, как минимум, двух составляющих этого спектрального участка — линии с максимумом вблизи 1410 см⁻¹ и неразрешенного плеча в области 1240-1260 см⁻¹. Увеличение концентрации ZnO в NZ стеклах приводит к систематическим изменениям интенсивности вышеперечисленных линий. Видно, что с ростом х интенсивность линий 840 и 950 см⁻¹ монотонно возрастает, а полос 775 и 800 см⁻¹, напротив, уменьшается. Последнее особенно заметно в спектрах с содержанием оксида цинка от 45 и более мол. %. Кроме того, в спектрах стекол 50Z и 55Z появляется еще одна слабая линия в области 1010-1040 см⁻¹, которая не наблюдалась в спектрах образцов с меньшим содержанием ZnO. В области 1200-1600 см⁻¹, наблюдается рост интенсивности низкочастотного плеча 1250-1260 см⁻¹, в результате чего максимум всего высокочастотного контура постепенно смешается до ~1390 см⁻¹. Во всех спектрах интенсивность высокочастотной компоненты контура 1200-1600 см⁻¹ превышает интенсивность низкочастотного плеча.

Спектры КР железосодержащих стекол (рис. 2, δ) показывают систематические изменения в зависимости от содержания оксида цинка. Можно отметить рост интенсивности полос 690, 840–845 см⁻¹, формирование узкой полосы с максимумом в области 940–960 см⁻¹ на фоне широкой линий в диапазоне 900–1100 см⁻¹ и рост интенсивности низкочастотного плеча 1240–1260 см⁻¹ высокочастотного контура 1200–1600 см⁻¹ с увеличением *x*. Сопоставление спектров стекол NZF серии со спектрами бинарных

Рис. 2. Спектры КР бинарных (а) и железосодержащих (б) цинковоборатных стекол.

стекол показывает, что добавление 2.5 мол. % оксида железа существенно влияет на форму спектрального контура. В наибольшей степени это относится к полосам 775 и 800 см⁻¹, которые полностью отсутствуют в спектрах NZF, хотя и являются достаточно интенсивными в спектрах NZ стекол (особенно в спектрах стекол с относительно невысо-кой концентрацией ZnO). Происходит увеличение интенсивности полосы 690 см⁻¹ и рассеяния в диапазоне волновых чисел 900–1100 см⁻¹. Меняется соотношение интенсивности полос 840 и 950 см⁻¹. В спектрах бинарных стекол выполняется неравенство $I_{840} > I_{950}$, в NZF спектрах это соотношение зависит от состава исходной матрицы: $I_{840} \approx I_{950}$ при $x \le 45$ мол. % и $I_{840} < I_{950}$ при более высоких концентрациях ZnO. Интенсивность низкочастотного плеча 1240–1260 см⁻¹ контура 1200–1600 см⁻¹ в железосодержащих стеклах явно выше, чем в спектрах исходных бинарных матриц, в результате чего

Гаолица 2.	Отнес	ение полос	в спектрах	КР СИНТО	езированных	стекол

17.0

Полоса, см ⁻¹	Происхождение
690	Деформационные колебания цепочек (ВØ _{2/2} O ⁻) _n [9, 20]
775	Колебания надструктурных группировок с одним тетраэдром $[BØ_{4/2}]^-$ [20, 24]
800	"Дышащие" колебания бороксольных колец [9, 20, 24]
840-845	Симметричные валентные колебания мостиков В—О—В пироборатных димеров $\mathrm{B_2O_5^{4-}}$ [9, 24]
940-960	Симметричные валентные колебания ортоборатных анионов ВО ₃ ³⁻ [9, 24]
1010-1040	Колебания диборатных групп [24]
1230-1270	Симметричные валентные колебания концевых атомов кислорода пироборат- ных единиц ВØ _{1/2} O ₂ ²⁻ [9, 20, 24]
1390-1420	Колебания метаборатных треугольников $BO_{2/2}O^{-}$ [9, 20, 24]

231

и положение максимума высокочастотного контура в целом и его форма, значительно отличаются от того, что можно видеть на рисунке 2, a. Все это в совокупности указывает на существенное влияние добавки Fe₂O₃ на строение бор-кислородного каркаса цинковоборатных стекол.

Структурная интерпретация спектров КР стекол составов $45ZnO-55B_2O_3$ и $50ZnO-50B_2O_3$ подробно рассмотрена в работах [9, 20]. Принимая во внимание результаты этих публикаций, а также результаты, представленные в обзорной работе по спектрам КР оксидных стекол [24], была составлена таблица (табл. 2) происхождения полос в зарегистрированных нами спектрах.

В стеклах серии NZ присутствует весь набор известных базовых боратных единиц: $BØ_3$, $[BØ_4]^-$, $BØ_2O^-$, $BØO_2^{2-}$ и BO_3^{3-} . В стеклах с относительно низким содержанием ZnO значительная часть BØ3 единиц объединяется с образованием бороксольных колец (800 см⁻¹), а в сочетании с тетраэдрами $[BO_4]^-$ образует шестичленные боратные группировки (775 см⁻¹), такие как, например, триборатные группы. С увеличением xконцентрация этих надструктурных группировок уменьшается. Это может быть связано как с изменением качественного состава надструктурных группировок – трансформацией имеющихся группировок в новые, например, диборатные группы (1010- 1040 см^{-1}), так и с деполимеризацией боратной сетки в целом, что приводит к увеличению в структуре стекла количества немостиковых атомов кислорода, а значит, и к росту концентрации базовых структурных единиц, имеющих в своем составе немостиковые атомы кислорода. Последнее отражается в увеличении интенсивности полос, обусловленных колебаниями концевых атомов кислорода пиро- (1240-1260 см⁻¹) и ортоборатных (940-960 см⁻¹) единиц. Рост интенсивности плеча 1240-1260 см⁻¹ и узкой линии 840-845 см⁻¹ и высокая интенсивность последней во всех измеренных спектрах NZ стекол, показывают, что в бинарных стеклах пироборатные BOO_2^{2-} единицы образуют, предпочтительно, пироборатные димеры В₂О₅⁴⁻. Принимая во внимание данные ИК спектроскопии (табл. 1), можно также утверждать, что рост доли заряженных тригональных боратных единиц связан не только с трансформацией симметричных треугольников в соответствующие заряженные тригональные структурные единицы, но и тетраэдров $[BØ_4]^-$.

Отсутствие в КР-спектрах железосодержащих стекол полос 775 и 800 см⁻¹ показывает, что концентрация кольцевых надструктурных группировок, таких как бороксольные кольца или шестичленные боратные кольца с тетраэдрами [BØ₄]⁻, в этих стеклах равна или близка к нулю. Увеличение интенсивности линии 690 см⁻¹ указывает на рост числа цепочечных структур. Достаточно высокая интенсивность рассеяния в области 900-1100 см⁻¹ свидетельствует о присутствии в NZF стеклах диборатных группировок, состоящих из двух BO_3 и двух $[BO_4]^-$ единиц, причем даже в большем количестве, чем в бинарных стеклах (рис. 2). Добавление Fe₂O₃ к цинковоборатным стеклам, с одной стороны, приводит к разрушению шестичленных боратных колец различного типа и усилению цепочечного мотива структуры, с другой стороны, способствует образованию в железосодержащих стеклах более крупных $B_4O_5Q_4^{2-}$ диборатных групп. Спектры стекол NZF серии характеризуются более высокой интенсивностью низкочастотного плеча 1240-1260 см⁻¹ высокочастотного (1200-1600 см⁻¹) контура по сравнению со стеклами, не содержащими железа. Концентрация пироборатных BOO_2^{2-} единиц в них выше, чем в NZ стеклах. Изменение в структурном положении пироборатных единиц, вызванное введением в матрицу оксида железа, можно оценить из соотношения интенсивностей линий 840–845 (валентные колебания мостиков В–О–В пироборатных $B_2O_5^{4-}$ анионов) и 1240–1260 см⁻¹ (колебания концевых атомов кислорода пироборатных единиц В OO_2^{2-}). Для всех спектров бинарных стекол выполняется неравенство $I_{840-845} \ge I_{1240-1260}$, что, как отмечалось ранее, соответствует преимущественному объединению пироборатных единиц в пироборатные $B_2O_5^{4-}$ группы. Во всех спектрах железосодержащих стекол эти интенсивности или приблизительно равны, или $I_{840-845} \le I_{1240-1260}$. Это означает, что концентрация пироборатных димеров $B_2O_5^{4-}$ в этих стеклах существенно ниже, чем в стеклах NZ серии. Значительная часть BOO_2^{2-} единиц является концевыми элементами различного вида боратных цепочек конечного размера. Судя по интенсивности линии 950–960 см⁻¹, которая четко выделяется в спектрах NZF серии только при содержании ZnO 50 и 55 мол. %, добавление Fe₂O₃ приводит к снижению концентрации высокозаряженных ортоборатных анионов BO_2^{3-} . В работе [3] было показано, что увеличение концентрации приоборатных анионов может быть описано следующими реакциями:

$$2B\emptyset_{2/2}O^{-}([B\emptyset_{4}]^{-}) + O^{2-} \Rightarrow 2B\emptyset_{1/2}O_{2}^{2-},$$
(2)

$$2\text{FeO}_{6/4} + 2\text{BO}_3^{3-} \Rightarrow 2[\text{FeO}_{4/2}]^- + 2\text{B}\emptyset_{1/2}\text{O}_2^{2-}$$
(3)

свидетельствующими о двойственной роли оксида железа в рассматриваемых стеклах. Первая реакция соответствует случаю типичного модификатора, где ионы O^{2-} привносятся в систему с оксидом железа и описывает преобразование тригональных или тетраэдрических метаборатных единиц в пироборатные единицы. Вторая реакция показывает, что образование в структуре тетраэдров [FeØ_{4/2}]⁻ при взаимодействии оксида железа с высокозаряженными боратными единицами может сопровождаться модификацией исходного бор-кислородного каркаса. В этом случае, по-видимому, можно говорить, что оксид железа ведет себя одновременно как сеткообразователь, встраиваясь в структуру в форме тетраэдров [FeØ_{4/2}]⁻, и как модификатор, приводя к изменению структуры стекла на уровне базовых структурных единиц.

Представленные колебательные спектры железосодержащих цинковоборатных стекол не позволяют однозначно идентифицировать присутствие FeO₄ единиц в структуре NZF образцов. В инфракрасных спектрах полоса поглощения, соответствующая этим единицам, лежит в области 550–660 см⁻¹ [13, 16, 25–32], т.е. перекрывается с линией деформационных колебаний мостиков B–O–B (510–770 см⁻¹). В спектрах КР валентные колебания ^{IV}Fe³⁺–О связей (индекс IV соответствует тетраэдрическому окружению ионов Fe³⁺) активны на участке 940–980 см⁻¹ [28, 33]. Из табл. 2 видно, что в этой области активны и колебания концевых атомов кислорода полностью деполимеризованных BO₃^{3–} ортоборатных единиц. Поэтому методом Мессбауэровской спектроскопии было изучено встраивание ионов железа в матрицу NZ стекол.

Измеренные Мессбауэровские спектры представлены на рис. 3. Для определения Мессбауэровских параметров спектров NZF стекол использовали описанную ранее трехдублетную модель, в рамках которой моделирование экспериментального контура выполнялось в предположении лоренцовой формы линий [2, 3]. Оценку качества воспроизведения измеренных спектров модельной огибающей проводили по величине χ^2 и визуально. Результаты определения Мессбауэровских параметров парциальных дублетов (δ – изомерный сдвиг относительно нитропруссида натрия, Δ – квадрупольное расщепление, Γ – ширина линии и A – относительная интенсивность) показаны в

Рис. 3. Мессбауэровские спектры стекол ZF серии.

табл. 3. Дуплет с наибольшими значениями изомерного сдвига ($\delta = 1.12 - 1.34$ мм/с) и квадрупольного расщепления ($\Delta = 2.33 - 2.62$ мм/с) соответствует присутствию в стек-

	^{IV} Fe ³⁺			VIFe ³⁺			VI _{Fe²⁺}						
Образец	δ, мм/с ±0.03	Δ, мм/с ±0.07	Г, мм/с ±0.08	A, % ±3	δ, мм/с ±0.02	Δ, мм/с ±0.06	Г, мм/с ±0.07	A, % ±4	δ, мм/с ±0.09	Δ, мм/с ±0.15	Г, мм/с ±0.10	A, % ±4	χ^2
40ZF	0.57	1.18	0.69	77	0.61	0.76	0.25	6	1.34	2.33	0.81	17	1.098
45ZF	0.61	1.19	0.67	68	0.62	0.68	0.35	11	1.26	2.62	0.89	21	1.050
50ZF	0.56	1.13	0.87	66	0.69	0.92	0.46	16	1.20	2.42	0.75	18	1.008
55ZF	0.59	1.19	0.87	61	0.61	0.87	0.45	23	1.12	2.47	0.73	15	1.037

Таблица 3. Мессбауэровские параметры парциальных дублетов спектров стекол NZF серии

лах двухвалентных ионов железа, находящихся в октаэдрическом окружении атомами кислорода (^{VI}Fe²⁺) [34–36]. Относительная интенсивность этого дублета не меняется в пределах погрешности эксперимента при изменении состава исходной матрицы стекла. Соответственно, суммарный вклад двух оставшихся дублетов также не зависит от содержания ZnO в синтезированных стеклах, хотя индивидуальные интенсивности этих дублетов систематически изменяются с изменением *x* (рис. 3). Значения сверхтонких параметров этих двух дублетов ($\delta = 0.56-0.61$ и $\delta = 0.61-0.69$, $\Delta = 1.13-1.19$ и $\Delta = 0.68-0.92$ мм/с) соответствуют ионам Fe³⁺ в различном координационном окружении. Таким образом, данные Мессбауэровской спектроскопии показывают, что в изученных стеклах концентрации Fe²⁺ и Fe³⁺ ионов не зависят от состава стекла. Дублет с меньшим значением изомерного сдвига и большей величиной квадрупольного расщепления ($\delta = 0.56-0.61$, $\Delta = 1.13-1.19$ мм/с) соответствует ионам ^{IV}Fe³⁺ в тетраэдрическом окружении, а дублет с большим значением изомерного сдвига и меньшей величиной квадрупольного расщепления ($\delta = 0.61-0.69$, $\Delta = 0.68-0.92$ мм/с) связан с ионам ^{VI}Fe³⁺ в октаэдрической координации [34–40].

Зависимости концентраций ионов железа с различным координационным окружением ($^{IV}Fe^{3+}/\Sigma Fe$ и [$^{VI}Fe^{3+} + {}^{VI}Fe^{2+}$]/ ΣFe) от состава стекла, построенные на основании данных о площадях соответствующих дублетов, представлены на рис. 4. Из рис. 4

Рис. 4. Концентрации ионов железа в различном координационном (слева) и валентном (справа) состояниях в стеклах ZF серии.

видно, что доля ионов ^{IV}Fe³⁺ постепенно уменьшается с ростом *x*, а суммарная доля ионов железа, находящихся в октаэдрическом окружении атомами кислорода, напротив, возрастает. Концентрация двухвалентных ионов железа – величина, слабо зависящая от состава стекла (табл. 3). Увеличение доли FeO₆ единиц связано с ростом концентрации Fe³⁺ ионов в октаэдрическом окружении. Увеличение доли FeO₆ единиц соответствует увеличению модифицирующих свойств Fe₂O₃, а значит, позволяет ожидать определенных преобразований локальной структуры бинарных ZnO–B₂O₃ стекол при добавлении к ним фиксированного количества Fe₂O₃. Анализ колебательных спектров показал, что доля боратных тетраэдров в стеклах серии NZF с *x* > 40 мол. % меньше, чем в NZ стеклах (ИК спектроскопия, табл. 1) NZF стекла характеризуются повышенной концентрацией пироборатных ВØO₂²⁻ единиц по сравнению с соответствующими бинарными образцами (КР спектроскопия).

ЗАКЛЮЧЕНИЕ

Методом закалки расплавов синтезированы две серии стекол: бинарные стекла с общей формулой xZnO-(100 - x)B₂O₃ (x = 40, 45, 50 и 55 мол. %), и железосодержащие цинковоборатные стекла, полученные добавлением 2.5 мол. % Fe₂O₃ к каждому стеклу из первой серии. Согласно данным ИК спектроскопии, постепенное увеличение концентрации ZnO приводит к монотонному уменьшению доли тетраэдрически координированных атомов бора в стеклах обеих серий, причем эта тенденция выражена более сильно в железосодержащих стеклах. Сопоставление спектров КР NZ и NZF стекол показало, что добавление оксида железа в относительно небольшом количестве, оказывает сильное влияние на организацию структуры стекол как в области ближнего, так и в области среднего порядка. Железосодержащие стекла характеризуются отсутствием в их структуре кольцевых надструктурных группировок, типичных для бинарных стекол. Добавление оксида железа приводит к трансформации кольцевых группировок со строго определенным расположением атомов (надструктурные группировки) в цепочечные группы с существенно меньшим упорядочением во взаимной ориентации структурных единиц. Анализ КР-спектров показал, что для стекол NZF серии характерна более высокая концентрация пироборатных BOO_2^{2-} единиц и более

низкая концентрация ортоборатных BO_3^{3-} анионов по сравнению с соответствующими бинарными образцами. В NZ стеклах пироборатные единицы, соединяясь между собой,

образуют преимущественно пироборатные димеры $B_2O_5^{4-}$. В NZF стеклах большая часть таких единиц является концевыми элементами более крупных цепочечных структур.

В изученных железосодержащих стеклах, в пределах погрешности эксперимента, валентное состояние железа не зависит от состава стекла. Преобладающая доля железа (~82%) находится в форме Fe^{3+} как в тетраэдрическом, так и в октаэдрическом окружении. Остальное железо присутствует в видеионов Fe^{2+} с октаэдрической координацией по кислороду.

Координационное состояние трехвалентного железа зависит от содержания оксида цинка в стекле. По мере увеличения концентрации ZnO доля ионов ^{IV}F³⁺ постепенно уменьшается с 77%, для стекла 40ZF, до 61% для 55ZF стекла. Доля октаэдрически координированных ионов железа ^{VI}Fe³⁺, соответственно, возрастает. Рост концентрации ионов ^{VI}Fe³⁺ свидетельствует об увеличении модифицирующей роли Fe₂O₃ в стеклах с повышенным содержанием ZnO.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования России № 015-00613-019-00.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bengisu M*. Borate glasses for scientific and industrial applications: a review // J. Mater. Sci. 2016. V. 51. № 5. P. 2199–2242.
- 2. Осипов А.А., Зайнуллина Р.Т., Осипова Л.М., Никандрова Н.К., Миронов А.Б. Локальное окружение ионов железа в матрице стекла 40ZnO · 60B₂O₃ // Неорганические материалы. 2018. Т. 54. № 3. С. 298–302.
- 3. Осипов А.А., Зайнуллина Р.Т., Осипова Л.М., Штенберг М.В., Хворов П.В., Лебедева С.М. Изучение строения железосодержащих цинковоборатных стекол // Физика и химия стекла. 2018. Т. 44. № 3. С.
- 4. *Harrison D.E., Hummel F.A.* Phase equilibria and fluorescence in the system zinc oxide–boric oxide // J. Electrochem. Soc. 1956. V. 103. № 9. P. 491–498.
- 5. Farouk M., Samir A., Metawe F., Elork M. Optical absorption and structural studies of bismuth borate glasses containing Er³⁺ ions // J. Non-Cryst. Solids. 2013. V. 371–372. P. 14–21.
- Khasa S., Dahiya M.S., Agarwal A., Chand P. EPR, FTIR, thermal and electrical properties of VO²⁺ doped BaCl₂ · BaO · B₂O₃ glasses // J. Molecular Structure. 2015. V. 1079. P. 15–20.
- Doweidar H., El-Damrawi G., Al-Zaibani M. Distribution of species in Na₂O-CaO-B₂O₃ glasses as probed by FTIR // Vibrational Spectroscopy. 2013. V. 68. P. 91–95.
- Mansour E. Structure and electrical conductivity of new Li₂O-CeO₂-B₂O₃ glasses // J. Non-Cryst. Solids. 2011. V. 357. P. 1364–1369.
- Yao Z.Y., Moncke D., Kamitsos E.I., Houizot P., Celarie F., Rouxel T., Wondraczek L. Structure and mechanical properties of cooper-lead and copper-zinc borate glasses // J. Non-Cryst. Solids. 2016. V. 435. P. 55-68.
- Chinna Babu J., Suresh S., Chandra Mouli V. ESR, IR and optical absorption studies of Cu²⁺ spin probe in xNa₂O-(50-x)ZnO-50B₂O₃ ternary glasses // Indian J. Pure and Applied Physics. 2005. V. 43. P. 833-837.
- Salem S.M., Antar E.M., Mohamed E.A. Structural and dielectric properties of Li₂O–ZnO–BaO– B₂O₃–CuO glasses // J. Mater. Sci. 2011. V. 46. P. 1095–1102.
- Colak S.C., Akyuz I., Atay F. On the dual role of ZnO in zinc-borate glasses // J. Non-Cryst. Solids. 2016. V. 432. P. 406–412.
- Johnson B., Sudhakar B.K., Rama Krishna Chand N., Rayapa Reddy K., Srinivasa Rao G. Structureproperty relationships of Fe₂O₃ doped novel oxyfluorophosphate glasses // J. Non-Cryst. Solids. 2014. V. 404. P. 151–161.
- 14. *Gaafar M.S., Abd El-Aal N.S., Gerges O.W., El-Amir G.* Elastic properties and structural studies on some zinc-borate glasses derived from ultrasonic, FT-IR and X-ray techniques // J. Alloys and Compounds. 2009. V. 475. P. 535–542.
- 15. Ardelean I., Pascuta P. Comparative vibrational study of xFe₂O₃·(1–x)[3B₂O₃·MO] (MO ⇒ CaO or CaF₂) glass systems // Materials Letters. 2004. V. 58. P. 3499–3502.
- Ardelean I., Lungu R., Pascuta P. Structural changes induced by Fe₂O₃ addition in strontium-borate glass matrix // J. Mater. Sci.: Mater. Electron. 2007. V. 18. P. 837–841.
- Ram S., Ram K. IR investigation of amorphous BaO–Fe₂O₃–B₂O₃ glasses prepared using 1 mol% TiO₂ // Infrared Phys. 1989. V. 29. N. 5. P. 895–902.
- 18. *Yianopoulos Y.D., Chryssikos G.D., Kamitsos E.I.* Structure and properties of alkaline earth borate glasses // Phys. Chem. Glasses. 2001. V. 42. № 3. P. 164–172.
- Kashif I., Salem S.M., Soliman A.A., Farouk H., Mostafa A.G., Salah S.A., Sanad A.M. Mossbauer, infrared and magnetic susceptibility studies of iron sodium borate glasses doped by sulphur // Phys. Chem. Solids. 2006. V. 67. P. 2370–2375.
- Moncke D., Kamitsos E.I., Palles D., Limbach R., Winsterstein-Beckmann A., Honma T., Yao Z., Rouxel T., Wondraczek L. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties // J. Chem. Phys. 2016. V. 145. P. 124501(1)–124501(16).
- 21. Kajinami A., Harada Y., Inoue S., Deki S., Umesaki N. The structural analysis of zinc borate glass by laboratory EXAFS and X-ray diffraction measurements // Jpn. J. Appl. Phys. 1999. V. 38. № 38– 1. P. 132–135.
- Stefan R., Culea E., Pascuta P. The effect of copper ions addition on structural and optical properties of zinc borate glasses // J. Non-Cryst. Solids. 2012. V. 358. P. 839–846.
- 23. Stefan R., Pascuta P., Popa A., Raita O., Indrea E., Culea E. XRD and EPR structural investigation of some zinc borate glasses doped with iron ions // J. Phys. Chem. Solids. 2012. V. 73. P. 221–226.
- 24. *Yadav A.K., Singh P.* A review of the structures of oxide glasses by Raman spectroscopy // RSC Advances. 2015. V. 5. № 83. P. 67583–67609.
- Ferreira da Silva M.G., Costa B.F.O. Infrared and Mossbauer studies of iron in aluminosilicate glasses // J. Non-Cryst. Solids. 2001. V. 293–295. P. 534–538.
- Doweidar H., Moustafa Y.M., Abd El-Maksoud S., El-Damrawi G., Mansour E. Structure and properties of Li₂O-Fe₂O₃-B₂O₃ glasses // Phys. Chem. Glasses. 2001. V. 42. № 4–5. P. 333–338.

- 27. de Almeida E.F., de Paiva J.A.C., de Araujo M.A.B., Araujo E.B., Eiras J.A., Sombra A.S.B. Structure of iron niobophosphate glasses investigated by DTA, infrared and Mossbauer spectroscopy // J. Phys.: Condens. Matter. 1998. V. 10. P. 7511–7518.
- McGann O.J., Bingham P.A., Hand R.J., Gandy A.S., Kavcic M., Zitnik M., Bucar K., Edge R., Hyatt N.C. The effects of γ-radiation on model vitreous wasteforms intended for the disposal of intermediate and high level radioactive wastes in the United Kingdom // J. Nucl. Mater. 2012. V. 429. P. 353–367.
- 30. *Pascuta P., Maniu D., Ardelean I.* Structural investigation of Fe₂O₃–B₂O₃–KF glasses by IR and Raman spectroscopies // International J. Modern Physics B. 2004. V. 18. № 10–11. P. 1651–1658.
- Pascuta P., Borodi G., Popa A., Dan V., Culea E. Influence of iron ions on the structural and magnetic properties of some zinc-phosphate glasses // Mater. Chem. Phys. 2010. V. 123. P. 767–771.
- 32. Глазкова Я.С., Калмыков С.Н., Пресняков И.А., Стефановская О.И., Стефановский С.В. Структурное состояние железа в многокомпонентных алюможелезоборосиликатных стеклах в зависимости от их состава и условий синтеза // Физика и химия стекла. 2015. Т. 41. № 4. С. 487–502.
- Genova D.D., Vasseur J., Hess K.-U., Neuville D.R., Dingwell D.B. Effect of oxygen fugacity on the glass transition, viscosity and structure of silica- and iron-rich magmatic melts // J. Non-Cryst. Solids. 2017. V. 470. P. 78–85.
- 34. Saitoh A., Kitamura N., Ma L., Freudenberger P., Choudhury A., Takebe H., Brow R.K. Structural study of chemically durable BaO–FeO_x–P₂O₅ glasses by Mossbauer spectroscopy and high performance liquid chromatography // J. Non-Cryst. Solids. 2017. V. 460. P. 106–112.
- 35. *Ma L., Brow R.K., Choughury A.* Structural study of Na₂O–FeO–Fe₂O₃–P₂O₅ glasses by Raman and Mossbauer spectroscopy // J. Non-Cryst. Solids. 2014. V. 402. P. 64–73.
- Nagata K., Hayashi M. Structure relaxation of silicate melts containing iron oxide // J. Non-Cryst. Solids. 2001. V. 282. P. 1–6.
- Syono Y., Ito A. Structural and magnetic properties of amorphous BaO–Fe₂O₃–B₂O₃ system // J. Phys. Colloq. 1979. V. 40 (C2). P. 115–117.
- Sanchez J. P., Friedt J. M. Magnetic properties of the ternary oxide glasses, Li₂O-B₂O₃-Fe₂O₃ from 57Fe Mossbauer spectroscopy // J. de Physique. 1982. V. 43. № 11. P. 1707–1716.
- Yibing C., Xinju L., Chao X. A Mossbauer investigation of non-bridging oxygens in Na₂O-Fe₂O₃-B₂O₃ glasses // Hyperfine Interactions. 1986. V. 27. P. 285–288.
- 40. Syono Y., Ito A., Horie O. Mossbauer study of the structural and magnetic properties of amorphous BaO-Fe₂O₃-B₂O₃ system // J. Phys. Soc. Japan. 1979. V. 46. № 3.