КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: 108-АТОМНЫЙ ТРЕХСЛОЙНЫЙ ИКОСАЭДРИЧЕСКИЙ КЛАСТЕР 0@12(Ga₁₂)@24(Na₁₂Ga₁₂)@72(Rb₄Na₈Ga₆₀) И 44-АТОМНЫЙ ДВУХСЛОЙНЫЙ ИКОСАЭДРИЧЕСКИЙ КЛАСТЕР 0@12(Ga₁₂)@32(Na₂₀Ga₁₂) ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Rb₂₄Na₂₀₀Ga₆₉₆-oF920

© 2019 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, Россия, 199034, Санкт-Петербург, наб. Макарова 2 ²Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, Россия, 443100, Самара, ул. Молодогвардейская, 244 ³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Россия, 119333, Москва, Ленинский пр. 59

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 13.12.2018 г. После доработки 30.01.2019 г. Принята к публикации 05.02.2019 г.

С помощью компьютерных методов (пакет программ TOPOS) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллической структуры $Rb_{24}Na_{200}Ga_{696}$ -оF920 (пр. гр. *Fmmm*, V = 17 837 Å³). Число вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 4 до 12 составило 9565 варианта. Установлены два каркас-образующих икосаэдрических кластера *ico*-K108 и *ico*-K44. Трехслойный 108-атомный нанокластер *ico*-K108 имеет химический состав оболочек 0@12(Ga₁₂)@24(Na₁₂Ga₁₂)@72(Rb₄Na₈Ga₆₀), диаметр 17 Å и симметрию g = mmm. Двухслойный 44-атомный нанокластер *ico*-K44 имеет химический состав оболочек 0@12(Ga₁₂)@32(Na₂₀Ga₁₂), диаметр 11 Å и симметрию g = 2/m. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры $Rb_{24}Na_{200}Ga_{696}$ -оF920 из нанокластеров-прекурсоров *ico*-K108 и *ico*-K44 в виде: первичная цепь \rightarrow микрослой \rightarrow микрокаркас. В больших пустотах 3D каркаса расположены атомы-спейсеры Rb и связанные группы из атомов Ga в виде цепей.

Ключевые слова: самосборка кристаллических структур, структурный тип $Rb_{24}Na_{200}Ga_{696}$ —оF920, икосаэдрический трехслойный кластер-прекурсор $0@12(Ga_{12})@24(Na_{12}Ga_{12})@72(Rb_4Na_8Ga_{60})$, икосаэдрический двухслойный кластер-прекурсор $0@12(Ga_{12})@32(Na_{20}Ga_{12})$

DOI: 10.1134/S0132665119030090

ВВЕДЕНИЕ

В тройных системах M-Na-Ga [1, 2] где M-K, Rb, установлено образование тройных интерметаллических соединений K₂₄Na₇₈Ga₂₈₆-hR399 с пр. гр. $R\overline{3}m$ и V = 8109 Å³ [3, 4], Rb₂₄Na₂₀₀Ga₆₉₆-oF920 с пр. гр. *Fmmm* и V = 18527 Å³ [5]. По кристаллохимической сложности строения эти соединения сравнимы с двойными интерметаллическими соединениями Na₇Ga₁₃-hR360 с пр. гр. $R\overline{3}m$ и V = 7550 Å³ [6], Na₇Ga₁₃-oP240, *Pnma* и V = 5074 Å³ [7], Na₂₂Ga₃₉-oP244, *Рпта* и V = 5052 Å³ [8]. Все перечисленные выше двойные и тройные интерметаллические соединения не имеют кристаллохимических аналогов [1, 2, 9, 10].

Для ромбического интерметаллида $Rb_{24}Na_{200}Ga_{696}$ —oF920 [5] предложены простые каркас-образующие структурные единицы: 12-атомные икосаэдрические кластеры *ico*-Ga₁₂ и 21-атомные кластеры из двух икосаэдров, связанных по грани. Для тригонального интерметаллида $Na_{26}K_8Ga_{99}$ —*h*R399 [3, 4] приняты каркас-образующие структурные единицы: икосаэдрические кластеры *ico*-Ga₁₂ и 28-атомные кластеры из трех икосаэдров, связанных по граням. Пустоты в каркасах занимают атомы Na, K и Rb [3–5].

В настоящей работе с помощью пакета программ ToposPro [11] проведен геометрический и топологический анализ кристаллической структуры интерметаллида Rb₂₄Na₂₀₀-Ga₆₉₆-oF920. Реконструирован симметрийный и топологический код процессов самосборки кристаллической структуры интерметаллида из нанокластеровпрекурсоров *ico*-K108 и *ico*-K44 в виде: первичная цепь → микрослой → микрокаркас.

Работа продолжает исследования [12–19] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [11], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома.

Полученные значения координационных последовательностей атомов в 3D-сетках приведены в табл. 1, в которой жирным шрифтом выделено число соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома. Все атомы характеризуются различными наборами координационных последовательностей $\{N_k\}$, следовательно, все атомы топологически (и функционально) различны.

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах. Структура образуется в результате самосборки из кластеров-прекурсоров. При этом кластеры-прекурсоры образуют каркас структуры, пустоты в котором заполняются кластерами-спейсерами (состоящими из небольшого числа атомов). Кластеры-прекурсоры занимают высокосимметричные позиции. Набор нанокластеров-прекурсоров и кластеров-спейсеров включает в себя все атомы структуры.

Алгоритм реализован в комплексе программ ToposPro [11].

Самосборка кристаллической структуры $Rb_{24}Na_{200}Ga_{696}$. Использованный метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [12]. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее – механизм самосборки из цепи слоя (2рй уровень) и затем из слоя – трехмерного каркаса структуры (3-й уровень).

Атом	Локальное окружение	Координационные последовательности				
		N ₁	N ₂	N ₃	N ₄	N ₅
Na1	5Na + 12Ga	17	55	123	221	352
Na2	2Na + 12Ga	14	42	97	201	329
Na3	3Na + 14Ga + 1Rb	18	53	116	228	357
Na4	4Na + 12Ga	16	52	116	225	355
Na5	4Na + 14Ga	18	54	118	223	362
Na6	4Na + 13Ga	17	51	114	230	366
Na7	3Na + 12Ga + 1Rb	16	48	101	205	351
Na8	3Na + 12Ga	15	44	98	222	350
Na9	4Na + 12Ga	16	48	97	226	370
Gal	3Na + 6Ga + 2Rb	11	48	112	201	331
Ga2	3Na + 6Ga + 1Rb	10	44	110	201	319
Ga3	3Na + 6Ga + 1Rb	10	44	110	201	320
Ga4	5Na + 6Ga	11	43	112	208	339
Ga5	4Na + 6Ga	10	41	104	189	317
Ga6	4Na + 6Ga	10	45	112	206	316
Ga7	5Na + 6Ga	11	49	114	207	335
Ga8	5Na + 6Ga	11	45	114	213	341
Ga9	3Na + 6Ga + 2Rb	11	48	109	191	325
Ga10	4Na + 6Ga	10	43	104	190	316
Gall	3Na + 7Ga + 1Rb	11	46	105	196	332
Gal2	6Na + 4Ga	10	53	122	207	344
Ga13	5Na + 5Ga + 1Rb	11	55	125	208	352
Gal4	2Na + 6Ga	8	33	88	182	305
Ga15	3Na + 6Ga	9	37	96	190	321
Gal6	3Na + 6Ga	9	41	119	211	318
Gal7	2Na + 6Ga	8	35	96	181	298
Ga18	2Na + 6Ga + 1Rb	9	46	110	209	328
Ga19	8Ga + 2Rb	10	42	107	190	321
Ga20	6Na + 4Ga	10	51	117	208	331
Ga21	3Na + 6Ga	9	34	92	190	312
Ga22	3Na + 6Ga	9	36	103	195	307
Ga23	6Ga + 3Rb	9	47	116	200	340
Ga24	4Na + 6Ga	10	36	96	183	310
Ga25	5Na + 6Ga	11	50	108	202	346
Ga26	5Na + 6Ga	11	47	111	206	338
Ga27	5Na + 6Ga	11	46	114	203	330
Ga28	4Na + 6Ga	10	40	96	187	306
Ga29	2Na + 7Ga + 2Rb	11	48	101	184	333
Ga30	6Na + 4Ga	10	52	117	210	321
Ga31	2Na + 8Ga	10	40	115	207	298
Rb1	2Na + 15Ga + 1Rb	18	56	118	233	380
Rb2	2Na + 16Ga + 3Rb	21	64	122	238	408

Таблица 1. Локальное окружение атомов Rb, Na, Ga и значения координационных последовательностей

Примечание. Жирным шрифтом выделено КЧ атомов.

икосаэдрический кластер 0@12	24-атомная оболочка	72-атомная оболочка					
4 Gal4	4 Ga17	8 Ga1					
4 Ga21	4 Ga22	8 Ga2					
4 Ga24	4 Ga28	4 Ga23					
	8 Na2	8 Ga3					
	4 Na7	8 Ga5					
		4 Ga15					
		8 Ga9					
		8 Ga10					
		4 Ga29					
		8 Na3					
		4 Rb2					

Таблица 2. Атомы, формирующие икосаэдрический кластер 0@12 и 24- и 72-атомные оболочки Кластер 0@12(Ga12)@24(Na12Ga12)@72(Rb4Na2Ga20)

Всего 108 атомов

Кристаллографические данные. Параметры орторомбической ячейки: a = 25.086, b = 46.036, c = 16.043 Å. V = 18527 Å³. Последовательность Вайкоффа $p^{17}o^{10}n^4m^7kh^2g$.

Пространственная группа *Fmmm* (по. 69) характеризуется элементами с точечной симметрией: g = mmm (4*a*, 4*b*), g = 2/m (8*c*, 8*d*, 8*e*), 222 (8*f*) и др.

В табл. 1 приведено локальное окружение атомов Rb, Na, Ga и значения их координационных последовательностей в 3D атомной сетке. Кристаллическая структура характеризуется большим набором из 42 кристаллографически независимых атомов, из них два атома Rb с KU = 18 и 21, девять атомов Na с KU = 14, 15, 16, 17, 18 и тридцать один атом Ga с KU = 8, 9, 10, 11.

Число вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 4 до12 составило 9565 варианта.

Установлены три икосаэдрических кластера *ico*-Ga₁₂ (0@12), их центры занимают высокосимметричные позиции 4b, 8c и 8e. Кластеры *ico*-Ga₁₂ с центрами в позициях 4b и 8c (рис. 1) являются темплатами, на которых происходит образование трехслойных и двухслойных икосаэдрических кластеров *ico*-K108 и *ico*-K44 (рис. 2, 3). Кластеры *ico*-Ga₁₂ с центрами в позициях 8e характеризуют механизм связывания кластеров *ico*-K108.

Икосаэдрические кластеры *ico*-K108 (табл. 2) и *ico*-K44 (табл. 3) являются каркасобразующими кластерами. В больших пустотах каркаса расположены атомы-спейсеры Rb с KЧ = 21 и атомы Ga.

Кластер ісо-К08. Трехслойный 108-атомный нанокластер ісо-К108 имеет химический состав 0@12(Ga₁₂)@24(Na₁₂Ga₁₂)@72(Rb₄Na₈Ga₆₀), диаметр 17 Å и симметрию g = mmm. Вторая 24-атомная оболочка имеет химический состав оболочки Na₁₂Ga₁₂, третья — из 72 атомов имеет химический состав оболочки Rb₄Na₈Ga₆₀. В оболочке 60 атомов Ga расположены, как и атомы углерода C в фуллерене C₆₀. Оболочки Ga₆₀ спонтанно образуются из

(б)

Рис. 1. Кластерные структуры. Числа указывают длины связей атомов в Å.

12 пятиатомных кольцевых кластеров Ga_5 (рис. 3). Позиции над шестиугольниками Ga_6 занимают 8 атомов Na и 4 атома Rb, образующие по шесть связей с атомами Ga (рис. 3).

Кластер ісо-К44. Двухслойный 44-атомный нанокластер *ico*-К44 имеет химический состав оболочек $0@12(Ga_{12})@32(Na_{20}Ga_{12})$, диаметр 11 Å и симметрию g = 2/m.

Самосборка кристаллической структуры. Супраполиэдрический кластер. Образован из трех икосаэдрических кластеров *ico*-K108 + 2 *ico*-K44 (рис. 4).

(б)

Рис. 2. Двухслойный кластер (*a*) и трехслойный кластер (*б*).

Рис. 3. Двухслойный кластер.

Первичная цепь. Самосборка первичных цепей из супракластеров происходит в направлении диагонали а + с (рис. 5).

Слой. Образование слоя S_3^2 происходит при комплементарном связывании первичных цепей со сдвигом (рис. 6). В центре слоя происходит локализация атомов-спейсе-

Кластер 0@12(Ga ₁₂)@32(Na ₂₀ Ga ₁₂)					
икосаэдрический кластер 0@12	32-атомная оболочка				
2 Ga25	4 Ga4				
2 Ga26	4 Ga12				
4 Ga7	2 Ga27				
4 Ga8	2 Ga4				
	4 Na1				
	4 Na4				
	4 Na5				
	4 Na6				
	2 Na8				
	2 Na9				

Таблица 3. Атомы, формирующие икосаэдрический кластер 0@12 и 32 – атомную оболочку

Рис. 4. Механизм комплементарного связывания кластеров *ico-K*108 + 2 *ico-K*44 (две проекции).

Рис. 5. Механизм связывания супракластеров из *ico*-K108 + 2 *ico*-K44 при образовании первичной цепи.

ров Rb с KЧ = 21 и атомов Ga. Расстояние между центрами супракластеров определяет значение векторов трансляций a = 25.086 и c = 16.043 Å.

Самосборка каркаса. 3D каркасная структура S_3^3 формируется при связывании слоев в направлении оси Y (рис. 7). В больших пустотах 3D каркаса расположены атомыспейсеры Rb и связанные группы из атомов Ga в виде цепей (рис. 1).

ЗАКЛЮЧЕНИЕ

Методом разложения 3D атомной сетки на кластерные структуры установлены два каркас-образующих икосаэдрических кластера *ico*-K108 и *ico*-K44. Трехслойный 84-атомный нанокластер *ico*-K108 имеет химический состав оболочек $0@12(Ga_{12})@24$ (Na₁₂Ga₁₂)@72(Rb₁₂Ga₆₀), диаметр 17 Å и симметрию g = mmm. Двухслойный 44-атомный нанокластер *ico*-K44 имеет химический состав оболочек $0@12(Ga_{12})@32(Rb_{20}Ga_{12})$ и соответствует кластеру Бергмана с симметрией g = 2/m.

В больших пустотах 3D каркаса расположены атомы-спейсеры Rb и связанные группы из атомов Ga в виде цепей.

Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров *ico*-K108 в виде: первичная цепь \rightarrow микро-слой \rightarrow микрокаркас.

Рис. 6. Механизм связывания первичных цепей при образовании слоя (две проекции).

Рис. 7. Механизм связывания слоев при образовании каркаса.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Villars P., Cenzual K.* Pearson's crystal data-crystal structure database for inorganic compounds (PCDIC) ASM international: Materials Park, OH.
- Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA. 2018/1.
- 3. Belin C., Charbonnel M. A new intermetallic phase K₄Na₁₃Ga_{49.57}: Synthesis and X-ray crystal structure // J. Solid State Chem. 1986. V. 64. P. 57–66. doi.org/10.1016/0022-4596(86)90121-0
- 4. Flot D., Vincent L., Tillard-Charbonnel M., Belin C. Na₁₃ K₄ Ga_{47.45}: a new sodium potassium gallide phase containing trimeric icosahedral gallium clusters // Acta Crystallographica, Section C: Crystal Structure Communications. 1998. V. 54(2). P. 174–175. doi.org/10.1107/S0108270197015977
- Charbonnel M., Belin C. Synthesis and X-ray crystal structure of the new nonstoichiometric phase Rb_{0.60}Na_{6.25}Ga_{20.02} // J. Solid State Chemistry. 1987. V. 67. P. 210–218. doi.org/10.1016/0022-4596(87)90356-2
- Frank-Cordier U., Cordier G., Schaefer H. Die Struktur des Na₇Ga₁₃ I und ein Konzept zur bindings – maessigen Deutung. Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie.1986. 1982. V. 37. P. 119–126.

- Frank-Cordier U., Cordier G., Schaefer H. Neue Ga-Cluster-Verbaende im Na₇Ga₁₃ II. Zeitschrift fuer naturforschung, Teil B. Anorganische chemie, organische chemie. 1982. V. 37. P. 127–135.
- Ling R.G., Belin C. Structure of the intermetallic compound Na₂₂Ga₃₉ (ca. 36.07% Na) // Acta Crystallographica B. 1982. V. 38. P. 1101–1104. doi.org/10.1107/S0567740882005068
- Blatov V.A., Ilyushin G.D., Proserpio D.M. New types of multishell nanoclusters with a frank-kasper polyhedral core in intermetallics // Inorg. Chem. 2011. V. 50. P. 5714–5724. dx.doi.org/10.1021/ic2005024
- Pankova A.A., Akhmetshina T.G., Blatov V.A., Proserpio D.M. A collection of topological types of nanoclusters and its application to icosahedra-based intermetallics // Inorg. Chem. 2015. V. 54. № 13. P. 6616–6630. doi 10.1021/acs.inorgchem.5b00960
- 11. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied topological analysis of crystal structures with the program package topospro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585. http://topospro.com/10.1021/cg500498k.
- Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
- Ilyushin G.D. Modeling of the self-organization processes in crystal-forming systems. Tetrahedral metal clusters and the self-assembly of crystal structures of intermetallic compounds // Crystallography Reports. 2017. V. 62. 5. P. 670–683. doi 10.1134/S106377451705008X
- 14. Ilyushin G.D. Symmetry and topology code of the cluster self-assembly of intermetallic compounds $A_{10}^{10}B_{12}^{12}$ of the friauf families Mg₂Cu₄ and Mg₂Zn₄ // Crystallogr. Rep. 2018. V. 63. 4. P. 543–552. doi 10.1134/S1063774518040089
- Ilyushin G.D. Modeling of self-organization processes in crystal-forming systems: Symmetry and topology code for the cluster self-assembly of crystal structures of intermetallic compounds // Russ. J. Inorg. Chem. 2017. V. 62. 13. P. 1730–1769. doi 10.1134/S0036023617130046
- 16. Ilyushin G.D. Crystal chemistry of lithium intermetallic compounds: a survey // Russ. J. Inorg. Chem. 2018. V. 63. № 14. P. 1786–1799. doi 10.1134/S0036023618140024
- Blatov V.A., Ilyushin G.D., Proserpio D. M. Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg₂Al₃ polymorphs // Inorg. Chem. 2010. V. 49. № 4. P. 1811–1818. doi 10.1021/ic9021933
- 18. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Intermetallic compounds of the NaCd₂ family perceived as assemblies of nanoclusters // Struct. Chem. 2009. V. 20. № 6. P. 975–982. doi 10.1007/s11224-009-9500-6
- Blatov V.A., Ilyushin G.D. New method for computer analysis of complex intermetallic compounds and nanocluster model of the samson phase Cd₃Cu₄ // Crystallogr. Rep. 2010. V. 55. № 7. P. 1100– 1105. doi 10.1134/S1063774510070023