# ЭЛЕКТРОПРОВОДНОСТЬ И ЭЛЕКТРОДНЫЕ СВОЙСТВА АМОРФНЫХ ПЛЕНОК PbS-Ag<sub>2</sub>S-As<sub>2</sub>S<sub>3</sub> И PbS-AgI-As<sub>2</sub>S<sub>3</sub>, НАНЕСЕННЫХ ИЗ РАСТВОРОВ СТЕКОЛ В *н*-БУТИЛАМИНЕ

© 2019 г. Д. Л. Байдаков<sup>1, \*</sup>, Е. В. Школьников<sup>1</sup>

<sup>1</sup>Санкт-Петербургский государственный лесотехнический университет, кафедра химии, 194021 Россия, Санкт-Петербург, Институтский пер., 5

\*e-mail: chemwood@rambler.ru

Поступила в редакцию 21.12.18 г. После доработки 11.05.19 г. Принята к публикации 06.06.19 г.

Исследованы параметры удельной электропроводности и электродные характеристики массивных стекол и аморфных пленок PbS–AgI–As<sub>2</sub>S<sub>3</sub> и PbS–Ag<sub>2</sub>S–As<sub>2</sub>S<sub>3</sub>. Установлено, что нижний предел обнаружения катионов Pb<sup>2+</sup> для большинства исследованных мембран равен  $10^{-7}$  моль/л, нернстова область электродной функции составляет  $10^{-6}$ – $10^{-1}$  моль/л. Время отклика некоторых пленочных мембран составляет 30-40 с в разбавленных и 5–10 с в 0.01–0.1 М перемешиваемых растворах Pb(NO<sub>3</sub>)<sub>2</sub>.

**Ключевые слова:** халькогенидные стекла и пленки, химическое нанесение из *н*-бутиламина, электропроводность и электродные свойства стекол и пленок

DOI: 10.1134/S0132665119050032

### введение

В последние десятилетия проведены исследования электропроводности и электродных свойств многокомпонентных халькогенидных стекол, содержащих селениды или сульфиды мышьяка. Необычные электрические и оптические свойства (низкая чувствительность к примесям, сверхбыстрые фазовые переходы и эффекты переключения и памяти в пленках, высокая прозрачность и низкие оптические потери в инфракрасной области спектра) халькогенидных полупроводниковых стекол используют при создании устройств памяти, линз, призм и волоконных световодов для инфракрасного диапазона [1]. Серебросодержащие халькогенидные стекла благодаря повышенной химической стойкости применяются в качестве материалов для мембран ионоселективных электродов [2].

В работах [3–5] исследованы электропроводность и электродные свойства пленок CuI–PbI<sub>2</sub>–As<sub>2</sub>Se<sub>3</sub>, CuI–AgI–As<sub>2</sub>Se<sub>3</sub>, PbI<sub>2</sub>–AgI–As<sub>2</sub>Se<sub>3</sub>, селективных к катионам Cu<sup>2+</sup> и Pb<sup>2+</sup>. Установлено, что параметры электропроводности и электродные характеристики стекол и пленок практически не отличаются.

Цель настоящей работы — исследование электропроводности и электродных свойств аморфных пленок, нанесенных из растворов объемных стекол PbS-AgI-As<sub>2</sub>S<sub>3</sub> и PbS-Ag<sub>2</sub>S-As<sub>2</sub>S<sub>3</sub> в *н*-бутиламине.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходными веществами для синтеза стекол служили сульфид свинца PbS, сульфид серебра  $Ag_2S$ , иодид серебра AgI и сульфид мышьяка  $As_2S_3$  квалификации "х. ч." или "о. с. ч." с общей массой шихты 5 г. Синтез осуществляли методом вакуумной плавки в кварцевых ампулах (0.01–0.1 Па). Образцы медленно нагревали в печи до 400–500°С, выдерживали в течение 8 ч, перемешивали каждые 2 ч. Далее нагревали до 900°С с выдержкой 12–24 ч, с последующим понижением температуры до 600°С 4 ч. Закалку ампулы с расплавом от 600°С проводили на воздухе или в воде со льдом.

Сульфидные пленки наносили из растворов в первичном алифатическом амине. Методика нанесения свинцово- и серебросодержащих многокомпонентных халькогенидных пленок из растворов в *н*-бутиламине разработана ранее и приведена в работах [3, 4].

Измерение электропроводности пленок. Измерение общей электропроводности пленок  $PbS-Ag_2S-As_2S_3$  и  $PbS-AgI-As_2S_3$  проводили согласно методике, подробно описанной авторами в работах [4, 6].

Изготовление ионоселективных стеклянных электродов. Образец стекла в форме диска шлифовали абразивным порошком, одну из торцевых граней полировали, а на другую грань методом термического испарения в вакууме наносили слой серебра, к серебряному слою приклеивали медный токоотвод. Для увеличения прочности твердый контакт покрывали эпоксидной смолой и полученную мембрану вклеивали в торец пластиковой трубки.

Изготовление пленочных электродов. К проводящему слою пленки приклеивали токоотвод из меди и эпоксидной смолой изолировали область перекрывания слоев проводника и полупроводника.

Электродные измерения. Измерение электродвижущей силы (ЭДС) электрохимических ячеек [5] с сопротивлением мембран менее 10<sup>7</sup> Ом проводили с помощью цифрового вольтметра В7-23 с входным сопротивлением 10<sup>9</sup> Ом. Точность измерения ЭДС составляла 0.1 мВ. При измерении ЭДС ячеек с низкой проводимостью мембран использовали иономер И-130 с входным сопротивлением 10<sup>12</sup> Ом, точность измерения ЭДС составляла 0.5 мВ.

Стандартные растворы для калибровки электродов готовили методом последовательных разбавлений 1 М раствора  $Pb(NO_3)_2$  дистиллированной водой. Растворы с концентрацией нитрата свинца  $10^{-5}$  и  $10^{-6}$  моль/л готовили ежедневно перед проведением измерений [5].

Для определения времени отклика электрод погружали в 0.1 М раствор KNO<sub>3</sub>, и при большой скорости перемешивания добавляли рассчитанные небольшие объемы стандартных растворов нитрата свинца. Концентрация KNO<sub>3</sub> в исследуемых растворах и их ионная сила не менялись. Все измерения проводили при комнатной температуре при постоянном перемешивании магнитной мешалкой.

### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Электропроводность пленок и стекол. В табл. 1 и 2 представлены для пленок и стекол PbS–AgI–As<sub>2</sub>S<sub>3</sub> и PbS–Ag<sub>2</sub>S–As<sub>2</sub>S<sub>3</sub> энергия активации переноса заряда *Ea* и логарифм предэкспоненциального множителя  $\sigma_0$  в уравнении

$$\sigma = \sigma_0 \exp\left(-Ea/kT\right),\tag{1}$$

где k – константа Больцмана, T – абсолютная температура. Изотермы удельной электропроводности  $\sigma$  при 298 К указанных материалов показаны на рис. 1.

| Содержание<br>PbS, мол. % | $R = [AgI]/[As_2S_3]$ | Материал         | <i>Еа</i> , эВ                                                | $\lg \sigma_0$                                            |
|---------------------------|-----------------------|------------------|---------------------------------------------------------------|-----------------------------------------------------------|
| 10                        | 0                     | Пленка<br>Стекло | $\begin{array}{c} 1.02 \pm 0.06 \\ 1.08 \pm 0.03 \end{array}$ | $3.3 \pm 0.2 \\ 3.2 \pm 0.2$                              |
| 20                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.87 \pm 0.05 \\ 0.84 \pm 0.04 \end{array}$ | $2.4 \pm 0.3 \\ 2.3 \pm 0.3$                              |
| 30                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.78 \pm 0.04 \\ 0.79 \pm 0.02 \end{array}$ | $2.2 \pm 0.2 \\ 2.3 \pm 0.2$                              |
| 40                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.65 \pm 0.04 \\ 0.67 \pm 0.02 \end{array}$ | $\begin{array}{c} 1.4 \pm 0.2 \\ 1.5 \pm 0.2 \end{array}$ |
| 0                         | 1/4                   | Пленка<br>Стекло | $\begin{array}{c} 0.52 \pm 0.04 \\ 0.53 \pm 0.03 \end{array}$ | $\begin{array}{c} 1.3 \pm 0.7 \\ 1.3 \pm 0.6 \end{array}$ |
| 10                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.56 \pm 0.03 \\ 0.57 \pm 0.03 \end{array}$ | $\begin{array}{c} 1.3 \pm 0.5 \\ 1.4 \pm 0.5 \end{array}$ |
| 20                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.61 \pm 0.03 \\ 0.65 \pm 0.03 \end{array}$ | $\begin{array}{c} 1.2 \pm 0.5 \\ 1.3 \pm 0.5 \end{array}$ |
| 30                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.67 \pm 0.03 \\ 0.70 \pm 0.03 \end{array}$ | $\begin{array}{c} 1.8 \pm 0.5 \\ 2.1 \pm 0.5 \end{array}$ |
| 40                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.72 \pm 0.03 \\ 0.74 \pm 0.04 \end{array}$ | $\begin{array}{c} 2.4 \pm 0.5 \\ 2.5 \pm 0.5 \end{array}$ |
| 0                         | 1/2                   | Пленка<br>Стекло | $\begin{array}{c} 0.36 \pm 0.03 \\ 0.35 \pm 0.04 \end{array}$ | $\begin{array}{c} 2.0 \pm 0.5 \\ 1.9 \pm 0.5 \end{array}$ |
| 10                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.45 \pm 0.04 \\ 0.43 \pm 0.03 \end{array}$ | $\begin{array}{c} 2.1 \pm 0.3 \\ 2.0 \pm 0.3 \end{array}$ |
| 20                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.54 \pm 0.04 \\ 0.54 \pm 0.03 \end{array}$ | $\begin{array}{c} 2.7 \pm 0.3 \\ 2.6 \pm 0.3 \end{array}$ |
| 30                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.61 \pm 0.02 \\ 0.62 \pm 0.03 \end{array}$ | $\begin{array}{c} 2.9 \pm 0.3 \\ 2.9 \pm 0.3 \end{array}$ |
| 40                        |                       | Пленка<br>Стекло | $\begin{array}{c} 0.68 \pm 0.03 \\ 0.67 \pm 0.04 \end{array}$ | $3.5 \pm 0.3 \\ 3.4 \pm 0.4$                              |

Таблица 1. Состав и параметры удельной электропроводности пленок и стекол PbS-AgI-As $_2S_3$ 

По всем исследованным разрезам R в системах PbS-AgI-As<sub>2</sub>S<sub>3</sub> и PbS-Ag<sub>2</sub>S-As<sub>2</sub>S<sub>3</sub> параметры удельной электроповодности для аморфных пленок и массивных стекол аналогичного состава в пределах погрешностей одинаковы. В [4–6] такие же выводы для пленок и стекол систем CuI-AgI-As<sub>2</sub>Se<sub>3</sub>, PbI<sub>2</sub>-AgI-As<sub>2</sub>Se<sub>3</sub>, CuI-AsI<sub>3</sub>-As<sub>2</sub>Se<sub>3</sub>, CuI-AsI<sub>3</sub>-As<sub>2</sub>Se<sub>3</sub>, CuI-SbI<sub>3</sub>-As<sub>2</sub>Se<sub>3</sub>.

Из рис. 1 видно, что при увеличении содержания сульфида свинца от 0 до 40 мол. % проводимость пленок и стекол PbS–AgI–As<sub>2</sub>S<sub>3</sub> и PbS–Ag<sub>2</sub>S–As<sub>2</sub>S<sub>3</sub> при R = 1/4 и 1/2 уменьшается на 2 порядка.

Полупроводниковые стекла и пленки PbS—As<sub>2</sub>S<sub>3</sub> имеют низкую электропроводность, возрастающую на 4 порядка. При увеличении содержания PbS от 0 до 40 мол. % ее значения возрастают на 4 порядка. У стекол Ag<sub>2</sub>S—As<sub>2</sub>S<sub>3</sub> с содержанием сульфида серебра до 12 мол. % наблюдается электронно-ионная проводимость, 17.5—66.7 мол. % Ag<sub>2</sub>S-ионная проводимость. В стекле AgAsS<sub>2</sub> число переноса ионов Ag<sup>+</sup> равно 1.0 [7]. Большинство серебросодержащих стекол PbS—Ag<sub>2</sub>S(AgI)—As<sub>2</sub>S<sub>3</sub> являются твердыми электролитами с Ag<sup>+</sup>-ионной проводимостью ( $10^{-8}-10^{-3}$  Om<sup>-1</sup>cm<sup>-1</sup>) [2]. Электронная составляющая проводимости на 4—6 порядков ниже ионной. Из табл. 1 и 2 видно, что общая электропроводность стекол и пленок возрастает с увеличением содержания Ag<sub>2</sub>S(AgI) в исходной шихте.

| Содержание PbS, мол. % | $R = [Ag_2S]/[As_2S_3]$ | Материал         | <i>Еа</i> , эВ                                                | $\lg \sigma_0$                                            |
|------------------------|-------------------------|------------------|---------------------------------------------------------------|-----------------------------------------------------------|
| 0                      | 1/4                     | Пленка<br>Стекло | $\begin{array}{c} 0.52 \pm 0.04 \\ 0.51 \pm 0.03 \end{array}$ | $1.2 \pm 0.7 \\ 1.2 \pm 0.6$                              |
| 10                     |                         | Пленка<br>Стекло | $\begin{array}{c} 0.57 \pm 0.03 \\ 0.58 \pm 0.03 \end{array}$ | $\begin{array}{c} 1.2 \pm 0.5 \\ 1.3 \pm 0.5 \end{array}$ |
| 20                     |                         | Пленка<br>Стекло | $\begin{array}{c} 0.64 \pm 0.03 \\ 0.66 \pm 0.03 \end{array}$ | $\begin{array}{c} 2.1 \pm 0.5 \\ 2.0 \pm 0.5 \end{array}$ |
| 30                     |                         | Пленка<br>Стекло | $\begin{array}{c} 0.68 \pm 0.03 \\ 0.69 \pm 0.03 \end{array}$ | $\begin{array}{c} 1.9 \pm 0.5 \\ 1.9 \pm 0.5 \end{array}$ |
| 40                     |                         | Пленка<br>Стекло | $\begin{array}{c} 0.75 \pm 0.03 \\ 0.74 \pm 0.04 \end{array}$ | $2.0 \pm 0.5 \\ 1.8 \pm 0.4$                              |
| 0                      | 1/2                     | Пленка<br>Стекло | $\begin{array}{c} 0.46 \pm 0.03 \\ 0.45 \pm 0.04 \end{array}$ | $\begin{array}{c} 2.4 \pm 0.5 \\ 2.4 \pm 0.5 \end{array}$ |
| 10                     |                         | Пленка<br>Стекло | $\begin{array}{c} 0.41 \pm 0.04 \\ 0.40 \pm 0.03 \end{array}$ | $\begin{array}{c} 1.0 \pm 0.3 \\ 1.0 \pm 0.3 \end{array}$ |
| 20                     |                         | Пленка<br>Стекло | $\begin{array}{c} 0.47 \pm 0.04 \\ 0.44 \pm 0.03 \end{array}$ | $\begin{array}{c} 1.5 \pm 0.3 \\ 1.1 \pm 0.3 \end{array}$ |
| 30                     |                         | Пленка<br>Стекло | $\begin{array}{c} 0.50 \pm 0.02 \\ 0.48 \pm 0.03 \end{array}$ | $\begin{array}{c} 1.5 \pm 0.3 \\ 1.4 \pm 0.3 \end{array}$ |
| 40                     |                         | Пленка<br>Стекло | $\begin{array}{c} 0.55 \pm 0.03 \\ 0.54 \pm 0.04 \end{array}$ | $\begin{array}{c} 1.8 \pm 0.5 \\ 1.8 \pm 0.4 \end{array}$ |

**Таблица 2.** Состав и параметры удельной электропроводности пленок и стекол  $PbS-Ag_2S-As_2S_3$ 

При синтезе исследованных стекол возможны следующие гетерогенные реакции в интервале температур 583–773 К [8–10]:

$$0.5Ag_{2}S(\kappa) + 0.5As_{2}S_{3}(\kappa) = AgAsS_{2}(\kappa)$$
  

$$\Delta G_{298} = -11 \,\kappa \exists \kappa, \ \Delta G_{775} = -7 \,\kappa \exists \kappa;$$
(2)

$$AgI(\kappa) + As_2S_3(w) = 2AsSI(w) + Ag_2S(\kappa)$$
  

$$\Delta G \le -5 \kappa \Lambda w;$$
(3)

$$5PbS(\kappa) + 3As_2S_3(\kappa) = 5PbS \cdot 3As_2S_3(\kappa)$$

$$\Delta G < 0.$$
(4)

Твердофазная обменная реакция

$$2AgI(\kappa) + PbS(\kappa) = PbI_{2}(\kappa) + Ag_{2}S(\kappa)$$
(5)

 $(\Delta G_{298} = 17 \text{ кДж} > 0)$  маловероятна. В уравнениях (2)–(5) к – кристалл, ж – жидкость (расплав).

Получающиеся в расплаве структурные единицы (с.е.) тройных легко стеклующихся соединений AgAsS<sub>2</sub> и AsSI [11] и с.е. трудно кристаллизующегося стекла 5PbS ·  $3As_2S_3$ (PbAs<sub>1.2</sub>S<sub>2.8</sub>), известного в природе минерала [9], способствуют стеклообразованию и в значительной мере определяют полимерную структуру, электропроводность и электродные свойства исследованных в настоящей работе стекол и пленок (с 4–12 ат. % Pb и с 5–13 ат. % Ag).

Аналогия параметров электропроводности стекол и пленок, нанесенных из раствора, объясняется моделью растворения халькогенидных стекол в аминах.



**Рис. 1.** Изотермы удельной электропроводности пленок и стекол состава PbS-AgI-As<sub>2</sub>S<sub>3</sub> (*a*) и PbS-Ag<sub>2</sub>S-As<sub>2</sub>S<sub>3</sub> при 298 К (*б*).

В работах [12, 13] предложена схема взаимодействия сульфида мышьяка с аминами, основанная на реакции аммонолиза. Авторами сделан вывод о квазимицеллярном характере растворения сульфида мышьяка в аминах:

$$\left(\operatorname{As}_{2}\operatorname{S}_{3}\right)_{n} + \operatorname{RNH}_{2} \to \left(\operatorname{As}_{2}\operatorname{S}_{3}\right)_{n-m}\operatorname{S}_{m}^{-}\operatorname{RNH}_{2}^{+} + \operatorname{As}\left(\operatorname{RNH}\right)_{3}.$$
(6)

На основе результатов элементного анализа, тонкослойной хроматографии, а также ИК и ЭПР спектроскопии авторами [12, 13] установлено существование в растворе фрагментов полимерной сетки стекла  $As_2S_3$ , на поверхности которой находятся сульфидные группы, связанные с ионами алкиламмония.

В работах [14–16] изучали механизм взаимодействия халькогенидных стекол систем As–S и As–Se с растворами аминов. Установлено, что растворение сульфидных и селенидных стекол в аминах приводит к сохранению полимерной сетки халькогенидного стекла в растворе.

| Содержание<br>PbS, мол. % | $R = [AgI]/[As_2S_3]$ | Материал         | Угловой коэффи-<br>циент функции,<br>мB/декаду              | Нернстова<br>область функции,<br>моль/л | Предел<br>обнаружения,<br>моль/л |
|---------------------------|-----------------------|------------------|-------------------------------------------------------------|-----------------------------------------|----------------------------------|
| 10                        | 0                     | Пленка<br>Стекло | $8.7 \pm 0.3 \\ 8.3 \pm 0.3$                                | $10^{-2} - 10^{-1}$                     | $5 \times 10^{-7}$               |
| 20                        |                       | Пленка<br>Стекло | $\begin{array}{c} 14.0 \pm 0.3 \\ 14.6 \pm 0.3 \end{array}$ | $10^{-3} - 10^{-1}$                     | $5 \times 10^{-7}$               |
| 30                        |                       | Пленка<br>Стекло | $\begin{array}{c} 23.9 \pm 0.3 \\ 23.2 \pm 0.3 \end{array}$ | $10^{-4} - 10^{-1}$                     | $5 \times 10^{-7}$               |
| 40                        |                       | Пленка<br>Стекло | $\begin{array}{c} 28.8 \pm 0.3 \\ 28.7 \pm 0.3 \end{array}$ | $10^{-6} - 10^{-1}$                     | $5 \times 10^{-7}$               |
| 0                         | 1/4                   | Пленка<br>Стекло | $\begin{array}{c} 16.5 \pm 0.3 \\ 16.7 \pm 0.3 \end{array}$ | $10^{-4} - 10^{-1}$                     | $5 \times 10^{-7}$               |
| 10                        |                       | Пленка<br>Стекло | $\begin{array}{c} 24.6 \pm 0.3 \\ 24.7 \pm 0.3 \end{array}$ | $10^{-5} - 10^{-1}$                     | $10^{-7}$                        |
| 20                        |                       | Пленка<br>Стекло | $\begin{array}{c} 28.8 \pm 0.3 \\ 28.7 \pm 0.3 \end{array}$ | $10^{-6} - 10^{-1}$                     | $10^{-7}$                        |
| 30                        |                       | Пленка<br>Стекло | $\begin{array}{c} 29.2 \pm 0.3 \\ 29.4 \pm 0.3 \end{array}$ | $10^{-6} - 10^{-1}$                     | $10^{-7}$                        |
| 40                        |                       | Пленка<br>Стекло | $\begin{array}{c} 29.5 \pm 0.3 \\ 29.4 \pm 0.3 \end{array}$ | $10^{-6} - 10^{-1}$                     | $10^{-7}$                        |
| 0                         | 1/2                   | Пленка<br>Стекло | $\begin{array}{c} 14.8 \pm 0.3 \\ 14.5 \pm 0.3 \end{array}$ | $10^{-5} - 10^{-1}$                     | $5 \times 10^{-7}$               |
| 10                        |                       | Пленка<br>Стекло | $\begin{array}{c} 23.9 \pm 0.3 \\ 23.6 \pm 0.3 \end{array}$ | $10^{-6} - 10^{-1}$                     | $10^{-7}$                        |
| 20                        |                       | Пленка<br>Стекло | $\begin{array}{c} 29.2 \pm 0.3 \\ 29.3 \pm 0.3 \end{array}$ | $10^{-6} - 10^{-1}$                     | $10^{-7}$                        |
| 30                        |                       | Пленка<br>Стекло | $\begin{array}{c} 29.1 \pm 0.3 \\ 29.3 \pm 0.3 \end{array}$ | $10^{-6} - 10^{-1}$                     | $10^{-7}$                        |
| 40                        |                       | Пленка<br>Стекло | $\begin{array}{c} 29.2 \pm 0.3 \\ 29.5 \pm 0.3 \end{array}$ | $10^{-6} - 10^{-1}$                     | 10 <sup>-7</sup>                 |

**Таблица 3.** Электродные характеристики объемных стекол и аморфных пленок PbS–AgI–As $_2S_3,$ чувствительных к катионам Pb $^{2+}$ 

По-видимому, при растворении многокомпонентных стекол PbS–AgI–As<sub>2</sub>S<sub>3</sub> и PbS–Ag<sub>2</sub>S–As<sub>2</sub>S<sub>3</sub> в *н*-бутиламине, и при последующем нанесении и формировании пленок сохраняется полимерная структура объемных стекол [12–16]. Сохранение полимерной структуры стекол при формировании пленок приводит к аналогии электрических свойств пленок и стекол PbS–AgI–As<sub>2</sub>S<sub>3</sub> и PbS–Ag<sub>2</sub>S–As<sub>2</sub>S<sub>3</sub>.

Электродные свойства пленок. Электроды с пленочными мембранами составов PbS–Ag<sub>2</sub>S–As<sub>2</sub>S<sub>3</sub>, PbS–AgI–As<sub>2</sub>S<sub>3</sub> показали хорошую чувствительность к катионам Pb<sup>2+</sup> (табл. 3, 4). Для большинства исследованных мембран в этих системах нернстова область функции составляет  $10^{-6}$ – $10^{-1}$  моль/л, нижний предел обнаружения катионов Pb<sup>2+</sup> равен  $10^{-7}$  моль/л.

В системе PbS–Ag<sub>2</sub>S–As<sub>2</sub>S<sub>3</sub> наклон калибровочного графика в нернстовой области для пленок PbS 40 мол. % близок к теоретическому значению и составляет 29 мВ/дека-

| Содержание<br>PbS, мол. % | $R = [Ag_2S]/[As_2S_3]$ | Материал         | Угловой<br>коэффициент<br>функции, мВ/декаду                | Нернстова<br>область функ-<br>ции, моль/л | Предел<br>обнаружения,<br>моль/л |
|---------------------------|-------------------------|------------------|-------------------------------------------------------------|-------------------------------------------|----------------------------------|
| 0                         | 1/4                     | Пленка<br>Стекло | $\begin{array}{c} 12.5 \pm 0.3 \\ 12.5 \pm 0.3 \end{array}$ | $10^{-3} - 10^{-1}$                       | $5 \times 10^{-7}$               |
| 10                        |                         | Пленка<br>Стекло | $15.4 \pm 0.3$<br>$16.0 \pm 0.3$                            | $10^{-4} - 10^{-1}$                       | $5 \times 10^{-7}$               |
| 20                        |                         | Пленка<br>Стекло | $\begin{array}{c} 18.2 \pm 0.3 \\ 18.7 \pm 0.3 \end{array}$ | $10^{-4} - 10^{-1}$                       | $5 \times 10^{-7}$               |
| 30                        |                         | Пленка<br>Стекло | $24.7 \pm 0.3 \\ 24.4 \pm 0.3$                              | $10^{-6} - 10^{-1}$                       | $10^{-7}$                        |
| 40                        |                         | Пленка<br>Стекло | $29.5 \pm 0.3 \\ 29.4 \pm 0.3$                              | $10^{-6} - 10^{-1}$                       | $10^{-7}$                        |
| 0                         | 1/2                     | Пленка<br>Стекло | $14.8 \pm 0.3 \\ 14.5 \pm 0.3$                              | $10^{-4} - 10^{-1}$                       | $5 \times 10^{-7}$               |
| 10                        |                         | Пленка<br>Стекло | $18.9 \pm 0.3$<br>$19.0 \pm 0.3$                            | $10^{-4} - 10^{-1}$                       | $5 \times 10^{-7}$               |
| 20                        |                         | Пленка<br>Стекло | $27.2 \pm 0.3 \\ 27.3 \pm 0.3$                              | $10^{-6} - 10^{-1}$                       | $10^{-7}$                        |
| 30                        |                         | Пленка<br>Стекло | $29.1 \pm 0.3$<br>$29.3 \pm 0.3$                            | $10^{-6} - 10^{-1}$                       | $10^{-7}$                        |
| 40                        |                         | Пленка<br>Стекло | $\begin{array}{c} 29.2 \pm 0.3 \\ 29.5 \pm 0.3 \end{array}$ | $10^{-6} - 10^{-1}$                       | 10 <sup>-7</sup>                 |

**Таблица 4.** Электродные характеристики объемных стекол и аморфных пленок  $PbS-Ag_2S-As_2S_3$ , чувствительных к катионам  $Pb^{2+}$ 

ду. Для электродов с содержанием PbS в мембране менее 30 мол. % наклон калибровочного графика меньше теоретического. Это увеличивает погрешность определения концентрации ионов  $Pb^{2+}$  в растворе и приводит к увеличению (в 5 раз) нижнего предела обнаружения ионов (табл. 3, 4).

Для электродов с пленочной мембраной PbS–AgI–As<sub>2</sub>S<sub>3</sub> (табл. 4) теоретический угловой коэффициент функции 29 мВ/декаду наблюдается уже для пленок и стекол с содержанием сульфида свинца от 20 мол. % для R = 1/4 и R = 1/2.

Пленочные электроды с содержанием PbS от 20 мол. % и более проявляют стабильность электродного потенциала до 30 дней. Дрейф электродного потенциала в течение рабочего дня составлял  $\pm 0.04$  мВ/ч, а в течение двух месяцев не превышал  $\pm 6$  мВ.

Стандартные потенциалы электродов с мембранами одинакового состава различались не более, чем на 5 мВ. Различие стандартных потенциалов у мембран разных составов в интервале от 0 до 40 мол. % сульфида свинца не превышало 20 мВ. Аналитическое время отклика лучших мембран составляло 30–40 с в разбавленных и 5–10 с в 0.01–0.1 М перемешиваемых растворах Pb(NO<sub>3</sub>)<sub>2</sub>.

Высокое омическое сопротивление мембран (≥10<sup>10</sup> Ом) увеличивает время электродного отклика. Электродные свойства халькогенидных стеклянных мембран значительно зависят от химической стойкости [11] и морфологии поверхностного слоя [2] мембран. Стеклянная мембрана AgAsS<sub>2</sub> (с.е. Ag<sup>q+</sup>S<sup>q-</sup>AsS<sub>2/2</sub>) довольно устойчива в разбавленных кислотах HCl,  $H_2SO_4$  и менее стойка в кислых окислительных средах на основе HNO<sub>3</sub> [11].

Сравнительный анализ параметров удельной электропроводности (табл. 1, 2), электродных свойств стекол и пленок (табл. 3, 4) и имеющейся информации о свойствах стеклообразователей  $As_2S_3$ ,  $AgAsS_2$ ,  $5PbS^{\cdot}3As_2S_3$  и AsSI позволяют предложить вероятные структурно-химические модели исследованных стекол и пленок:

$$0.5Ag_{2}S + xPbS + As_{2}S_{3} \rightarrow AgAsS_{2} + xPbAs_{1,2}S_{2,8} + (0.5 - 0.6x)As_{2}S_{3},$$
(7)

0.5AgI + *x*PbS + As<sub>2</sub>S<sub>3</sub>  $\rightarrow 0.5$ AgAsS<sub>2</sub> + 0.5AsSeI + *x*PbAs<sub>1.2</sub>S<sub>2.8</sub> + (0.5 - 0.6*x*) As<sub>2</sub>S<sub>3</sub>, (8) где *x* ≤ 0.83 (35.6 мол. % PbS).

Полученные в данной работе результаты по электропроводности и электродным свойствам тонких аморфных пленок PbS–AgI–As<sub>2</sub>S<sub>3</sub> и PbS–Ag<sub>2</sub>S–As<sub>2</sub>S<sub>3</sub> согласуются с результатами работы [2], в которой были исследованы электропроводность и электродные свойства стекол аналогичного состава.

#### ЗАКЛЮЧЕНИЕ

Впервые исследованы параметры удельной электропроводности и электродные характеристики аморфных пленок PbS–AgI–As<sub>2</sub>S<sub>3</sub> и PbS–Ag<sub>2</sub>S–As<sub>2</sub>S<sub>3</sub>, нанесенных из растворов стекол в *н*-бутиламине. Величина электропроводности при 298 К составляет  $10^{-14}$ – $10^{-4}$  Ом<sup>-1</sup> см<sup>-1</sup>.

Для пленок с 40 мол. % PbS в системе PbS $-Ag_2S-As_2S_3$  градиент электродной функции в нернстовой области  $10^{-6}-10^{-1}$  моль Pb<sup>2+</sup>/л близок к теоретическому значению 29 мВ/декаду при всех исследованных концентрациях Ag<sub>2</sub>S. Для мембран PbS $-AgI-As_2S_3$  теоретический градиент электродной функции наблюдается для пленок и стекол с 20–40 мол. % PbS при  $R = [AgI]/[As_2S_3] = 0.25$  и 0.5.

Параметры электропроводности и электродные характеристики массивных стекол и аморфных пленок аналогичного состава в пределах погрешностей одинаковы.

Предложены вероятные структурно-химические модели стекол и пленок PbS-Ag<sub>2</sub>S-As<sub>2</sub>S<sub>3</sub> и PbS-AgI-As<sub>2</sub>S<sub>3</sub>.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Богословский И.А., Цендин К.Д. Физика эффектов переключения и памяти в халькогенидных стеклообразных полупроводниках // Физика и техника полупроводников. 2012. Т. 46. № 5. С. 577–607.
- Vlasov Yu.G., Bychkov E.A., Legin A.V. New lead ion-selective chalcogenisde glass electrodes // Ion-Selective Electrodes. V. 4. Ed. By E.Pungor. Budapest: Akademiai Kiado, 1984. P. 657–677.
- 3. Легин А.В., Байдаков Д.Л., Власов Ю.Г. Тонкие пленки CuI-PbI<sub>2</sub>-As<sub>2</sub>Se<sub>3</sub>, полученные методом химического нанесения // Физ. и хим. стекла. 1996. Т. 22. № 2. С. 130–136.
- 4. Байдаков Д.Л. Электропроводность халькогенидных пленок CuI–AgI–As<sub>2</sub>Se<sub>3</sub>, PbI<sub>2</sub>–AgI–As<sub>2</sub>Se<sub>3</sub>, полученных методом химического нанесения // Физ. и хим. стекла. 2013. Т. 39. № 5. С. 35–40.
- 5. Байдаков Д.Л., Школьников Е.В. Электродные свойства галогенидхалькогенидных стекол и аморфных пленок, полученных методом химического нанесения // Физ. и хим. стекла. 2018. Т. 44. № 4. С. 422–429.
- 6. Байдаков Д.Л., Школьников Е.В., Рысева В.А. Электропроводность халькогенидных пленок CuI-AsI<sub>3</sub>-As<sub>2</sub>Se<sub>3</sub>, CuI-SbI<sub>3</sub>-As<sub>2</sub>Se<sub>3</sub>, полученных методом химического нанесения // Физ. и хим. стекла. 2010. Т. 36. № 6. С. 705-710.
- 7. Kawamoto Y., Nishida M. Ionic conduction in As<sub>2</sub>S<sub>3</sub>-Ag<sub>2</sub>S, GeS<sub>2</sub>-GeS-Ag<sub>2</sub>S and P<sub>2</sub>S<sub>5</sub>-Ag<sub>2</sub>S glasses // J. Non-Cryst. Solids. 1976. V. 20. № 3. P. 393-404.
- 8. Thermal Constants of Substances. V. 1-8. Ed. V. S. Yungman. New York: Wiley. 1999.
- 9. Виноградова Г.З. Стеклообразование и фазовые равновесия в халькогенидных системах. Двойные и тройные системы. М.: Наука. 1984. 176 с.

- 10. Гасанова З.Т., Машадиева Л.Ф., Зломанов В.П., Бабанлы М.Б. Термодинамическое исследование системы Ag<sub>2</sub>S-As<sub>2</sub>S<sub>3</sub>-S методом ЭДС с твердым электролитом Ag<sub>4</sub>RbIS // Неорганические материалы. 2014. Т. 50. № 1. С. 11–14.
- Школьников Е.В. Кинетика кислотно-окислительного растворения стеклообразных (окси)халькогенидных Ag<sup>+</sup> (Cu<sup>2+</sup>, Pb<sup>2+</sup>, Tl<sup>+</sup>) – сенсорных материалов // Физ. и хим. стекла. 2000. Т. 26. № 6. С. 861–869.
- 12. Chern G.C., Lauks I. Spin coated amorphous chalcogenide films: Thermal properties // J. Appl. Phys. 1983. V. 54. № 8. P. 4596-4601.
- Chern G.C., Lauks I. Spin coated amorphous chalcogenide films: structural characterization // J. Appl. Phys. 1983. V. 54. № 7. P. 2701–2705.
- 14. Зенкин С.А., Мамедов С.Б., Михайлов М.Д., Туркина Е.Ю., Юсупов И.Ю. Механизм взаимодействия монолитных стекол и аморфных пленок системы As–S с растворами аминов // Физ. и хим. стекла. 1997. Т. 23. № 5. С. 560–568.
- 15. *Чиснене Р.О.* Взаимодействие триселенида мышьяка с растворами гидроксида натрия и этилендиамина: Автореф. дис. ... канд., Каунас. 1986. 15 с.
- 16. Коломиец Б.Т., Любин В.М., Шило В.Н. Растворение селенида мышьяка в органических растворителях // Доклады Академии наук СССР, 1971. Т. 201. № 5. С. 1106–1109.