= КРАТКОЕ СООБЩЕНИЕ —

ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ И ФАЗОВЫЕ ПЕРЕХОДЫ В СУЛЬФАТЕ Na₃H(SO₄)₂ В ОБЛАСТИ НИЗКИХ ТЕМПЕРАТУР

© 2019 г. Н. В. Дмитриева¹, Р. С. Бубнова^{1, 2}, С. К. Филатов¹, А. П. Шаблинский^{1, 2}, М. Г. Кржижановская²

¹Институт химии силикатов им. И.В. Гребенщикова РАН, Россия 199034, Санкт-Петербург, наб. Макарова, 2

²Санкт-Петербургский государственный университет, Россия 199034, Санкт-Петербург, Университетская наб., 7/9

*e-mail: rimma bubnova@mail.ru

Поступила в редакцию 16.11.2018 г. После доработки 24.12.2018 г. Принята к публикации 06.06.2019 г.

Изучено термическое поведение Na₃H(SO₄)₂ в интервале температур –180...220°С в форвакууме. При температуре 180°С соединение разлагается на смесь фаз: Na₂SO₄ (*Cmcm*), Na₂SO₄ (*P*6₃/*mmc*), Na₂SO₄ (*Fddd*), Na₂S₂O₇. Максимальное термическое расширение наблюдается вблизи оси α_{33} . С ростом температуры степень анизотропии термического расширения резко понижается.

Ключевые слова: сульфаты, терморентгенография, термическое расширение, фазовые превращения

DOI: 10.1134/S0132665119050044

введение

Соединение Na₃H(SO₄)₂ впервые было обнаружено в 1926 г. [1]. Позднее была определена его кристаллическая структура [2]: моноклинная сингония, пространственная группа $P2_1/c$, параметры a = 8.648(1), b = 9.648(1), c = 9.143(1) Å, $\beta = 108.77(1)^\circ$, V = 722.3(1) Å³. Более поздние исследования термических фазовых превращений с применением монокристального рентгеноструктурного анализа показали противоречивые результаты [3, 4]. В [3] Na₃H(SO₄)₂ переход из моноклинной ($P2_1/c$) сингонии в триклинную происходит при температуре ниже -95° C. В [4] в интервале $-173...227^\circ$ C полиморфный переход не наблюдаются. В [5] описан природный минерал с аналогичной структурой – ивсит. Согласно [2–5] в Na₃H(SO₄)₂ атом Н образует симметричную водородную связь с двумя ближайшими атомами O в тетраэдрах SO₄. В подобных соединениях могут проявляться сегнетоэлектрические свойства, так как водородная связь искажает тетраэдр, образуя диполь, в данном случае SO₃OH [6].

Структура состоит из двух независимых тетраэдров SO_4 и полиэдров NaO_6 и NaO_7 . Полиэдры образуют бесконечные зигзагообразные цепочки, связываясь через вершины и ребра по три и по шесть в направлении [101]. Полиэдры образуют трехмерный каркас, объединяясь между собой через поделенные вершины [5].

Рис. 1. 2D-терморентгенограмма $Na_3H(SO_4)_2$ (форвакуум, $T = -180...220^{\circ}C$).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образец Na₃H(SO₄)₂ был получен методом выпаривания из водного раствора серной кислоты H_2SO_4 (98%) (0.5 мл) и сульфата натрия Na₂SO₄ (4.06 г), воду добавляли до полного растворения Na₂SO₄ (35°C). Раствор выдерживали при 100°C в течение суток. В результате получили образец, содержащий 85% Na₃H(SO₄)₂ и примеси NaHSO₄ и NaHSO₄ · H₂O.

Образец исследовали методом терморентгенографии на дифрактометре Rigaku Ultima IV (Cu $K_{\alpha 1+2}$, 40 kV, 40 mA, геометрия на отражение, позиционно-чувствительный счетчик D-Tex Ultra). Препарат готовили на медной подложке осаждением из гептановой суспензии. Исследовали в области температур –180...220°С, форвакуум, 2 θ = 10–70°, средняя скорость нагревания 0.6°С/мин, шаг по температуре при нагревании 20°С.

Главные значения тензора термического расширения определяли с использованием программного обеспечения Rietveld To Tensor [7]. Методом Ритвельда при каждой температуре исследования уточняли: фазовый состав и параметры элементарной ячейки. Получение зависимости параметров и объема элементарной ячейки аппроксимировали полиномами первой и второй степени.

РЕЗУЛЬТАТЫ

Форвакуум воздействует на соединения, содержащие структурную воду и гидроксильные группы, как повышение температуры, в результате процессы дегидратации могут происходить при более низкой температуре [8–10]. При комнатной температуре в форвакууме примесь NaHSO₄ · H₂O полностью переходит в α - и β -NaHSO₄. Количество фазы ивсита в образце не изменилось по данным Ритвельда (85%).

При нагревании выше температуры 140° С обе полиморфные фазы NaHSO₄ переходят в Na₃H(SO₄)₂, в результате чего образуется гомогенный образец, который в свою очередь при температуре выше 180° С разлагается на смесь фаз: Na₂SO₄ (*Cmcm*), Na₂SO₄ (*P*6₃/*mmc*), Na₂SO₄ (*Fddd*), Na₂S₂O₇.

Рис. 2. Зависимость параметров ячейки от температуры в интервале –180...140°С (*a*), к трактовке анизотропии термического расширения Na₃H(SO₄)₂: кристаллическая структура и фигура коэффициентов термического расширения в плоскости *ac* моноклинности (*б*).

Зависимости параметров ячейки $Na_3H(SO_4)_2$ от температуры представлены в табл. 1 и на рис. 2*a*. С использованием полиномов аппроксимации определяли главные значения тензора термического расширения, коэффициенты термического расширения вдоль кристаллографических осей и ориентировку тензора (табл. 1).

Наибольшее изменение наблюдается у параметра *c* (рис. 2*a*, *б*). Расширение максимально по оси тензора α_{33} близкой к *c* ($\mu_{3c} = 8.7^{\circ}$). Вдоль этого направления расположены гофрированные зигзагообразные цепочки полиэдров натрия. По-видимому с увеличением температуры цепочки распрямляются, что и объясняет максимальную величину термического расширения вдоль α_{33} (рис. 2*б*).

Аппроксимация параметров элементарной ячейки								
a	$a = 8.650(1) + 0.00007(0) \cdot T + 0.0000001 \cdot T^2$							
b	$b = 9.649(3) + 0.00013(0) \cdot T$							
с	$c = 9.135(2) + 0.0004(0) \cdot T + 0.0000003 \cdot T^2$							
β	$\beta = 108.76(2) + 0.0004(1) \cdot T$							
V	$V = 721.894(4) + 0.0473(2) \cdot T + 0.0000344(0) \cdot T^2$							

Таблица 1. Результаты исследования термического расширения Na₃H(SO₄)₂ в интервале –180...140°C по данным терморентгенографии

Коэффициенты тензора термического расширения α (×10⁻⁶°C⁻¹) и его ориентировка μ (°)

<i>T</i> , °C	α ₁₁	α ₂₂	α ₃₃	μ_{1a}	μ_{3c}	α _a	α_b	α _c	α_{β}	α_V
-180	-0.9	13.7	34.1	10.1	8.7	0.21(4)	13.74(1)	33.25(6)	0	46.93(8)
140	13.7	13.7	52.6	10.0	8.8	14.92(3)	13.68(1)	51.73(5)	0	80.06(8)

ЗАКЛЮЧЕНИЕ

Проведенное исследование показало, что расширение максимально вблизи оси *с*. Вероятно, это связано с частичным распрямлением гофрированных цепочек из полиэдров натрия. Установлено, что в форвакууме $Na_3H(SO_4)_2$ разлагается выше 180°C с образованием смеси фаз: Na_2SO_4 (*Cmcm*), Na_2SO_4 (*P*6₃/*mmc*), Na_2SO_4 (*Fddd*), $Na_2S_2O_7$.

Исследования проведены в рамках гранта РФФИ 18-29-12106 с использованием оборудования ресурсного центра СПБГУ "Рентгенодифракционные методы исследования".

СПИСОК ЛИТЕРАТУРЫ

- 1. Faust O., Esselman P. Das System Schwefelsäure-Natriumsulfat-Wasser // Zeitschrift (Anorganische Chemie. 1926. № 157. P. 290-298.
- Catti M., Ferraris G., Ivaldi G. A very short and asymmetrical hydrogen bond in the structure of Na₃H(SO₄)₂ and S–OH vs O–H ... O correlation // Acta Crystallographica. 1979. V. B35. P. 525–529.
- 3. *Fukami T., Chen R.H.* Structural phase transition and crystal structure of Na₃H(SO₄)₂ in the low temperature phase // Ferroelectrics.1998. № 211 P. 67–77.
- 4. *Swain D., Row T.* Analysis of Phase Transition Pathways in X₃H(SO₄)₂ (X = Rb, NH₄, K, Na): Variable Temperature Single–Crystal X-ray Diffraction Studies // Inorganic Chemistry. 2007. V. 46. № 11. P. 4411–4421.
- Филатов С.К., Карпов Г.А., Шаблинский А.П., Кривовичев С.В., Вергасова Л.П., Антонов А.В. Ивсит Na₃H(SO₄)₂ – новый минерал вулканических эксгаляций из фумарол Трещинного Толбачинского извержения им. 50-летия ИВиС ДВО РАН // Доклады академии наук. 2016. Т. 468. № 6. С. 690–694.
- Nakamura E., Kazuyuki I., Satoshi U., Kohji A., Hirihisa Y. Dielectric properties of lossy KH₂SO₄ crystals // Japanese J. Applied physics. 1981. V. 20. P. 59–62.
- 7. Bubnova R.S., Firsova V.A., Volkov S.N., Filatov S.K. RietveldToTensor: Program for Processing Powder X-Ray Diffraction. Data under Variable Conditions // Glass Physics and Chemistry. 2018. V. 44. P. 33–40.
- Бубнова Р.С., Филатов С.К. Высокотемпературная кристаллохимия боратов и боросиликатов. СПб.: Наука, 2008. 760 с.
- Filatov S.K., Paufler P., Vergasova L.P., Levin A.A., Janson O.M., Meyer D.K. Jubileum Fedorov session 2003, St. Petersburg Mining Institute. 79–80 (2003); Proc. Rus. Min. Soc. (2004).
- 10. Sennova N.A., Bubnova R.S., Filatov S.K., Paufler P., Meyer D.C., Levin A.A., Polyakova I.G. Room, low, and high temperature dehydration and phase transitions of kernite in vacuum and in air // Crystal Research and Technology. 2005. V. 10. № 6. P. 563–572.