ЭЛЕКТРОННЫЕ СПЕКТРЫ ИОНОВ Er(III) В НАТРИЕВОБОРАТНЫХ РАСПЛАВАХ

© 2019 г. А. А. Хохряков^{1, 2, *}, А. С. Пайвин¹, М. А. Самойлова¹, В. В. Рябов¹

¹ИМЕТ УрО РАН, Россия 620014, Екатеринбург, ул. Амундсена, 101 ²ФГАУ ВО УрФУ им Б.Н. Ельцина, Россия 620002, Екатеринбург, ул. Мира 19 *e-mail: 9221717036@mail.ru

> Поступила в редакцию 08.08.18 г. После доработки 05.02.19 г. Принята к публикации 06.06.19 г.

В работе представлены результаты спектральных исследований расплавов $xNa_2O \cdot (100 - x)B_2O_3 \cdot Er_2O_3$ (x = 0-45) при 1273 К. С увеличением концентрации Na_2O в расплавах наблюдаются циклические изменения координационных чисел атомов бора. Показано, что координационные числа ионов Er(III) увеличиваются с 6 до 8 в интервале от 0 до 12 мол. % Na₂O.

Ключевые слова: редкоземельные элементы, электронные спектры, боратный расплав, гиперчувствительные переходы

DOI: 10.1134/S013266511905007X

введение

Боратные расплавы, содержащие ионы Er(III) являются основой для синтеза специальных стекол, флюсов и других функциональных материалов. Физико-химические свойства этих расплавов зависят от межчастичных взаимодействий, которые формируют структурные единицы расплавов. В настоящей работе методом электронной спектроскопии исследована координационная структура расплавов $xNa_2O \cdot (100 - x)B_2O_3 \cdot Er_2O_3$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В экспериментах использовали Er_2O_3 , B_2O_3 и Na_2O марки "о. с. ч.". Оксид европия предварительно механоактивировали в течение 3 мин в планетарном активаторе АГО-2С. Перемешивание смесей проводили в центробежной мельнице "FRITISCH" в течении 5 мин. Смеси сплавляли в платиновом тигле при температуре 1700 К в течении 2 ч и выливали на медную плиту. Стеклообразные образцы массой 3.5 г загружали в платинородиевый контейнер с внутренним диаметром 20 мм. На дно контейнера помещали платинородиевое зеркало. Контейнер устанавливали в печь, где создавали вакуум до 1 Па в течении 0.5 ч с последующим нагреванием до температуры плавления. Печьячейку заполняли гелием. Регистрацию спектров производили на спектрально-аналитическом комплексе [1]. Все эксперименты проводили при температуре 1273 К. Концентрация оксида эрбия в расплавах составляла 0.184 мол. %. Концентрация оксида натрия варьировалась от 0 до 45 мол. %. Составы расплавов по синтезу $xNa_2O \cdot (100 - x)B_2O_3$ представляены в табл. 1.

N⁰	1	2	3	4	5	6	7	8	9	10	11	12
[Na ₂ O]	4	6	8.7	12	18	21	22.7	27	30	35	40	45
[B ₂ O ₃]	95	93	90.3	87	91	78	76.3	72	69	64	59	54

Таблица 1. Составы экспериментальных расплавов $xNa_2O \cdot (100 - x)B_2O_3$

Методами колебательной спектроскопии было установлено [2, 3], что борокислородная сетка расплава B_2O_3 состоит из бороксольных колец B_3O_6 и неупорядоченных тригональных единиц BO_3 , не участвующих в образовании кольцевых структур. Соотношение между тригональными единицами и бороксольными кольцами зависит от температуры расплава. При температуре 1273 К доля бороксольных колец по данным [3] составила примерно 30%.

Введение оксида натрия в B₂O₃ вызывает изменение координационных чисел атомов бора с 3 до 4 [2—5]. В электронных спектрах расплава $Na_2O-B_2O_3$ в ближней УФ-области выделяется широкая ассиметричная полоса поглощения (рис. 1), которая разлагается на две гауссовские кривые. Расплавленный В₂О₃ в этой спектральной области собственных полос поглощения не имеет. Наблюдаемые переходы были отнесены к переносу заряда с молекулярных орбиталей борокислородных групп, содержащих В^{IV}, на *s*-уровни ионов натрия (IV-координационное число атомов бора). Сетка натриевоборатных расплавов, состоящая из базовых единиц BO_3 и BO_4^- представлена моделью из мостиковых цепочек и немостиковых связей кислорода с бором: B^{IV}-O-B^{IV}, B^{IV}-O-B^{III}, BØ₂O⁻, В^{III}-О-В^{III}. Наиболее высокоэнергетическая орбиталь принадлежит мостиковой связи В^{IV}–О–В^{IV}. Полосы поглощения на рис. 1 представляют собой электронные переходы с орбитали $O2p_{\pi}$ на *s*-уровни ионов натрия. Энергетические состояния *s*-уровней зависят от положения ионов натрия в борокислородной сетке расплава. В области составов 0 < x < 8 ионы натрия занимают катионные вакансии в борокислородной сетке расплава. Электростатические поля лигандов, связанные с двумя координационными состояниями иона натрия формируют две зоны, которые приводят к двум полосам пе-

Рис. 1. Спектры поглощения расплава $x \text{Na}_2 \text{O} \cdot (100 - x) \text{B}_2 \text{O}_3$, 1273 K, $[\text{Na}_2 \text{O}] = 8 \text{ мол. } \%$.

Рис. 2. Положения полос поглощения расплава $xNa_2O \cdot (100 - x)B_2O_3$ в зависимости от концентрации Na_2O .

реноса заряда. На рис. 2 показано положение полос поглощения бинарных боратных расплавов в зависимости от содержания оксида натрия. Из рисунка видно, что центры тяжести полос поглощения испытывают сдвиг в сторону высоких волновых чисел. Этот сдвиг обратнопропорционален длине связи Na–O. Все оксидные лиганды ионов натрия принадлежат мостиковым структурам B^{IV}–O–B^{IV} и B^{III}–O–B^{III}.

Увеличение содержания оксида натрия свыше 8 мол. % приводит к снижению концентрации группировок BO_4^- в расплаве и к снижению содержания мостиковых связей $B^{IV}-O-B^{IV}$. Наблюдаемый сдвиг полос переноса заряда $O2p_{\pi} \rightarrow Na3s$ в область более низких волновых чисел (рис. 2) связан с увеличением координационных характеристик ионов натрия. Детальный анализ спектральных и координационных характеристик расплава $Na_2O-B_2O_3$ рассмотрен в [6].

Электронный спектр расплава $xNa_2O \cdot (100 - x)B_2O_3$, активированный ионом Er(III), показан на рис. 3, а значения максимумов приведены в табл. 2. Выделяются уз-

Рис. 3. Электронный спектр поглощения расплавленной системы $xNa_2O \cdot (100 - x)B_2O_3 \cdot Er_2O_3$, 1273 K, $[Na_2O] = 6$ мол. %.

	× / 2 3 2 3
${}^{4}I_{13/2} \\ {}^{4}I_{11/2} \\ {}^{4}F_{9/2}$	6550, 7118 10 472 15 352
${}^{2}H_{11/2}$	19048, 19260
${}^{4}_{4}F_{5/2}$ ${}^{4}_{4}F_{5/2}$ ${}^{4}_{4}F_{3/2}$ ${}^{4}_{4}F_{9/2}$	20165 22008 23500 24582
${}^{4}G_{11/2}$	26160, 26609
⁴ G _{9/2}	27545

Таблица 2. Полосы поглощения расплава $x \text{Na}_2\text{O} \cdot (100 - x)\text{B}_2\text{O}_3 \cdot \text{Er}_2\text{O}_3$

кие полосы внутри конфигурационных f-f переходов ионов Er(III) с основного состояния ${}^{4}I_{15/2}$ на уровни возбужденных состояний. В ближней УФ-области присутствуют широкие интенсивные полосы электронных переходов матрицы расплава $O2p_{\pi} \rightarrow Na3s$ [6].

На рис.4 приведены интегральные интенсивности полос поглощения $O2p_{\pi} \rightarrow Na3s$ в зависимости от состава расплавов $xNa_2O \cdot (100 - x)B_2O_3 \cdot Er_2O_3$. В интервале 0 < x < 6оба катиона модификатора (натрий и эрбий) выступают компенсаторами зарядов группировок BO_4^- . При 6 < x < 15, также как и в бинарном расплаве $xNa_2O \cdot (100 - x)B_2O_3$ происходит снижение концентраций полиэдров BO_4^- .

Снижение количества полиэдров наблюдается в области 25 мол. % Na₂O [7]. В [7] уменьшение количества тетраэдров BO_4^- в этой области было объяснено реакцией диспропорционирования:

$$\left(\mathrm{BO}_{4/2}\right)^{-} \leftrightarrow \mathrm{BO}_{2/2}\mathrm{O}^{-}.$$
 (1)

Область трансформации кольцевых полиборатных групп, в состав которых входят полиэдры BO_4^- зависит как от температуры, так и от концентрации оксида натрия [8, 9].

Рис. 4. Интегральные нтенсивности полос межзонного перехода $O2p_{\pi} \rightarrow Na3s$ в зависимости от концентрации Na_2O в расплаве $xNa_2O \cdot (100 - x)B_2O_3 \cdot Er_2O_3$.

По-видимому, эти процессы идут и в малощелочной области расплава (0 < x < 15), то есть в области некольцевых структурных единиц.

Резкое снижение интенсивности полосы поглощения $O2p_{\pi} \rightarrow Na3s$ в расплаве $Na_2O-B_2O_3-Er_2O_3$ в области 35 мол. % Na_2O не наблюдалось в расплаве $xNa_2O \cdot (100 - x)B_2O_3$. Увеличение концентрации оксида натрия в присутствии оксида эрбия приводит к изменению равновесия между надструктурными единицами расплава (триборатные, диборатные кольца) [8] и их трансформации в метаборатные кольцевые груп-

пировки [5]. Это снижает концентрацию полиэдров $B\phi_4^-$. В результате реакции диспропорционирования (1) освобождающиеся оксидные ионы увеличивают координационное состояние ионов натрия. Координационная сфера трехвалентных ионов эрбия при концентрациях свыше 15 мол. % заполнена максимально.

Редкоземельные ионы имеют частично заполненную 4f-оболочку, экранированную заполненными 5s² и 5p⁶ оболочками. Экранирующее влияние наружных оболочек приводит к слабому взаимодействию внутриконфигурационных переходов с борокислородной сеткой расплавов. Вследствие этого сдвиги *f-f* переходов при изменении состава расплава незначительны. Следует отметить, что f-f переходы запрещены по правилу Лапорта (переходы с одинаковой четностью и между состояниями с разной мультиплетностью). На рис. 3 наблюдаются интенсивные полосы поглощения, наиболее значительные из них – гиперчувствительные: ${}^{4}G_{11/2} \leftarrow {}^{4}I_{15/2}$ и ${}^{2}H_{11/2} \leftarrow {}^{4}I_{15/2}$ (рис. 3, табл. 2). Основные причины нарушений правил отбора в расплавах: высокотемпературные флуктуации зарядовой плотности, сильный ангармонизм колебаний, асимметрия комплексов ионов Er(III). Асимметрия комплексов связана с тем, что оксидные лиганды входят в состав разных фрагментов сетки расплава: В^{IV}-О-В^{IV}, В^{IV}-О-В^{III} и ВØ₂О⁻. Для ионов Er(III) с нечетным числом электронов (f^{11}) количество подуровней мультиплета различно для кубического и некубического окружения [10]. Выделить необходимое количество линий в спектре Er(III) невозможно из-за сильного фононного вклада в контуры полос поглощения.

Наиболее чувствительными к окружению являются интенсивности гиперчувствительных переходов. Это позволяет использовать их для корреляционных оценок положения ионов Er(III) в расплавах. В [11] было установлено, что изменение интенсивности гиперчувствительных переходов, обусловленных изменением координационных чисел, происходит в ограниченном концентрационном интервале в пределах 0-10 мол. % Na₂O. Эти изменения демонстрируют изовалентный изоморфизм ионов РЗЭ. Замена одного иона другим ионом РЗЭ при полном соответствии состава расплавленной матрицы приводит к образованию группировок одного типа: ReO₆ и ReO₈ (Re = Pr, Nd, Eu) [11]. Из рис. 5, кривая *I* следует, что в интервале 0–12 мол. % Na₂O изменение интенсивности перехода ${}^{4}I_{15/2} \rightarrow {}^{2}H_{11/2}$ почти полностью совпадает с изменениями интенсивности гиперчувствительных переходов легких РЗЭ [6]. Максимальная интенсивность полос поглощения ионов Er(III) наблюдается вблизи 6-8 мол. % Na₂O. Увеличение интенсивности в интервале 0 < x < 6 связано с увеличением симметрии группировок ErO₆, а снижение с увеличением его координационного числа и значительной деформации группировок ErO_8 . При x > 12 интенсивности гиперчувствительных переходов претерпевают изменения, которые не связаны с изменением их координационных чисел, а связаны с изменением степени основности кислородов мостиковых В^{IV}-О-В^{IV}, В^{IV}-О-В^{III} и немостиковых связей ВØ₂О⁻. Это подтверждается изменением интенсивности обычных электронных переходов, которые происходят в интервале от 0 до 12 мол. % (рис. 5, кривая 2). Интенсивность этого перехода ${}^{4}I_{15/2} \rightarrow {}^{4}F_{9/2}$ уменьшается с повышением симметрии группировок ErO₆ и повышаются с их пони-

Рис. 5. Интегральная интенсивность гиперчувствительного перехода: (1) ${}^{4}I_{15/2} \rightarrow {}^{2}H_{11/2}$ и интенсивность не гиперчувствительного перехода: (2) ${}^{4}I_{15/2} \rightarrow {}^{4}F_{9/2}$ на волновом числе v = 15350 см⁻¹, при различных составах расплава xNa₂O · (100 – x)B₂O₃ · Er₂O₃.

жением от 6 < x < 12. При дальнейшем увеличении содержания Na₂O в расплавах интенсивность перехода ${}^{4}I_{15/2} \rightarrow {}^{4}F_{9/2}$ выходит практически на постоянное значение, указывая на отсутствие изменений координационных чисел ионов Er(III) (рис. 5, кривая *3*). Стоит отметить, что максимальное поглощение гиперчувствительных полос ионов Er(III) приходится на максимальные концентрации фрагментов B^{IV}–O–B^{IV} (рис. 4 и 5) в расплавах.

ЗАКЛЮЧЕНИЕ

Методом электронной спектроскопии показано, что в расплавах $xNa_2O \cdot (100 - x)B_2O_3 \cdot Er_2O_3$ координационное число Er(III) увеличивается с 6 до 8 в интервале 0 < x < 12. При x > 12 наблюдается два минимума, связанных со снижением концентраций кольцевых групп, содержащих BO_4^- и трансформацией их в метаборатные группы, содержащие немостиковый кислород. Сделано предположение, что снижение концентрации полиэдров BO_4^- в малощелочной области связано с преобразованием некольцевых группировок с мостиковыми связями $B^{IV}-O-B^{IV}$ в некольцевые группировки, содержащие немостиковый кислород.

Работа выполнена в рамках исполнения государственного задания ИМЕТ УрО РАН и комплексной программы УрО РАН № 18-10-3-28 с использованием оборудования ЦКП "Урал-М".

СПИСОК ЛИТЕРАТУРЫ

- Хохряков А.А., Пайвин А.С., Норицын С.И. Спектрально-аналитический комплекс для регистрации электронных спектров высокотемпературных расплавов и границы его применимости // Расплавы. 2014. Т. 1. С. 62–70.
- Krough-Moe J. The structure of vitreous and liquid boron oxide // J. non-cryst solids. 1969. V. 1. P. 269–284.
- 3. Walrafen G.E., Krishnau G.E., Walrafen S.R., Samanta P.N. Raman investigation of vitreous and molten boric oxide // J. Chem. Phys.1980. V. 72. P.113–120.
- Бобович Я.С. Спектроскопическое проявление координационных переходов бора в некоторых стеклообразных системах // Оптика и спектроскопия. 1963. Т. XV. № 6. С. 759–765.
- 5. Осипов А.А., Осипова Л.М., Быков В.Н. Спектроскопия и структура щелочноборатных стекол и расплавов. Екатеринбург – Миасс: УрО РАН, 2009. 174 с.
- 6. Хохряков А.А., Вершинин А.О., Пайвин А.С., Истомин С.А. Электронные спектры расплавленных смесей хNa₂O-(100 − x)B₂O₃ и хNa₂O-(100 − x)B₂O₃-Re₂O₃ (Re = Pr, Nd) // Расплавы. 2018. № 2. С. 53–59.
- Yano T., Kunimine N., Shibata S., Yumane M. Structural investigation of sodium borate glasses and melts by Raman spectroscopy. II. Conversion between BO₄ and BO₂O⁻ units at high temperature // J. Non-Crystalline Solids. 2003. V. 321. P. 147–156.
- Райт А., Синклер Р., Гримли Д., Хюльме Р., Ведищева Н.М., Шахматкин Б.А., Хэннон А., Фуллер С., Мейер Б., Ройль М., Вилкурсон Д. Боратные стекла, надструктурные группы и теория беспорядочной сетки // Физика и химия стекла. 2006. Т. 22. № 4. С. 364–383.
- Sen S. Temperature induced structure changes and transport mechanisms in borate, borosilicate and boraluminate liquids: high-resolution and high temperature NMR results // J. Non-Crystalline Solids. 2009. V. 253. P. 84–93.
- Барбанель Ю.А. Координационная химия *f*-элементов в расплавах // Москва: Энергоатомиздат. 1986. С. 220.
- Хохряков А.А., Вершинин А.О., Пайвин А.С., Истомин С.А. Электронные спектры расплавленных смесей хNa₂O-(100 − x)B₂O₃ и xNa₂O-(100 − x)B₂O₃-Re₂O₃ (Re = Sm, Eu) // Расплавы. 2017. № 6. С. 538–549.