МОДЕЛИРОВАНИЕ ПРОЦЕССОВ САМООРГАНИЗАЦИИ В КРИСТАЛЛООБРАЗУЮЩИХ СИСТЕМАХ. НОВЫЕ ДВУХСЛОЙНЫЕ КЛАСТЕРЫ-ПРЕКУРСОРЫ 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) И 0@(Na₃Cd₆)@(Na₆Cd₃₅) ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Na₂₆Cd₁₄₁-*hP*168

© 2019 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, Россия 199034, Санкт-Петербург, наб. Макарова, 2

² Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, Россия 443100, Самара, ул. Молодогвардейская, 244

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Россия 119333, Москва, Ленинский пр., 59

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 14.02.19 г. После доработки 03.06.19 г. Принята к публикации 06.06.19 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллической структуры Na₂₆Cd₁₄₁–*h*P168 (пр. гр. *Pbcm, a* = 5.483, *b* = 24.519, *c* = 14.573 Å, *V* = 1895 Å³). Установлено 98 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 4 до 7. Установлены полиэдрические кластеры-прекурсоры K8 = 0@Na₂Cd₆ и K9 = 0@Na₃Cd₆ являющиеся темплатами, на поверхности которых происходит образование атомных оболочек из 38 и 41 атома. Состав двухслойных кластеров K46 = 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) и K50 = 0@(Na₃Cd₆)@(Na₆Cd₃₅). Центры кластеров K46 и K50 занимают позиции 1*a* с симметрией 6/*mmm* и *2c* с симметрией 6*m*2. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров K46 и K50.

Ключевые слова: интерметаллид $Na_{26}Cd_{141}-hP168$, самосборка кристаллической структуры, двухслойные кластеры $K46 = 0@8(Na_2Cd_6)@38(Na_{12}Cd_{26})$ и $K50 = 0@9(Na_3Cd_6)@41(Na_6Cd_{35})$

DOI: 10.1134/S0132665119050111

ВВЕДЕНИЕ

В двойных системах A—Cd, где A — Li, Na, K, Rb, и Cs установлена кристаллизация 11 интерметаллидов, среди которых встречаются как распространённые, так и уникальные типы кристаллических структур (табл. 1, [1—7]).

В двойной системе Na—Cd интерметаллид Na₂Cd₁₁-*cP*39 имеет единственного кристаллохимического аналога Mg₂Zn₁₁-*cP*39 [8]. В работе [9] для интерметаллида Na₂Cd₁₁-*cP*39 установлены каркас-образующие двухслойные кластеры K45 = Cd@12(Cd₁₂@32(Na₁₂Cd₂₀) и спейсеры в виде октаэдрических кластеров 0@Cd6.

Для уникальной по кристаллохимической сложности кристаллической структуры $Na_{376}Cd_{786}$ -*c*F1144 ("NaCd₂", [7]) в [10] были установлены новые типы двухслойных нанокластеров на основе полиэдра Фриауфа Na(Na₄Cd₁₂) с составом K61 = Na1@16(Na₄Cd₉)@44(Cd₂₀Na₂₄) и на основе икосаэдра Cd(Na₆Cd₆) состава K63 = Cd@12(Cd₆Na₆)@50(Na₁₈Cd₃₂).

Интерметаллид Na₂₆Cd₁₄₁-*hP*168 [3] характеризуется большими значениями параметров гексагональной ячейки: a = b = 21.306, c = 9.625 Å, V = 3784 Å³, пр. гр. *P6/mmm* (по. 191) и 20 кристаллографически независимыми атомами с уникальной последовательностью Вайкоффа $rqpo^4 nm^2 l2k^2 j^2 iedb$.

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры интерметаллида Na₂₆Cd₁₄₁ (пакет программ ToposPro [11]). Реконструирован симметрий и топологический код процессов самосборки 3D структуры из кластеров-прекурсоров K46 и K50 в виде: первичная цепь — микрослой — микрокаркас.

Работа продолжает исследования [9, 10, 12–20] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализы осуществляли с помощью комплекса программ ToposPro [11], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома.

Полученные значения координационных последовательностей атомов в 3D-сетках приведены в табл. 1, в которой выделено число соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома. Все атомы характеризуются различными наборами координационных последовательностей $\{N_k\}$, следовательно, все атомы топологически (и функционально) различны.

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах. Структура образуется в результате самосборки из кластеров-прекурсоров. При этом кластеры-прекурсоры образуют каркас структуры, пустоты в котором заполняются кластерами-спейсерами (состоящими из небольшого числа атомов). Нанокластеры-прекурсоры не имеют общих внутренних атомов, но они могут иметь общие атомы на поверхности. Кластеры-прекурсоры занимают высокосимметричные позиции. Набор нанокластеров-прекурсоров и кластеров-спейсеров включает в себя все атомы структуры. Алгоритм реализован в комплексе программ ToposPro [11].

САМОСБОРКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Na₂₆Cd₁₄₁-*hP*168

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [12–15]. На первом уровне самоорганизация системы определяется механизмом формирования первичной цепи структуры из нанокластеров 0-уровня,

Соединение	Пр. гр.	Последова- тельность Уайкоффа	Класс Пирсона	Параметры элементарной ячейки в Å	<i>V</i> , Å ³
LiCd ₃ [1]	P63/mmc	с	hP2	3.089, 3.089, 4.899	40.5
Li ₃ Cd [1]	Fm-3m	a	cF4	4.259, 4.259, 4.259	77.3
Li ₂ Cd ₂ [2]	Fd-3m	ba	<i>cF</i> 16	6.702, 6.702, 6.702	301.0
Na ₂ Cd ₁₁ [3]	<i>Pm</i> -3	jihgfa	cP39	9.587, 9.587, 9.587	881.3
Na ₂₆ Cd ₁₄₁ [4]	P6/mmm	rgpo ⁴ nm ² l ² k ² j ² iedb	hP167	21.306, 21.306, 9.625	3783.9
Na ₃₇₆ Cd ₇₈₆ [5]	Fd-3m	ihg ⁶ fe ⁵ cb	cF1096	30.560, 30.560, 30.560	28540.4
K _{0.37} Cd ₂ [4]	I4/mcm	ha	<i>tI</i> 12	9.169, 9.169, 2.878	241.9
K ₆ Cd ₃₂ [6]	P4/nnc	k3f	<i>tP</i> 56	9.150, 9.150, 11.590	970.3
KCd ₁₃ [6, 7]	Fm-3c	iba	<i>cF</i> 112	13.792, 13.792, 13.792	2623.5
RbCd ₁₃ [6, 7]	Fm-3c	iba	<i>cF</i> 112	13.844, 13.844, 13.844	2653.3
CsCd ₁₃ [6, 7]	Fm-3c	iba	<i>cF</i> 112	13.890, 13.890, 13.890	2679.8

Таблица 1. Кристаллографические данные интерметаллидов, образующихся в системах *A*–Cd, где *A* – Li, Na, K, Rb, Cs

сформированных на темплатной стадии химической эволюции системы, далее – механизм самосборки из цепи слоя (2-ой уровень) и затем из слоя – трехмерного каркаса (3й уровень).

Кристаллографические данные. Параметры гексагональной ячейки: a = b = 21.306, c = 9.625 Å, V = 3784 Å³.

Пространственная группа *P6/mmm* (по. 191) с элементами точечной симметрии: g = 6/mmm (1*a*, 1*b*), -6m2 (2*c*, 2*d*), 6mm (2*e*), mmm (3*f*, 3*g*), 3m (4*h*) и др. Порядок группы равен 24. Последовательность Вайкоффа для 20 кристаллографически независимых атомов имеет вид $rqpo^4nm^2l2k^2j^2iedba$. Атомы Na имеют KЧ = 14, 16 и 17, у атомов Cd KЧ = 8, 11, 12, 13 и 15 (табл. 2).

Полиэдрические кластеры-прекурсоры К8 и К9. Установлены 98 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 4 до 7. Варианты кластерного представления 3D атомной сетки с минимальным и максимальным числом структурных единиц приведены в табл. 3.

Определены полиэдрические кластеры-прекурсоры K8 состава Na_2Cd_6 и K9 состава Na_3Cd_6 (рис. 1, табл. 4 и 5). Центры кластеров K8 и K9 занимают высокосимметричные позиции 1*a* с симметрией 6/*mmm* и 2*c* с симметрией –6*m*2.

Супраполиэдрические кластеры-прекурсоры К46 и К50. Кластеры-прекурсоры К8 и К9 являются темплатами, на поверхности которых происходит образование атомных оболочек из 38 и 41 атома (рис. 2). Состав двухслойных темплатированных кластеров K46 = $0@(Na_2Cd_6)@(Na_{12}Cd_{26})$ и K50 = $0@(Na_3Cd_6)@(Na_6Cd_{35})$.

Самосборка кристаллической структуры. 2D Слой. Образование слоя S_3^2 происходит при связывании кластеров K46 + 2K50 (рис. 3). Пустоты между кластерами занимают атомы Cd.

Атом	Локальное	Координационные последовательности	
	окружение	N1 N2 N3 N4 N5	
Nal	1Na + 15Cd	17 52 119 218 341	
Na2	16Cd	16 48 111 206 343	
Na3	17Cd	17 49 113 209 332	
Na4	1Na + 13Cd	14 50 128 218 374	
Cd1	2Na + 10Cd	12 48 116 218 344	
Cd2	2Na + 10Cd	12 47 113 198 335	
Cd3	3Na + 10Cd	13 51 114 211 332	
Cd4	4Na + 8Cd	12 50 118 214 333	
Cd5	3Na + 9Cd	12 47 112 196 325	
Cd6	3Na + 9Cd	12 46 106 199 320	
Cd7	3Na + 8Cd	12 49 110 208 334	
Cd8	3Na + 9Cd	12 48 109 202 337	
Cd9	3Na + 10Cd	13 49 114 217 345	
Cd10	2Na + 10Cd	12 48 114 214 340	
Cd11	3Na + 9Cd	12 46 104 197 320	
Cd12	4Na + 8Cd	12 49 111 198 336	
Cd13	2Na + 9Cd	11 44 101 201 348	
Cd14	4Na + 9Cd	13 53 114 214 347	
Cd15	3Na + 12Cd	15 54 110 207 339	
Cd16	2Na + 6Cd	8 44 116 224 344	

Таблица 2. Локальное окружение атомов Na и Cd и значения координационных последовательностей

Самосборка каркаса. 3D каркасная структура S_3^3 формируется при связывании слоев в направлении оси *Z* (рис. 4). В 3D каркасе расстояние между эквивалентными 2D слоями определяет значение вектора *c* = 9.625 Å.

ЗАКЛЮЧЕНИЕ

Осуществлен комбинаторно-топологический анализ и моделирование кластерной самосборки кристаллической структуры Na₂₆Cd₁₄₁.

Установлены простейшие полиэдрические кластеры-прекурсоры K8 состава Na_2Cd_6 и K9 состава Na_3Cd_6 на поверхности которых происходит образование атомных оболочек из 38 и 41 атома. Состав двухслойных темплатированных кластеров K46 = 0@(Na_2Cd_6)@(Na_{12}Cd_{26}) и K50 = 0@(Na_3Cd_6)@(Na_6Cd_{35}).

Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров K46 и K50 в виде: первичная цепь \rightarrow слой \rightarrow каркас. В больших пустотах 3D каркаса расположены атомы Cd.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (РФФИ № 19-02-00636) и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН. **Таблица 3.** Na₂₆Cd₁₄₁. Варианты кластерного представления кристаллической структуры. Указан центральный атом полиэдрического кластера **Na** и **Cd**, число его оболочек (в первой скобке) и количество атомов в каждой оболочке (во второй скобке). Кристаллографические позиции, соответствующие центрам пустот полиэдрических кластеров обозначены ZA1, ZA2, ZA3

4 структурные единицы
ZA1(1a)(2)(0@8@38) Cd15(0)(1) Cd12(1)(1@12) Cd8(1)(1@12)
ZA1(1a)(2)(0@8@38) Cd15(1)(1@15) Cd12(1)(1@12) Cd8(1)(1@12)
ZA1(1a)(2)(0@8@38) Na3(1)(1@17) Cd2(1)(1@12) Cd12(1)(1@12)
ZA2(2c)(2)(0@9@41) ZA1(1a)(2)(0@8@38) Cd10(1)(1@12) Cd12(1)(1@12)
ZA3(3g)(2)(0@6@38) ZA2(2c)(1)(0@9) ZA1(1a)(2)(0@8@38) Cd12(1)(1@12)
ZA3(3g)(2)(0@6@38) ZA1(1a)(2)(0@8@38) Na2(0)(1) Cd12(1)(1@12)
ZA3(3g)(2)(0@6@38) ZA1(1a)(2)(0@8@38) Na2(1)(1@16) Cd12(1)(1@12)
ZA3(3g)(2)(0@6@38) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd6(1)(1@12)
7 структурных единиц
ZA3(3g)(1)(0@6) ZA2(2c)(1)(0@9) ZA1(1a)(1)(0@8) Cd16(0)(1) Cd15(1)(1@15) Cd1(1)(1@12) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA2(2c)(1)(0@9) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(1)(1@15) Cd1(1)(1@12) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA2(2c)(1)(0@9) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(0)(1) Cd1(1)(1@12) Cd6(1)(1@12)
ZA3(3g)(1)(0@6) ZA2(2c)(1)(0@9) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(1)(1@15) Cd1(1)(1@12) Cd6(1)(1@12)
ZA3(3g)(1)(0@6) ZA2(2c)(1)(0@9) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(0)(1) Cd2(1)(1@12) Cd6(1)(1@12)
ZA3(3g)(1)(0@6) ZA2(2c)(1)(0@9) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(1)(1@15) Cd2(1)(1@12) Cd6(1)(1@12)
ZA3(3g)(1)(0@6) ZA2(2c)(1)(0@9) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(0)(1) Cd12(1)(1@12) Cd8(1)(1@12)
ZA3(3g)(1)(0@6) ZA2(2c)(1)(0@9) ZA1(1a)(1)(0@8) Cd16(0)(1) Cd15(0)(1) Cd12(1)(1@12) Cd8(1)(1@12)
ZA3(3g)(1)(0@6) ZA2(2c)(1)(0@9) ZA1(1a)(1)(0@8) Cd16(0)(1) Cd15(1)(1@15) Cd12(1)(1@12) Cd8(1)(1@12)
ZA3(3g)(1)(0@6) ZA2(2c)(1)(0@9) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(1)(1@15) Cd12(1)(1@12) Cd8(1)(1@12)
ZA3(3g)(1)(0@6) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(1)(1@15) Na2(1)(1@16) Cd1(0)(1) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(0)(1) Na2(1)(1@16) Cd1(0)(1) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA1(1a)(1)(0@8) Cd16(0)(1) Cd15(0)(1) Na2(1)(1@16) Cd1(0)(1) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA1(1a)(1)(0@8) Cd16(0)(1) Cd15(1)(1@15) Na2(1)(1@16) Cd1(0)(1) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(1)(1@15) Na2(0)(1) Cd1(1)(1@12) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA1(1a)(1)(0@8) Cd16(0)(1) Cd15(1)(1@15) Na2(0)(1) Cd1(1)(1@12) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(0)(1) Na2(1)(1@16) Cd1(1)(1@12) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA1(1a)(1)(0@8) Cd16(0)(1) Cd15(0)(1) Na2(1)(1@16) Cd1(1)(1@12) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA1(1a)(1)(0@8) Cd16(0)(1) Cd15(1)(1@15) Na2(1)(1@16) Cd1(1)(1@12) Cd12(1)(1@12)
ZA3(3g)(1)(0@6) ZA1(1a)(1)(0@8) Cd16(1)(1@8) Cd15(1)(1@15) Na2(1)(1@16) Cd1(1)(1@12) Cd12(1)(1@12)

Рис. 1. Кластеры-прекурсоры К8 (0@8, 1*a*, 6/*mmm*) (*a*) и К9 (0@9, 2*c*, -6*m*2) (*б*).

Таблица 4.	Кластер $K50 = (Na_2Cd_6)(Na_6Cd_{25})$. Атомы, формирующие кластер 0@9 и 41-атомную
οδοποιικν	
ооолочку	

Кластер К50 (0@9@41), ZA2 (2c, -6m2)		
Кластер 0@9	41-атомная оболочка	
6 Cd7	2 Cd15	
3 Na2	3 Cd2	
	6 Cd3	
	6 Cd5	
	6 Cd6	
	12 Cd8	
	6 Na3	
Всего 50 атомов		

Таблица 5. $K46 = (Na_2Cd_6)(Na_{12}Cd_{26})$. Атомы, формирующие кластер 0@8 и 38-атомную оболочку

Кластер К46, (0@8@38), ZAI (1 <i>a</i> , 6/ <i>mmm</i>)		
Кластер 0@8	38-атомная оболочка	
6 Cd4	2 Cd16	
2 Na4	12 Cd3	
	12 Cd9	
	12 Na1	
E	Зсего 46 атомов	

Рис. 2. Двухслойные темплатированные нанокластеры K46 (0@8@ (26Cd + 12Na), 1*a*, 6/*mmm* (*a*) и K50 (0@9@41), 2*c*, -6*m*2) (*b*).

Рис. 3. 2D слой из кластеров K50 и K46.

Рис. 4. 3D каркас из связанных 2D слоев из кластеров K50 и K46.

СПИСОК ЛИТЕРАТУРЫ

- Zintl E., Schneider A. Konstitution der Lithium-Cadmium Legierungen (13. Mitteilung ueberMetalle und Legierungen) // Zeitschrift fuer Elektrochemie. 1935. V. 41. P. 294–297.
- 2. Schneider A., Heymer G. Die Temperaturabhaengigkeit der Molvolumina der Phasen Na Tl und LiCd // Zeitschrift fuer Anorganische und Allgemeine Chemie. 1956. V. 286. P. 118–135.
- Mihajlov V., Roehr C. Cadmium-rich cadmides of the system Na/K/Cd // Zeitschrift fuer Anorganische und Allgemeine Chemie. 2010. V. 636. Number: 9–10 Pages: 1792–1802.
- 4. *Todorov E., Sevov S.C.* Intermetallic Frameworks: Synthesis, Characterization, and Bonding of K_{0.4}Cd₂ and Na₂₆Cd₁₄₁ // Inorg. Chem. 1998. V. 37. P. 6341–6345.
- 5. Samson S. Crystal structure of NaCd₂ // Nature (London, U. K.). 1962. V. 195. P. 259–262.
- 6. Wendorff M., Roehr C. Polar binary Zn/Cd-rich intermetallics: Synthesis, crystal and electronic structure of A $(Zn/Cd)_{13}$ (A = alkali/alkaline earth) and Cs_{1.34} Zn₁₆ // J. Alloys Compd. 2006. V. 421. P. 24–34.
- Zintl E., Haucke E.Z. Elektrochem. Konstitution der intermetallischen Phasen NaZn₁₃, KZn₁₃, KCd₁₃, RbCd₁₃ und Cs Cd₁₃ // Angew. Phys. Chem. 1938. V. 44. P. 104–111.
- Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 9. *Блатов В.А., Илюшин Г.Д.* Геометрический и топологический анализ икосаэдрических структур семейства Самсона Mg₂Zn₁₁ (*cP*39), K₆Na₁₅Tl₁₈H (*cP*40) и Tm₃In₇Co₉ (*cP*46): нанокластеры-прекурсоры, механизм самосборки и сверхструктурное упорядочение // Ж. неорганической химии. 2011. Т. 56. № 5. 729–737.
- 10. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Intermetallic compounds of the NaCd₂ family perceived as assemblies of nanoclusters // Struct. Chem. 2009. V. 20. № 6. P. 975–982.
- 11. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585. http://topospro.com/.
- Ilyushin G.D. Modeling of the Self-OrInnization Processes in Crystal-Forming Systems. Tetrahedral Metal Clusters and the Self-Assembly of Crystal Structures of Intermetallic Compounds // Crystallography Reports. 2017. V. 62. 5. P. 670–683.

- Ilyushin G.D. Symmetry and Topology Code of the Cluster Self-Assembly of Intermetallic Compounds A₂^[16]B₄^[12] of the Friauf Families Mg₂Cu₄ and Mg₂Zn₄ // Crystallography Reports. 2018. V. 63. 4. P. 543–552.
- Blatov V.A., Ilyushin G.D., Proserpio D. M. Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg₂Al₃ polymorphs // Inorg. Chem., 2010, V. 49. N 4, P. 1811–1818.
- Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
- 16. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Симметрийный и топологический код (программа) кластерной самосборки икосаэдрических структур семейства NaZn₁₃-cF112 и TRB₆₆cF1944 // Физ. и хим. стекла. 2015. V. 41. № 4. Р. 341-351.
- Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Симметрийный и топологический код кластерной самосборки кристаллической структуры Na₄₄Tl₇ ("Na₆Tl") // Физ. и хим. стекла. 2017. Т. 43. Вып. 6. С. 563–72.
- Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Симметрийный и топологический код кластерной самосборки кристаллической структуры e-Mg₂₃Al₃₀ из нанокластеров K63 // Физ. и хим. стекла. 2017. Т. 43. Вып. 6. С. 553–562.
- Ilyushin G.D. Modeling of Self-Organization Processes in Crystal-Forming Systems: Symmetry and Topology Code for the Cluster Self-Assembly of Crystal Structures of Intermetallic Compounds. Russ // J. Inorg. Chem. 2017. V. 62. 13. P. 1730–1769.
- 20. Ilyushin G.D. The Crystal Chemistry of Intermetallic Lithium Compounds // Russian Journal of Inorganic Chemistry. Year 2018. V. 63. № 14. P. 1786–1799.