КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ТЕПЛОВОЕ РАСШИРЕНИЕ ЦИНКОФОСФАТА Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75}

© 2019 г. С. Н. Волков^{1, *}, Р. С. Бубнова^{1, 2}, М. А. Петрова¹, В. Ф. Попова¹, В. В. Шиловских ³

¹Институт химии силикатов им. И.В. Гребенщикова РАН, Россия 199034, Санкт-Петербург, наб Макарова, 2 ²Санкт-Петербургский государственный университет, кафедра кристаллографии,

Россия 199034, Санкт-Петербург, Университет, кафеори кристилографии, Россия 199034, Санкт-Петербург, Университетская наб., 7/9

³Санкт-Петербургский государственный университет, Ресурсный центр "Геомодель", Россия, 198504 Санкт-Петербург, Ульяновская ул., 1

*e-mail: s.n.volkov@inbox.ru

Поступила в редакцию 14.02.19 г. После доработки 13.05.19 г. Принята к публикации 06.06.19 г.

Новый цинкофосфат Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75} получен кристаллизацией расплава, его кристаллическая структура определена по монокристальным данным. Она моноклинная, уточнена в пр. гр. *P*2₁/*n* до *R*_{obs} = 0.052, *a* = 14.609(7), *b* = 6.898(5), *c* = 14.603(7) Å, β = 118.59(5)°. Кристаллическая структура образована каркасом из тетраэдров PO₄, ZnO₄ и LiO₄. Упорядочение катионов Zn, Li, Na, K и вакансий по кислороду ведет к формированию двукратной сверхструктуры. Соединение относится к структурному семейству MM'ZnP₂O₇, связь с которым обсуждается. Тепловое расширение анизотропно: $\alpha_{11} = 5$, $\alpha_{22} = 29$, $\alpha_{33} = 9 \times 10^{-60}$ C⁻¹.

Ключевые слова: цинкофосфаты, кристаллическая структура, тепловое расширение **DOI:** 10.1134/S0132665119050159

введение

Цинкофосфаты представляют значительный интерес благодаря их электрохимическим свойствам и богатой кристаллохимии. Семейства $ABPO_4$ [1, 2] и $A_2BP_2O_7$, где A – одновалентный, а B – двухвалентный металл, представляют интерес в связи с их оптическими и ферроэлектрическими свойствами. Исследования электрохимических свойств Na₂FeP₂O₇ [3], Na₂MnP₂O₇ [4] и Na₂Fe_{0.5}Mn_{0.5}P₂O₇ [5] показали возможность их потенциального использования в натрий-ионных батареях.

Обзор работ по фосфатам двухвалентных металлов выполнен в [6]. Субсолидусные отношения в системах ZnO–Na₂O–P₂O₅ и ZnO–K₂O–P₂O₅ изучены в [7, 8]. Согласно Базе данных кристаллических структур неорганических веществ ICSD [9], структурно охарактеризованы следующие цинкофосфаты натрия и калия: NaZn(PO₃)₃, NaZnPO₄, Na₂Zn₅(PO₄)₄, Na₂Zn₇O₇, KZn₄(PO₄)₃, KZn(PO₃)₃, KZnPO₄, K₂Zn₂O₇)₂, K₂Zn(PO₃)₄ и K₂ZnP₂O₇. Исследование кристаллохимии и фазообразования смешанных щелочно-цинковых дифосфатов в системах $M_4P_2O_7$ –Zn₂P₂O₇ и M'_2 ZnP₂O₇– M''_2 ZnP₂O₇ (M, M', M'' = Li, Na, K) установило существование у них фаз постоянного и переменного состава с одним и двумя щелочными катионами [10, 11]. Позднее [12, 13] нами были синтезированы

и структурно охарактеризованы твердые растворы LiNa_{1-x}K_xZnP₂O₇ и Li_xNa_{1-x}KZnP₂O₇, содержащие три щелочных катиона. В данной работе мы представляем данные о кристаллической структуре и тепловом расширении новой дефектной фазы Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75}, монокристаллы которой получены путем охлаждения расплава твердого раствора Li_xNa_{1-x}KZnP₂O₇ (x = 0.7).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Синтез новой фазы Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75} выполнен с использованием реактивов ZnO, NaPO₃, KPO₃ и Li₂CO₃ категории "х. ч.". На первом этапе, как описано в [14, 15], методом твердофазного синтеза получены фазы LiKZnP₂O₇ и Na-KZnP₂O₇. После этого, как описано в [13], взаимодействием LiKZnP₂O₇ и NaKZnP₂O₇ при 500°С в течение 20 ч, а затем при 570°С в течение 5 ч, был получен гомогенный образец твердого раствора Li_{0.7}Na_{0.3}KZnP₂O₇. Поликристаллический образец данного состава нагрели в замурованном тигле до температуры 800°C, выдержали при этой температуре в течение 30 мин., охладили до 600°С за 20 мин., выдержали 40 мин, затем кристаллизация проходила со скоростью 3-5°С/мин. Полученный образец представлял собой смесь в соотношении ~ 1 : 1 твердого раствора $Li_{0.7}Na_{0.3}KZnP_2O_7$ и новой фазы, состав которой впоследствии был определен как Li_{0 5}Na_{0.15}K_{0.85}ZnP₂O_{6.75}. Рентгенофазовый анализ проводили с использованием дифрактометра Rigaku "MiniFlex II" (30 кВ/10 мА, излучение Cu $K_{\alpha 1 + \alpha 2}$). Химический состав новой фазы Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75} определяли на сканирующем электронном микроскопе Hitachi S-3400N с энергодисперсионным спектрометром Oxford Instruments X-Max20 в ресурсном центре "Геомодель" (СПбГУ). Обработка спектров производилась автоматически при помощи программного пакета AzTec Energy с использованием методики TrueQ. При съемке использованы следующие установки: ускоряющее напряжение 20 кВ, ток зонда 1.5 нА, время накопления спектра в точке – 30 сек в точечном режиме. Количественный расчет состава фазы проведен с использованием стандартных образцов природных и синтетических соединений. Определение содержания Na проводили отдельно с использованием спектрометра Inca Wave 500 из-за сильного перекрытия линий Na K_{α} и Zn L_{α} . Альбит и металлический цинк были использованы в качестве стандартов. Проведено 9 измерений для двух разных зерен. Соотношение катионов Na : K : Zn : Р было определено как 0.55: 0.97: 1.02: 2.00, что очень близко к составу, предложенному по данным рентгеноструктурного анализа.

Рентгеноструктурный анализ. Оптически прозрачный монокристалл $Li_{0.5}Na_{0.15}K_{0.85}ZnP_2O_{6.75}$ подходящего качества отобран с использованием оптического поляризационного микроскопа и приклеен на стеклянную нить. Монокристальный рентгендифракционный эксперимент был проведен на дифрактометре Bruker Smart АРЕХ II (излучение Мо K_{α}). В интенсивности рефлексов вводили поправку на поляризацию и фактор Лоренца, поправка на поглощение была введена методом multi-scan [16]. В ходе процедуры поиска элементарной ячейки в автоматическом режиме, была определена ромбическая элементарная ячейка ($a \simeq 25.12, b \simeq 14.92, c \simeq 6.90$ Å, $\alpha = \beta = \gamma = 90^{\circ}$), однако удовлетворительно уточнить структуру в ромбической сингонии нам не удалось. Понижение симметрии до моноклинной с углом моноклинности $\alpha = 90.03^{\circ}$, пространственной группой $A2_1/b$, которая была определена согласно законам погасания, позволило провести успешное решение структуры методом переворота знака заряда и уточнение кристаллической структуры до $R_{\rm obs} = 5.2\%$ с использованием программы JANA2006 [17]. В дальнейшем установку ячейки изменили на стандартную $P2_1/c$ с параметрами ячейки $a \simeq 14.57, b \simeq 6.87, c \simeq 14.60$ Å, $\beta \simeq 118.4^{\circ}$. Элементарная ячейка содержит одну симметрично-независимую позицию Zn, две смешанные позиции Zn/Li

Формула	Li _{0.5} Na _{0.15} K _{0.85} ZnP ₂ O _{6.75}
M _r	275.5
Сингония, пространственная группа	Моноклинная, <i>Р</i> 2 ₁ / <i>n</i>
Температура (°С)	25
<i>a</i> (Å)	14.609 (7)
<i>b</i> (Å)	6.898(5)
<i>c</i> (Å)	14.603 (7)
β(°)	118.59 (5)
$V(Å^3)$	1292.1(1)
Ζ	8
Излучение	MoK_{lpha}
μ (мм ⁻¹)	4.84
Размер кристалла (mm)	$0.19 \times 0.13 \times 0.07$
Дифрактометр	Bruker Smart APEX II
Коррекция на поглощение	Multi-scan method [16]
Количество измеренные, независимых и наблюдаемых $[I > 3\sigma(I)]$ рефлексов	8761, 3241, 1542
<i>R</i> _{int}	0.042
$(\sin\theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.676
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.064, 1.88
Количество рефлексов	3241
Количество параметров	209
$\Delta \rho_{\text{макс}}, \Delta \rho_{\text{мин}}$ (e Å ⁻³)	1.00, -1.10

Таблица 1. Детали рентгендифракционного эксперимента Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75}

с отношением заселенностей 1 : 1, одну позицию K, одну смешанную позицию K/Na с отношением заселенностей 0.7 : 0.3, четыре позиции фосфора и 14 позиций атомов кислорода. Все атомы заселяют общие позиции Вайкоффа 4*e*.

По результатам рентгеноструктурного анализа формула определена как $[Li_{0.5}Na_{0.15}K_{0.85}ZnP_2O_7]^{0.5-}$, однако эта формула не была электронейтральна. Разностная карта электронной плотности не содержала значимых максимумов электронной плотности (4 наибольших разностных максимума электронной плотности менее $1.0 \text{ e} \text{ Å}^{-3}$ расположены вблизи позиции Zn1). По всей видимости, электронейтральность сохраняется путем неполной заселенности позиций атомов кислорода. Уточнение заселенностей позиций атомов кислорода показало, что в позиция O1–O7 присутствует до 10% вакансий. На конечном этапе заселенности этих позиций фиксировали согласно ожидаемой электронейтральной формуле $Li_{0.5}Na_{0.15}K_{0.85}ZnP_2O_{6.75}$, затем параметры тепловых смещений атомов уточняли в анизотропном приближении. С учетом выявленных вакансий, структурная формула может быть записана как $Li_{0.5}\square_{0.5}Na_{0.15}K_{0.85}ZnP_2O_{6.75}__{0.25}$ (здесь символ \square обозначает вакансии). Параметры уточнения и координаты атомов приведены в табл. 1 и 2. Структурные данные депонированы в Кембриджскую базу данных кристаллических структур под номером 1897026.

Порошковая терморентгенография. Тепловое расширение фазы $Li_{0.5}Na_{0.15}K_{0.85}ZnP_2O_{6.75}$ исследовано с использованием порошкового дифрактометра Rigaku Ultima IV (излучение CuK_{α}) в интервале 20–600°C с шагом 10–20°C. Проба приготовлена из гептановой суспензии на платиново-родиевой подложке. Средняя

	x	у	Z.	SOF	U _{eq}
Zn1 (<i>T</i> 1)	0.10956(13)	0.4869(3)	0.37961(13)	0.5	0.0237(7)
Li1 (<i>T</i> 1)	0.10956(13)	0.4869(3)	0.37961(13)	0.5	0.0237(7)
Zn2 (<i>T</i> 2)	0.12082(13)	0.9879(3)	0.39051(15)	0.5	0.0316(8)
Li2 (T2)	0.12082(13)	0.9879(3)	0.39051(15)	0.5	0.0316(8)
Zn3	0.88655(6)	0.99949(15)	0.11381(7)	0.5	0.0188(3)
K1	0.6056(4)	0.7486(3)	0.1058(4)	0.7	0.0438(18)
Na1	0.6056(4)	0.7486(3)	0.1058(4)	0.3	0.0438(18)
K2	0.1046(3)	0.7200(3)	0.1037(3)	1	0.0414(15)
P1	0.7921(3)	0.7691(3)	-0.0903(3)	1	0.0257(14)
P2	0.0900(3)	0.2328(3)	0.2067(3)	1	0.0197(13)
P3	0.9097(3)	0.7485(3)	0.2931(3)	1	0.0281(16)
P4	0.7061(3)	0.2497(2)	0.0895(3)	1	0.0220(13)
01	0.8438(6)	0.5904(11)	-0.0293(6)	1	0.038(3)
O2	0.1937(7)	0.2202(8)	0.1954(7)	1	0.024(3)
O3	0.8633(7)	0.7655(8)	0.1755(7)	1	0.033(4)
O4	0.1754(7)	0.7376(6)	0.3643(8)	1	0.026(4)
O5	0.8361(5)	0.9580(10)	-0.0343(5)	1	0.025(3)
O6	0.0335(5)	0.0424(10)	0.1605(5)	1	0.026(3)
O7	0.0281(5)	0.4072(10)	0.1523(6)	1	0.030(3)
O8	0.6965(7)	0.2486(6)	0.1968(8)	0.90	0.020(3)
O9	0.6665(6)	0.4396(13)	0.0382(6)	0.94	0.038(4)
O10	0.9737(6)	0.9234(13)	0.3484(7)	0.95	0.041(4)
O11	0.6478(6)	0.0753(12)	0.0269(6)	0.95	0.033(3)
O12	0.9614(6)	0.5562(12)	0.3283(7)	0.92	0.035(3)
O13	0.1322(8)	0.2356(8)	0.3274(8)	0.87	0.027(4)
O14	0.8263(8)	0.2301(9)	0.1334(9)	0.97	0.045(4)

Таблица 2. Атомные координаты, параметры смещений (Å²) и заселенность позиций (SOF) $Li_{0.5}Na_{0.15}K_{0.85}ZnP_2O_{6.75}$

скорость нагревания составляла около 1°С/мин. Параметры элементарной ячейки были уточнены методом Ритвельда с использованием программы *RietveldToTensor* [18]. Главные коэффициенты тензора теплового расширения определены путем полиномиальной аппроксимации температурных зависимостей параметров элементарной ячейки.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Кристаллическая структура фазы Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75} (рис. 1) имеет такую же топологию каркаса, как у NaKZnP₂O₇ [15], LiNaZnP₂O₇ [19], твердых растворов LiNa_{1-x}K_xZnP₂O₇ [12] и Li_xNa_{1-x}KZnP₂O₇ [13]. Однако, из-за различия в упорядочении катионов, все эти цинкофосфаты имеют разные элементарные ячейки. Структура Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75} может быть описана как каркас из тетраэдров ZnO₄ (длины связей Zn–O 1.908(10)–1.954(8) Å), TO_4 (T = Zn, Li) (длины связей T–O находятся в интервале 1.983(9)–2.037(8) Å), и групп P₂O₇ из двух связанных по вершинам тетраэдров PO₄ (длины P–O находятся в интервале 1.473(9)–1.649(14) Å). Кроме того, тетра-

Рис. 1. Температурные зависимости параметров и объема элементарной ячейки Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75}. Погрешности параметров и объема ячейки меньше используемых символов.

Рис. 2. Проекции кристаллической структуры $Li_{0.5}Na_{0.15}K_{0.85}ZnP_2O_{6.75}$ на плоскость *ac* (*a*) и фрагмент кристаллической структуры в плоскости *ab* (*б*) в сопоставлении с фигурами коэффициентов теплового расширения. Тетраэдры, центральная позиция которых характеризуется Li/Zn беспорядком, показаны штриховкой и обозначены как TO_4 .

эдры ZnO₄ и TO₄ чередуются с группами $\Box O_4$ в плоскости (10–1) (здесь символ \Box обозначает вакансии). Подобное упорядочение ведет к формированию элементарной ячейки, объем которой примерно в два раза больше ячейки твердых растворов Li_xNa_{1-x}KZnP₂O₇. Семь позиций кислорода содержат 3–13% вакансий. Координация

Рис. 3. Дерево Бернигхаузена, демонстрирующее соотношения типа "группа–подгруппа" в семействе щелочно-цинковых дифосфатов *MM* ZnP₂O₇.

позиций K1/Na и K2 пятикратная, с длинами связей в интервалах 2.68(1)–2.94(1) Å и 2.67(1)–3.01(1) Å, соответственно.

Кристаллическая структура LiNaZnP₂O₇, NaKZnP₂O₇, твердых растворов LiNa_{1-x}K_xZnP₂O₇ и Li_{1-x}Na_xKZnP₂O₇ а также новой фазы Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75} имеют топологически одинаковые кристаллические структуры, соотношение между которыми может быть представлено с использованием дерева Бернигхаузена [20, 21], которое демонстрирует соотношения типа "группа-подгруппа" в данном семействе.

Тепловое расширение Li_{0.5}Na_{0.15}K_{0.85}ZnP₂O_{6.75} максимально вдоль оси b ($\alpha_b = \alpha_{22} = 29 \times 10^{-6\circ} C^{-1}$), вдоль которой расположены цепочки из связанных по вершинам тетраэдров – $\langle (Zn/Li)O_4 \rangle$ – $\langle ZnO_4 \rangle$ –. По всей видимости, максимальное тепловое расширение обусловлено беспорядком Li \leftrightarrow Zn в цепочках в кристаллической структуре. Ранее такой беспорядок был выявлен нами в твердых растворах Li_xNa_{1-x}KZnP₂O₇ [13].

ЗАКЛЮЧЕНИЕ

В работе получен и структурно охарактеризован новый представитель семейства цинкофосфатов $MM'ZnP_2O_7$ – разупорядоченная фаза $Li_{0.5}Na_{0.15}K_{0.85}ZnP_2O_{6.75}$. Сложное упорядочение катионов и вакансий ведет к формированию элементарной ячейки увеличенной в два раза по сравнению с элементарной ячейкой твердых растворов $Li_xNa_{1-x}KZnP_2O_7$. Тепловое расширение максимально вдоль цепочек из связанных по вершинам тетраэдров– $\langle (Zn/Li)O_4 \rangle$ – $\langle ZnO_4 \rangle$ –.

Исследования проведены с использованием оборудования ресурсных центров СПбГУ "Рентгендифракционные методы исследования" и "Геомодель".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Wanmaker W.L.*, *Spier H.L.*, Luminescence of copper-activated orthophosphates of the type $ABPO_4$ (A = Ca, Sr, or Ba and B = Li, Na, or K) // J. Electrochem. Soc. 1962. V. 109. P. 109–114.
- Blum D., Penzin J.C., Henrym J.Y., MM PO₄, a new family of ferroic compounds // Ferroelectric. 1984. V. 61. P. 265–279.

- Tealdi C., Ricci M., Ferrara C., Bruni G., Quartarone E., Mustarelli P., Electrochemical study of Na₂Fe_{1-x}Mn_xP₂O₇ (x = 0, 0.25, 0.5, 0.75, 1) as cathode material for rechargeable Na-ion batteries // Batteries. 2016. V. 2. P. 1–9.
- Daugėla S., Šalkus T., Kežionis A., Venckutė V., Valdniece D., Dindune A., Barre M., Orliukas A.F., Anomalous temperature-dependent electrical properties of Na₂MnP₂O₇ // Solid State Ionics. 2017. V. 302. P. 72–76.
- Shakoor R., Park C.S., Raja A.A., Shin J., Kahraman R. A mixed iron-manganese based pyrophosphate cathode, Na₂Fe_{0.5}Mn_{0.5}P₂O₇, for rechargeable sodium ion batteries // Phys. Chem. Chem. Phys. 2016. V. 18. P. 3929–3935.
- Констант З.А., Диндуне А.П. Фосфаты двухвалентных металлов // Рига. Изд-во "Зинатне" 1987. 371 с.
- 7. Ji L.N., Li J.B., Luo J., Liang J.K., Zhang J.Y., Liu Y.H., Rao G.H., Phase relations and flux research for zinc oxide crystal growth in the ZnO–Na₂O–P₂O₅ system // J. Alloys Compounds. 2008. V. 465. P. 436–441.
- Ji N., Li J.B., Luo J., Liang J.K., Liu Y.H., Zhang J.Y., Rao G.H., Phase relations and flux research for zinc oxide crystal growth in the ZnO-K₂O-P₂O₅ system // J. Alloys Compounds. 2009. V. 470. P. 336–339.
- 9. Inorganic Crystal Structure Data Base–ICSD. Fachinformationszentrum (FIZ) Karlsruhe. Karlsruhe. 2014. II Version.
- Петрова М.А., Микиртичева Г.А., Гребенщиков Р.Г. Фазовые равновесия в стеклообразующих системах Zn₂P₂O₇-M₂ZnP₂O₇ и M₂'ZnP₂O₇-M₂"ZnP₂O₇, где М,М',М"- Li, Na, К // Неорган. материалы. 2007. Т. 43. № 9. С. 1141–1148.
- Лапшин А.Е., Петрова М.А. Смешанные щелочно-цинковые дифосфаты: синтез, структура, свойства // Физ. и хим. стекла. 2012. Т. 38. № 6. С. 718–732.
- 12. Петрова М.А., Волков С.Н., Бубнова Р.С. Новые твердые растворы смешанных щелочноцинковых дифосфатов LiNa_{1 – x}K_xZnP₂O₇ // Физ. и хим. стекла. 2014. Т. 40. № 4.
- Volkov S.N., Petrova M.A., Sinel'shchikova O., Firsova V., Popova V., Ugolkog V., Krzhizhanovskaya M., Bubnova R.S. Crystal structure and thermal properties of the Li_xNa_{1 – x}KZnP₂O₇ solid solutions and its relation to the MM'ZnP₂O₇ diphosphate family // Sol. St. Chem. 2019. V. 269. P. 486–493.
- 14. Шепелев Ю.Ф., Петрова М.А., Новикова А.С., Лапшин А.Е. Структура кристаллических фаз Na₂ZnP₂O₇, K₂ZnP₂O₇, LiKZnP₂O₇ в стеклообразующей системе M₂O-ZnO-P₂O₅ (M = Li, Na, K) // Физ.и хим. стекла. 2002. Т. 28. № 5. С. 451–458.
- 15. Шепелев Ю.Ф. Лапшин А.Е., Петрова М.А., Кристаллическая структура дифосфата натрия, калия и цинка NaKZnP₂O₇ // Журн. стр. химии. 2006. Т. 47. № 6. С. 1109–1113.
- 16. Bruker. APEX2 and SADABS. Bruker AXS, Madison, Wisconsin, USA. 2003.
- Petricek V., Dusek M., Palatinus L., Crystallographic Computing System JANA2006: General features // Z. Kristallogr. 2014. V. 229. P. 345–352.
- Бубнова Р.С., Фирсова В.А., Волков С.Н., Филатов С.К., RitvieldToTensor: программа для обработки порошковых рентгендифракционных данных, полученных в переменных условиях // Физ. и хим. стекла. 2018. Т. 44. С. 46-58.
- Шепелев Ю.Ф., Лапшин А.Е., Петрова М.А., Новикова А.С. Кристаллическая структура LiNaZnP₂O₇ в стеклообразующей системе Li₂ZnP₂O₇-Na₂ZnP₂O₇ // Физ. и хим. стекла. 2005. Т. 31. № 5. С. 949-952.
- Bärnighausen H. Group-subgroup relation between space group: a useful tool in crystal chemistry // Commun. Math. Chem. 1980. V. 9. P. 139–175.
- Müller U. Symmetry Relationships Between Crystal Structures // Oxford Science Publications, 2013.