ИССЛЕДОВАНИЕ СЕРЕБРОСОДЕРЖАЩИХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ НАНОПОРИСТЫХ СИЛИКАТНЫХ СТЕКОЛ, ЛЕГИРОВАННЫХ ИОНАМИ Тb³⁺ ИЛИ Sm³⁺, МЕТОДОМ ИК СПЕКТРОСКОПИИ

© 2019 г. М. А. Гирсова^{1, *}, Г. Ф. Головина¹, И. Н. Анфимова¹, Л. Н. Куриленко¹

¹Институт химии силикатов имени И.В. Гребенщикова РАН, Россия 199034, Санкт-Петербург, наб. Макарова, 2

*e-mail: girsovamarina@rambler.ru

Поступила в редакцию 27.12.18 г. После доработки 09.04.19 г. Принята к публикации 06.06.19 г.

Синтезированы композиционные материалы (KM), легированные AgI или AgBr и ионами Tb³⁺ или Sm³⁺, на основе матриц из высококремнеземных нанопористых стекол (НПС). Исследована структура KM методом ИК-спектроскопии в области частот 4000–400 см⁻¹. На ИК-спектрах пропускания KM обнаружены полосы, отвечающие колебаниям Ag–O (604–592 см⁻¹). Установлено наличие полос, которые связаны с присутствием O–Ln–OH, Ln–O–Ln, Ln–O–H, Ln–O (Ln = Tb, Sm) связей по сравнению с НПС и сериями материалов без редкоземельных ионов (тербий или самарий). Обнаружены пики, отвечающие за наличие оксидов Ag₂O (940–936, 640 см⁻¹) и Sm₂O₃ (640 см⁻¹) в KM.

Ключевые слова: серебросодержащие композиционные материалы, тербий, самарий, инфракрасная спектроскопия

DOI: 10.1134/S0132665119050056

ВВЕДЕНИЕ

Стекла, легированные редкоземельными ионами (например, тербий, самарий), используют в качестве активной среды при создании твердотельных лазеров, цветных дисплеев, волоконных усилителей, волноводов, оптических датчиков, элементов солнечной энергетики и т.д. [1–5]. Это возможно благодаря тому, что самарий Sm³⁺ является важным высокоэффективным оптическим активатором, который проявляет сильное оранжево-красное свечение (601 нм) в видимой области спектра, а тербий – сильное зеленое свечение (543 нм) [1, 5–7].

Серебросодержащие стекла, легированные самарием или тербием, обладают уникальными люминесцентными свойствами [8–11]. Известно, что одновременное присутствие редкоземельных активаторов и наночастиц или кластеров серебра приводит к усилению люминесценции и улучшению спектральных свойств материала [8–12].

В [1, 13] методом инфракрасной спектроскопии было установлено, что с увеличением концентрации редкоземельного иона в материале, активатор действует как модификатор сетки стекла и влияет на структуру материала. Например, в том числе приводит к увеличению BO_4 тетраэдров за счет преобразования большого количества BO_3 структурных единиц в BO_4 [1]. В настоящей работе будет изучено влияние двух редкоземельных ионов (Sm³⁺ или Tb³⁺) и галогенида серебра (AgI или AgBr), а также концентрации введенного серебра на структуру композиционных материалов методом инфракрасной спектроскопии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В настоящей работе рассматриваются композиционные материалы (KM) на основе нанопористых силикатных стекол (ПС 8В-НТ), легированные галогенидом серебра (AgI или AgBr) в присутствии или без редкоземельных ионов (тербий или самарий). По данным химического анализа базовые ПС-матрицы в форме прямоугольных плоскопараллельных пластин (размером $5-25 \times 5-15 \times 1.5 \pm 0.15$ мм) содержат, мас. %: $0.30Na_2O$, $3.14B_2O_3$, $0.11Al_2O_3$, $96.45SiO_2$ [14, 15]. Синтез KM был выполнен путем двухстадийной пропитки ПС-матриц. Сначала образцы ПС пропитывали в стабилизированных добавлением концентрированной HNO₃ водных растворах (100, 50, 10 мг/мл) AgNO₃ в присутствии или без редкоземельных ионов (10 мг/мл Tb(NO₃)₃ или 10 мг/мл Sm(NO₃)₃) при комнатной температуре в течение суток. Затем в водном растворе галоидных солей (0.2 M KI или 0.6 M KI или 0.6 M KBr) при 50°C в условиях термостатирования ($\pm 1^\circ$ C) без принудительного перемешивания в течение 20–45 мин. Образцы KM были высушены при 120°C между стадиями и по окончании пропиток. При приготовлении растворов для синтеза всех материалов использовали реактивы марки "х. ч.": AgNO₃, KBr, KI, Sm(NO₃)₃ · 6H₂O, Tb(NO₃)₃ · 5H₂O.

Обозначение синтезированных образцов: 100Ag, 50Ag, 10Ag, 10Ag/10Tb, 100Ag/10Sm, 10Ag/10Tb, 10Ag/10Sm — в соответствии с концентрацией пропитывающих растворов, содержащих серебро. Во всех композиционных материалах на базе ПС-матриц, легированных иодидом или бромидом серебра в присутствии или без редкоземельных ионов (тербий или самарий), было определено содержание серебра и щелочных металлов, мас. %: (0.11–0.26) Na₂O, (0.13–0.64) K₂O, (0.06–1.18) Ag₂O методом пламенной фотометрии на спектрофотометре iCE of 3000 Series.

В работе были исследованы ИК-спектры пропускания композиционных материалов в зависимости от их состава. В качестве образцов сравнения в исследованиях были использованы базовые ПС-матрицы и исходные реактивы марки "х. ч." (Sm(NO₃)₃ · 6H₂O, Tb(NO₃)₃ · 5H₂O). Инфракрасные спектры пропускания были получены на спектрофотометре SPECORD M-80 (Carl Zeiss JENA) в области 4000–400 см⁻¹ со спектральным разрешением 4 см⁻¹. Измерения проводили при комнатной температуре на образцах в виде таблеток диаметром 13 мм, спрессованных из смеси порошков реактива или ПС-матрицы или КМ с КВг, в отличие от работ [16, 17], где были использованы таблетки диаметром 3 мм. Для изготовления таблеток использовали пресс-форму ПФ-13 в условиях вакуумной откачки (давление в вакууной системе не более 20 мм рт. ст.).

Экспериментальные спектры были обработаны в программе Origin Lab 8.6 32Bit. Сглаживание (Smooth) графиков осуществлено методом FFT Filter. На рис. 1–3 приведены ИК-спектры в двух интересующих диапазонах: 4000–3300 и 1750–400 см⁻¹.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

ИК-спектры пропускания ПС-матриц и исходных реактивов показаны на рис. 1. ИК-спектры пропускания композиционных материалов в зависимости от их состава представлены на рис. 2 и 3. Все полосы поглощения, обнаруженные у ПС-матриц, реактивов (Sm(NO₃)₃ · 6H₂O, Tb(NO₃)₃ · 5H₂O) и серебросодержащих композиционных материалов сведены в табл. 1.

На спектральной зависимости пропускания ПС-матрицы в ИК-области (рис. 1, кривая *I*) было обнаружено десять фундаментальных полос: 3672, 3464, 1644, 1336,

Рис. 1. Инфракрасные спектры пропускания: ПС-матрица (1), Sm(NO₃)₃ · 6H₂O (2), Tb(NO₃)₃ · 5H₂O (3).

1184, 952, 872, 744, 652, 580 см⁻¹. Полосы, наблюдаемые при 3672, 3464, 1644 см⁻¹, вызваны деформационными колебаниями H–O–H и валентными колебаниями гидроксильных групп и воды [16–21]. Полоса при 1336 см⁻¹ принадлежит валентным колебаниям B–O связей v(B–O) в тригональных [BO₃] структурных единицах [22]. Полоса поглощения при 1184 см⁻¹ относится к ассиметричным валентным колебаниям B–O связей и B–O⁻ связей v_{as}(B–O) в боратных треугольниках (BO₃ и BO₂O⁻) [23]. Полоса при 952 см⁻¹ связана с валентным колебанием Si–OH групп v(Si–OH) [20]. Наблюдаемое интенсивное поглощение при 872 см⁻¹ вызвано асимметричными колебаниями v_{as} [SiO₄] тетраэдров и валентными колебаниями B–O связей v(B–O) в [BO₄] структурных единицах (см. обзор в [16]). Полоса, наблюдаемая у ПС-матриц при 744 см⁻¹, связана с колебанием Si–O связей [24]. Поглощение при 652 см⁻¹ является характерным для деформационных колебаний O–B–O связей δ (O–B–O) [23]. Полоса, наблюдаемая у ПСматриц при 580 см⁻¹, относится к валентным колебаниям Si–OH групп v(Si–OH) [20].

На ИК-спектрах реактивов (рис. 1, кривые 2, 3) наблюдаются полосы при 3704, 3688, 3468, 1588, 1416, 1092, 1080, 1008, 996, 900, 884, 792, 788, 720, 580, 564 см⁻¹. Полосы, наблюдаемые при 3704, 3688, 3468 см⁻¹, вызваны валентными и деформационными колебаниями гидроксильных групп и воды [16, 17, 19–21]. При сравнительном анализе реактивов (табл. 1) в нескольких диапазонах частот (3704–3688, 1092–1080, 1008–996, 900–884, 580–564 см⁻¹) наблюдаются небольшие различия в положениях полос поглощения. По-видимому, это связано с особенностями структуры исходных реактивов, что также подтверждается отсутствием полосы при 1644 см⁻¹. Данная полоса указывает на наличие кристаллической воды с деформационными колебаниями H– O–H [18, 20]. Полосы при 1588, 1416, 1092, 1080, 1008, 996, 900, 884, 792, 788 и 720 см⁻¹ могут быть связаны с присутствием O–Ln–OH, Ln–O–Ln и Ln–O–H (Ln = Tb, Sm) связей соответственно [25, 26]. Полосы при 580 и 564 см⁻¹ относятся к валентным колебаниям Ln–O (Ln = Tb, Sm) связей [27].

На ИК-спектрах серебросодержащих КМ (рис. 2, 3) были обнаружены полосы, отвечающие за валентные и деформационные колебания гидроксильных групп и воды, в диапазонах частот 3684–3660, 3476–3456, 3432–3416, 1660–1632 см⁻¹ [16–21]. У отдельных серий серебросодержащих КМ появляются новые полосы по сравнению с

Рис. 2. Инфракрасные спектры пропускания композиционных материалов: 10Ag (*a*), 50Ag (*b*), 100Ag (*b*). Пропитка во втором растворе: 0.6 KBr (*1*), 0.6 KI (*2*), 0.2 KI (*3*).

Рис. 3. Инфракрасные спектры пропускания композиционных материалов: 10Ag/10Sm (*a*), 10Ag/10Tb (*б*), 100Ag/10Sm (*e*), 100Ag/10Tb (*c*). Пропитка во втором растворе: 0.6 KBr (*1*), 0.6 KI (*2*), 0.2 KI (*3*).

Рис. 3. Окончание.

ПС-матрицей в областях 1572–1560, 1508–1492, 1484–1460 см⁻¹, которые принадлежат валентным колебаниям В–О связей v(В–О) в тригональных [ВО₃] структурных единицах [1, 16, 18, 19]. Появление полос у KM серий 10Ag/10Sm и 100Ag/10Sm при 1524 см⁻¹ может быть связано с присутствием O–Sm–OH групп [25].

Следует отметить, что у КМ наблюдаются смещения полос в сторону бо́льших волновых чисел от 1340–1336 до 1356–1348 см⁻¹ по сравнению с ПС-матрицей и большинством серий КМ. Полосы при 1340–1336 см⁻¹ принадлежат валентным колебаниям В–О связей v(B–O) в [BO₃] структурных единицах [22]. Появление полос при 1356–1348 см⁻¹ может быть связано с влиянием AgI или AgBr на структуру композитов и ассиметричными валентными колебаниями боратных треугольников BØ₃ и BØ₂Ø⁻ (Ø = атом кислорода, соединяющий два атома бора) $v_{as}(BØ_3 \text{ и } BØ_2Ø^-)$ [28].

Добавление иодида серебра и редкоземельных ионов приводит к появлению новых полос поглощения у КМ при 1176, 1160, 1148, 1136 см⁻¹, которые относят к колебаниям [BO₄] структурных единиц [22, 28]. У большинства композитов наблюдается сохранение полос в той же области частот 1192–1188 см⁻¹, что у ПС-матриц (1184 см⁻¹), что вызвано ассиметричными валентными колебаниями В–О связей v_{as} (B–O) в боратных треугольниках (BO₃ и BO₂O⁻) [23]. У нескольких серий композитов появляются новые полосы в области 1096–1076 см⁻¹, которые не были обнаружены у ПС-матриц, но проявились на спектрах реактивов (1092, 1080 см⁻¹). Данные полосы могут указывать на влияние редкоземельных ионов (Tb, Sm) на структуру КМ и на присутствие O–Ln–OH и Ln–O–Ln (Ln = Tb, Sm) связей [13, 25]. Наличие полосы при 1084 см⁻¹ на спектре КМ серии 10Аg–0.6 М КІ может относиться к вырожденному валентному асимметричному колебанию v_{as} [BO₃] групп и асимметричным колебаниям v_{as} [SiO₄] тетраэдров с мостиковыми Si–O–Si связями v_{as} (Si–O–Si) (см. обзор в [16]).

Интенсивное поглощение в области 960, 952–948 и 940–936 см⁻¹ приписывают колебаниям Si–OH групп и колебанию оксида серебра Ag_2O соответственно [20, 22, 29]. У нескольких серий KM 10Ag/10Ln, 100Ag/10Ln (Ln = Tb, Sm) наблюдались смещения полос поглощения от 952–948 до 940–936 см⁻¹ при равной концентрации серебра и калия или при преобладании калия в составе образцов. Влияние типа галогенида се-

Обозначение (концентрация А g₂O -K ₂ O в материале, мас. %)	Положение полос поглощения, см ⁻¹															
ПС-8В-НТ	3672	3464		1644				1336	1184		952	872	744		652	580
Реактив $Sm(NO_3)_3$ · · 6H ₂ O	3704	3468			1588		1416			1080	1008	900	788	720		564
Реактив Tb(NO ₃) ₃ \cdot 5H ₂ O	3688	3468			1588		1416			1092	996	884	792	720		580
KM 10Ag-0.6 KBr (0.07 -0.35)	3672	3456	3432	1632	1560	1492		1348			936	864		720	648	580
KM 10Ag-0.6 KI (0.09 -0.42)	3684	3456	3428	1632	1560		1460	1340	1188	1084	936	860		708	640	580
KM 10Ag-0.2 KI (0.07 -0.13)	3684	3456	3428	1632	1560		1476	1340	1192	1136	936	864		712	640	580
KM 50Ag-0.6 KBr (0.60 -0.40)	3668	3468	3428	1644	1572		1476	1340	1188		960	864	744	708	648	596
KM 50Ag-0.6 KI (0.55 -0.50)	3672	3468	3428	1632	1568		1460	1340			952	856		708	640	580
KM 50Ag-0.2 KI (0.47 -0.18)	3684	3468	3428	1640	1572		1484	1340		1148	948	856		712	640	604
KM 100Ag-0.6 KBr (1.18 -0.54)	3672	3472	3432	1640	1560		1484	1352			936	852		708	648	580
KM 100Ag-0.6 KI (0.54 -0.64)	3672	3468	3432	1644			1460	1340			936	860		720	648	592
KM 100Ag-0.2 KI (0.51 -0.20)	3672	3472	3432	1644	1572		1476	1340	1176		940	860		712	648	592
KM 10Ag/10Sm- 0.6 KBr (0.06 -0.36)	3668	3476	3432	1640	1560	1508		1356		1092	936	852	720	640	604	
KM 10Ag/10Sm- 0.6 KI (0.06 -0.41)	3672	3472	3432	1640	1568		1476	1356		1096	940	852	720	640	580	
KM 10Ag/10Sm- 0.2 KI (0.10 -0.13)	3672	3476	3428	1644		1524	1460	1356	1136		940	852	720	640	580	
KM 100Ag/10Sm- 0.6 KBr (0.56 -0.36)	3672		3428	1640		1524	1476	1340			936	864	720	640	580	
KM 100Ag/10Sm- 0.6 KI (0.56 -0.60)	3672	3456	3432	1644			1460	1340			952	852	720	640	580	
KM 100Ag/10Sm- 0.2 KI (0.46 -0.21)	3672	3476	3428	1640	1560		1460	1348	1136	1080	952	864	720	640	600	
KM 10Ag/10Tb- 0.6 KBr (0.06 -0.37)	3672	3464	3428	1644		1508		1340	1188	1076	948	852	720	640	596	
KM 10Ag/10Tb-0.6 KI (0.07 -0.44)	3660	3472	3428	1632	1568		1476	1356	1160		936	852	720	648	580	
KM 10Ag/10Tb-0.2 KI (0.11 -0.14)	3672	3472	3416	1660	1560	1508		1340	1148		936	852	720	648	568	
KM 100Ag/10Tb- 0.6 KBr (0.66 -0.39)	3672	3462	3428	1644		1508		1340		1092	952	860	712	648	580	
KM 100Ag/10Tb- 0.6 KI (0.50 -0.40)	3672	3468	3428	1644			1476	1340	1148		936	852	712	648	596	
KM 100Ag/10Tb- 0.2 KI (0.50 -0.14)	3660	3464	3428	1644	1572	1492		1340	1188		952	852	720	648	580	

Таблица 1. Полосы поглощения (в диапазоне 4000–400 см⁻¹), обнаруженные у ПС-матриц, реактивов и серебросодержащих композиционных материалов, в зависимости от их состава и концентрации серебра

Положение полос поглощения, см-	Отнесение							
3704–3660	Валентные колебания гидроксильных групп и воды, де- формационные колебания Н—О—Н							
3476-3456								
3432-3416								
1660–1632								
1572-1560	Колебания v(B—OH) связей в [BO ₃] структурных единицах							
1508–1492								
1484-1460								
1340–1336								
1588, 1416	Присутствие O–Ln–OH и Ln–O–Ln (Ln = Tb, Sm) свя- зей							
1096-1076								
1008, 996	1							
900, 884	1							
792, 788	7							
1524	Присутствие О-Sm-OH групп							
1356-1348	Колебания $v_{as}(BO_3 u BO_2O^-)$ боратных треугольников ($O =$ атом кислорода, соединяющий два атома бора)							
1356–1348	Влияние AgI или AgBr на структуру композитов							
864-852	7							
1192–1184	Колебания $v_{as}(B-O)$ связей в боратных треугольниках (BO ₃ и BO ₂ O)							
1176, 1160	Колебания [ВО ₄] структурных единиц							
1148, 1136								
1084	Колебания v _{as} [BO ₃] групп и v _{as} [SiO ₄] тетраэдров с мо- стиковыми v _{as} (Si–O–Si) связями							
960	Колебания v(Si–OH) групп							
952–948								
940–936	Колебания Аg ₂ О							
872	Колебания v _{as} [SiO ₄] тетраэдров и v(B–OH) связей в [BO ₄] структурных единицах							
744	Колебания Si–O связей							
720	Колебания δ(B–O–B) связей в [BO ₃] группах							
712–708								
720	Присутствие Ln–O–H связей (Ln = Tb, Sm)							
712–708								
604, 596	1							
652-648	Колебания $\delta(O-B-O)$ связей							

Колебания Ag₂O, Sm₂O₃

Колебания Ад-О связей

Колебания v(Si-OH) групп

Колебания v (Ln-O) связей (Ln = Tb, Sm)

Таблица 2. Полосы поглощения (в диапазоне 4000–400 см⁻¹), обнаруженные у ПС-матриц, реактивов и серебросодержащих композиционных материалов, и их отнесение

640 604-592

580

580 568-564 ребра (0.6 М КВг или 0.6 М КІ) наблюдалось только у КМ 100Ag/10Sm, 10Ag/10Tb и 100Ag/10Tb, у остальных серий КМ 10Ag, 50Ag, 100Ag, 10Ag/10Sm — это не обнаружено.

В диапазоне частот 864–852 см⁻¹ обнаружено значительное смещение полос поглощения у КМ всех серий в сторону ме́ныших волновых чисел по сравнению с ПС-матрицей (872 см⁻¹). Это, возможно, связано с влиянием AgI или AgBr на структуру композитов [30]. Полоса, наблюдаемая только у КМ 50Ag–0.6 КВr, при 744 см⁻¹ связана с колебанием Si–O связей [24]. Сильные полосы, обнаруженные у всех типов КМ, при 720, 712–708 см⁻¹ могут быть обусловлены деформационными колебаниями B–O–B связей δ (B–O–B) в [BO₃] группах, а также присутствием Ln–O–H связей (Ln = Tb, Sm) (см. обзор в [16]), [26].

У композитов наблюдаются значительные смещения полос от 648 до 640 см⁻¹ в сторону ме́ньших волновых чисел по сравнению с ПС-матрицей (652 см⁻¹). Поглощение при 652–648 см⁻¹ является характерным для деформационных колебаний O–B–O связей δ (O–B–O) [23]. Интенсивное поглощение при 640 см⁻¹ характерно для оксида серебра Ag₂O и оксида самария Sm₂O₃ [29, 31]. Данные изменения были обнаружены у KM, активированных иодидом серебра (10Ag, 50Ag), бромидом серебра (10Ag/10Tb) и у всех серий KM, легированных галогенидом серебра и ионами самария. В диапазоне частот 648–640 см⁻¹ было обнаружено влияние типа галогенида серебра (KBr или KI) и редкоземельного иона (Sm).

У нескольких серий КМ наблюдается значительное смещение полос в диапазоне частот от 580 до 604–592 см⁻¹ в сторону бо́льших волновых чисел по сравнению с ПС-матрицами (580 см⁻¹). Полоса при 580 см⁻¹ относится к валентным колебаниям Si–OH групп v(Si–OH) [20]. Интенсивное поглощение при 604–592 см⁻¹ вызвано колебанием Ад–О связей [32, 33]. У серий КМ 10Аg/10Tb и 10Аg/10Sm, легированных бромидом серебра, были обнаружены полосы при 604 и 596 см⁻¹, которые связаны с присутствием Ln–O–H (Ln = Tb, Sm) связей по сравнению с ПС-матрицами и сериями КМ 10Аg [26]. Наличие полосы при 568 см⁻¹ у КМ 10Аg/10Tb–0.2 КІ может быть связано с колебанием Tb–O связей [27].

Установлено (табл. 1), что с увеличением концентрации калия (при одинаковом содержании серебра в образцах) на ИК спектрах КМ, активированных иодидом серебра, положение полос сохраняется или происходит их смещение в сторону ме́ныших волновых чисел. С увеличением концентрации серебра в образцах (при одинаковом содержании калия в образцах) приводит к сохранению положения ИК полос или их смещению в сторону бо́льших волновых чисел у всех серий КМ.

Все обнаруженные ИК полосы поглощения у ПС-матриц, реактивов и КМ с их отнесением сведены в табл. 2.

Полосы поглощения при 777–773, 473 и 452–425 см⁻¹, которые относятся к колебаниям Ag–O–Si, Tb–O–Si и Na–O, K–O связей, соответственно, не проявились на ИК-спектрах пропускания КМ и ПС-матриц (рис. 1–3) [34–36]. Это говорит о том, что серебро и редкоземельные ионы не связаны с сеткой стекла. Отсутствие полос, отвечающих за колебания щелочных ионов, по-видимому, связано с их недостаточной концентрацией для обнаружения на ИК-спектрах.

ЗАКЛЮЧЕНИЕ

На основе матриц из высококремнеземных нанопористых стекол синтезированы серебросодержащие композиционные материалы, структура которых исследована методом ИК-спектроскопии.

В синтезированных композиционных материалах идентифицированы колебания Ag–O связей, O–Ln–OH, Ln–O–H, Ln–O–Ln и Ln–O связей (Ln = Tb, Sm). Обнару-

жены полосы, отвечающие за наличие оксидов Ag_2O и Sm_2O_3 . Установлено, влияние редкоземельных ионов (Sm^{3+} или Tb^{3+}) и галогенида серебра (AgI или AgBr), а также концентрации введенного серебра (0.06-1.18) Ag_2O и калия (0.13-0.64) K_2O на структуру композиционных материалов.

Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 18-33-00527.

СПИСОК ЛИТЕРАТУРЫ

- Vijayakumar M., Marimuthu K., Sudarsan V. Concentration dependent spectroscopic behavior of Sm³⁺ doped leadfluoro-borophosphate glasses for laser and LED applications // J. Alloys and Compounds. 2015. V. 647. P. 209–220.
- Swapna K., Mahamuda Sk., Rao A. S., Sasikala T., Moorthy L.R. Visible luminescence characteristics of Sm³⁺ doped Zinc Alumino Bismuth Borate glasses // J. Luminescence. 2014. Vol. 146. P. 288–294.
- Elisa M., Sava B.A., Vasiliu I.C., Monteiro R.C.C., Veiga J.P., Ghervase L., Feraru I., Iordanescu R. Optical and structural characterization of samarium and europium-doped phosphate glasses // J. Non-Crystalline Solids. 2013. V. 369. P. 55–60.
- 4. Thomas V., Sofin R.G.S., Allen M., Thomas H., Biju P.R., Jose G., Unnikrishnan N.V. Optical analysis of samarium doped sodium bismuth silicate glass // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017. V. 171. P. 144–148.
- Vijayakumar M., Marimuthu K. Effect of Tb³⁺ concentration on Sm³⁺ doped leadfluoro-borophosphate glasses for WLED applications // J. Non-Crystalline Solids. 2016. V. 447. P. 45–54.
- 6. Alvarez-Ramos M.E., Alvarado-Rivera J., Zayas Ma.E., Caldiño U., Hernández-Paredes J. Yellow to orange-reddish glass phosphors: Sm³⁺, Tb³⁺ and Sm³⁺/Tb³⁺ in zinc tellurite-germanate glasses // Optical Materials. 2018. V. 75. P. 88–93.
- Karki S., Kesavulu C.R., Kim H.J., Kaewkhao J., Chanthima N., Ruangtaweep Y. Physical, optical and luminescence properties of B₂O₃-SiO₂-Y₂O₃-CaO glasses with Sm³⁺ ions for visible laser applications // J. Luminescence. 2018. V. 197. P. 76–82.
- Gao Y., Murai S., Fujita K., Tanaka K. Visible and near-infrared photoluminescence enhanced by Ag nanoparticles in Sm³⁺-doped aluminoborate glass // Optical Materials. 2018. V. 86. P. 611–616.
- Guo Z., Ye S., Liu T., Li S., Wang D. SmF₃ doping and heat treatment manipulated Ag species evaluation and efficient energy transfer from Ag nanoclusters to Sm³⁺ ions in oxyfluoride glass // J. Non-Crystalline Solids. 2017. V. 458. P. 80–85.
- Jiménez J.A., Sendova M. In situ isothermal monitoring of the enhancement and quenching of Sm³⁺ photoluminescence in Ag co-doped glass // Solid State Communications. 2012. V. 152. P. 1786–1790.
- Li L., Yang Y., Zhou D., Xu X., Qiu J. The influence of Ag species on spectroscopic features of Tb³⁺-activated sodium-aluminosilicate glasses via Ag⁺-Na⁺ ion exchange // J. Non-Crystalline Solids. 2014. V. 385. P. 95–99.
- Kindrat I.I., Padlyak B.V., Lisiecki R., Adamiv V.T., Teslyuk I.M. Enhancement of the Er³⁺ luminescence in Er–Ag co-doped Li₂B₄O₇ glasses // Optical Materials. 2018. V. 85. P. 238–245.
- 13. Aronne A., Esposito S., Pernice P. FTIR and DTA study of lanthanum aluminosilicate glasses // Materials Chemistry and Physics. 1997. V. 51. № 2. P. 163–168.
- 14. Гирсова М.А., Дроздова И.А., Антропова Т.В. Структура и оптические свойства фотохромного кварцоидного стекла, легированного галогенидами серебра // Физ. и хим. стекла. 2014. Т. 40. № 2. С. 209–214.
- 15. Гирсова М.А., Головина Г.Ф., Анфимова И.Н., Куриленко Л.Н. Свойства висмутсодержащих высококремнеземных стекол в зависимости от концентрации висмута и режима тепловой обработки. І. Спектрально-оптические свойства // Физ. и хим. стекла. 2018. Т. 44. № 5. С. 464– 472.
- 16. Гирсова М.А., Головина Г.Ф., Куриленко Л.Н., Антропова Т.В. Синтез и исследование висмутсодержащих высококремнеземных стекол методом ИК спектроскопии // Физ. и хим. стекла. 2015. Т. 41. № 1. С. 127–132.
- 17. Girsova M.A., Golovina G.F., Drozdova I.A., Polyakova I.G., Antropova T.V. Infrared studies and spectral properties of photochromic high silica glasses // Optica Applicata. 2014. V. 44. № 2. P. 337–344.
 - https://doi.org/10.5277/oa140214
- 18. Balachander L., Ramadevudu G., Shareefuddin Md., Sayanna R., Venudhar Y.C. IR analysis of borate glasses containing three alkali oxides // Science Asia. 2013. V. 39. № 3. P. 278–283.
- Sailaja B., Stella R.J., Rao G.T., Raja B.J., Manjari V.P., Ravikumar R.V.S.S.N. Physical, structural and spectroscopic investigations of Sm³⁺ doped ZnO mixed alkali borate glass // J. Molecular Structure. 2015. V. 1096. P. 129–135.

- 20. Jeon H.-J., Yi S.-C., Oh S.-G. Preparation and antibacterial effects of Ag–SiO₂ thin films by sol– gel method // Biomaterials. 2003. V. 24. № 27. P. 4921–4928.
- Bauer U., Behrens H., Fechtelkord M., Reinsch S., Deubener J. Water- and boron speciation in hydrous soda-lime-borate glasses // J. Non-Crystalline Solids. 2015. V. 423–424. P. 58–67. https://doi.org/10.1016/j.jnoncrysol.2015.05.004
- 22. Colak S.C. Role of titanium ions on the optical and thermal properties of zinc borate glass doped with TiO₂ // Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. 2017. V. 58. № 1. P. 41–48.
- Baidoc S.C., Ardelean I. FT IR and Raman spectroscopic studies of xAg₂O·(100 x)[3B₂O₃– As₂O₃] glass system // Journal of Optoelectronics and Advanced Materials. 2008. V. 10. № 12. P. 3205–3208.
- Danchova N., Gutzov S. Time evolution of samarium doped silica sol-gel materials followed by optical spectroscopy // J. Sol-Gel Sci. Technol. 2013. V. 66. № 2. P. 248–252. https://doi.org/10.1007/s10971-013-3001-1
- Melnikov P., Arkhangelsky I.V., Nascimento V.A., Silva A.F., Consolo L.Z.Z. Thermolysis mechanism of samarium nitrate hexahydrate // J. Therm. Anal. Calorim. 2014. V. 118. P. 1537–1541. https://doi.org/10.1007/s10973-014-4067-x
- 26. Mu Q., Wang Y. A simple method to prepare Ln(OH)₃ (Ln = La, Sm, Tb, Eu, and Gd) nanorods using CTAB micelle solution and their room temperature photoluminescence properties // J. Alloys and Compounds. 2011. V. 509. P. 2060–2065.
- 27. Rao G.V.S., Rao C.N.R., Ferraro J.R. Infrared and Electronic Spectra of Rare Earth Perovskites: Ortho-Cromites, -Manganites and -Ferrites // Applied Spectroscopy. 1970. V. 24. № 4. P. 436–445.
- Varsamis C.P., Kamitsos E.I., Chryssikos G.D. Spectroscopic investigation of AgI-doped borate glasses // Solid State Ionics. 2000. V. 136–137. P. 1031–1039.
- 29. Waterhouse G.I.N., Bowmaker G.A., Metson J.B. The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study // Phys. Chem. Chem. Phys. 2001. V. 3. № 17. P. 3838–3845. https://doi.org/10.1039/B103226G
- Burns A.E., Royle M., Martin S.W. Infrared spectroscopy of AgI doped Ag₂S + B₂S₃ fast ion conducting thioborate glasses // J. Non-Crystalline Solids. 2000. V. 262. № 1–3. P. 252–257.
- 31. *McDevitt N.T., Baun W.L.* Infrared absorption study of metal oxides in the low frequency region (700–240 cm⁻¹) // Spectrochimica Acta. 1964. V. 20. P. 799–808.
- Coelho J., Freire C., Hussain N.S. Structural studies of lead lithium borate glasses doped with silver oxide // Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2012. V. 86. P. 392–398. https://doi.org/10.1016/j.saa.2011.10.054
- Krishnamacharyulu N., Mohini G.J., Baskaran G.S., Kumar V.R., Veeraiah N. Investigation on silver doped B₂O₃-SiO₂-P₂O₅-Na₂O-CaO bioglass system for biomedical applications // J. Alloys and Compounds. 2018. V. 734. P. 318–328.
- 34. Ansari A.A., Labis J., Aldwayyan A.S., Hesam M. Facile synthesis of water-soluble luminescent mesoporous Tb(OH)₃@SiO₂ core-shell nanospheres // Nanoscale Research Letters. 2013. V. 8. P. 163. http://www.nanoscalereslett.com/content/8/1/163.
- Dubiel M., Brunsch S., Kolb U., Gutwerk D., Bertagnolli H. Experimental studies investigating the structure of soda–lime glasses after silver–sodium ion exchange // J. Non-Crystalline Solids. 1997. V. 220. P. 30–44.
- 36. Samee M.A., Edukondalu A., Ahmmad S.K., Taqiullah S.Md., Rahman S. Mixed-Alkali Effect in Li₂O-Na₂O-K₂O-B₂O₃ Glasses: Infrared and Optical Absorption Studies // J. Electronic Materials. 2013. V. 42. № 8. P. 2516–2524. https://doi.org/10.1007/s11664-013-2605-0