МОДЕЛИРОВАНИЕ ПРОЦЕССОВ САМООРГАНИЗАЦИИ В КРИСТАЛЛООБРАЗУЮЩИХ СИСТЕМАХ. СУПРАПОЛИЭДРИЧЕСКИЕ КЛАСТЕРЫ-ПРЕКУРСОРЫ Na₁₈Hg₁₅₇ ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Na₉₉Hg₄₆₈-*hP*567

© 2019 г. В. Я. Шевченко^{1, 4, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

⁴СПб НЦ РАН, Университетская наб., 5, Санкт-Петербург, 199034 Россия *e-mail: shevchenko@isc.nw.ru

> Поступила в редакцию 19.03.19 г. После доработки 22.07.19 г. Принята к публикации 07.08.19 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллической структуры Na₉₉Hg₄₆₈—hP567 с параметрами гексагональной ячейки: a = b = 39.703 Å, c = 9.681 Å, V = 13216 Å³, пространственной группой *P*-6, и 132 кристаллографически независимыми атомами. Определены три супракластера-прекурсора K175-A, K175-B и K175-C состава Na₁₈Hg₁₅₇ в виде трех связанных шестерных колец из Na-полиэдров, обладающих симметрией g = -6. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из нанокластеров-прекурсоров. В направлении [001] супракластеры-прекурсоры K175 связаны шестерными кольцами Hg₆ и Na-спейсерами с образованием колонн. В колоннах расстояние между супракластерами K175 определяют значение модуля вектора трансляций c = 9.681 Å. При образовании каркаса в локальном окружении колонны из супракластеров K175-C (с центром на высоте z = 0) находятся шесть колонн из чередующихся супракластеров K175-A и K175-B, расположенных со смещением 1/2 в направлении [001]. Расстояние между эквивалентными колоннами из кластеров K175 соответствует значению модулей векторов трансляций *a* и *b*.

Ключевые слова: интерметаллид Na₉₉Hg₄₆₈-*hP*567, самосборка кристаллической структуры, супраполиэдрические кластеры-прекурсоры Na₁₈Hg₁₅₇ **DOI:** 10.1134/S0132665119060192

введение

В системах Na–*M*, где *M* – Zn, Cd, Hg установлена кристаллизация 11 интерметаллидов (табл. 1, [1–12]). Наиболее сложные интерметаллиды Na₃₇₆Cd₇₈₆-*cF*1144 [5], Na₂₆Cd₁₄₁-*hP*168 [6] и Na₉₉Hg₄₆₈-*hP*567 кристаллохимических аналогов не имеют [7].

Кристалохимическая сложность строения кубического интерметаллида $Na_{376}Cd_{786}$ -сF1144 связана с участием в самосборке кристаллической структуры двухслойных нанокластеров-прекурсоров K61 = Na1@16(Na₄Cd₉)@44(Cd₂₀Na₂₄) и K63 =

Соединение	Пр. гр.	Последователь- ность Уайкоффа	Класс Пирсона	Параметры элементар- ной ячейки в Å	$V, Å^3$					
Система Na–Zn										
NaZn ₁₃ [2, 3]	Fm-3c	iba	<i>cF</i> 112	12.273, 12.273, 12.273	1848.6					
Система Na–Cd										
Na ₂ Cd ₁₁ [4]	<i>Pm</i> -3	jihgfa	cP39	9.587, 9.587, 9.587	881.3					
Na ₂₆ Cd ₁₄₁ [5]	P6/mmm	rqpo ⁴ nm ² l ² k ² j ² iedb	<i>hP</i> 167	21.306, 21.306, 9.625	3783.9					
Na ₃₇₆ Cd ₇₈₆ [6]	Fd-3m	ihg ⁶ fe ⁵ cb	<i>cF</i> 1096	30.560, 30.560, 30.560	28540.4					
Система Na–Hg										
Na ₉₉ Hg ₄₆₈ [7]	<i>P</i> -6	l ⁶⁰ k ³² j ³⁴ ihgfda	hP567	39.703, 39.703, 9.681	13215.9					
NaHg ₂ [8]	P6/mmm	da	hP3	5.029, 5.029, 3.230	70.8					
NaHg [9]	Стст	gc^2	oC16	7.190, 10.790, 5.210	404.2					
Na ₃ Hg ₂ [10]	$P4_2/mnm$	jf ² c	<i>tP</i> 20	8.520, 8.520, 7.800	566.2					
Na ₉₆ Hg ₃₆ [11]	<i>R</i> -3 <i>c</i>	$f^2 e c^3 b$	hR132	9.228, 9.228, 52.638	3881.9					
Na ₃ Hg [12]	<i>R</i> -3 <i>m</i>	cba	hR4	5.404, 5.404, 13.420	339.4					
Na ₃ Hg [13]	<i>P</i> 6 ₃ / <i>mmc</i>	kec	<i>hP</i> 18	5.438, 5.438, 9.808	251.2					

Таблица 1. Кристаллографические данные интерметаллидов, образующихся в системах *A*-Hg, где *A* - Zn, Cd, Hg

= Cd@12(Cd₆Na₆)@50(Na₁₈Cd₃₂) [14]. Для гексагонального интерметаллида Na₂₆Cd₁₄₁-*hP*168 также определены двухслойные нанокластеры K46 = $= 0@(Na_2Cd_6)@(Na_12Cd_{26}) u K50 = 0@(Na_3Cd_6)@(Na_6Cd_{35})$ [15].

Интерметаллид Na₉₉Hg₄₆₈-*hP*567 [7] характеризуется параметрами гексагональной ячейки: a = b = 39.703 Å, c = 9.681 Å, V = 13216 Å³, пространственной группой *P*-6, и 132 кристаллографически независимыми атомами с уникальной последовательностью Вайкоффа $l^{60}k^{32}j^{34}ihgfda$. Для атомов Hg установлен широкий спектр значений KU = 11 (19 атомов), 12 (65 атомов), 13 (15 атомов) и 14 (3 атома). Атомы Na имеют KU = 16 (3 атома), 15 (12 атомов), 14 (15 атомов).

В настоящей работе с помощью пакета программ ToposPro [16] проведен геометрический и топологический анализ кристаллической структуры данного интерметаллида и реконструирован симметрийный и топологический код самосборки его 3D структуры из уникальных кластеров-прекурсоров Na₁₈Hg₁₅₇ в виде трех связанных шестерных колец из Na-полиэдров.

Работа продолжает исследования [14, 15, 17–22] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

Методики, использованные при компьютерном анализе. Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [16], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последование координационной сфере данного атома.

Полученные значения координационных последовательностей атомов в 3D-сетках приведены в табл. 2, в которой выделено число соседних атомов в первой координационной сфере атома. Все атомы характеризуются различными наборами координационных последовательностей $\{N_k\}$.

Атом	Локальное окружение	Координационные последовательности					
		N ₁	<i>N</i> ₂	<i>N</i> ₃	N ₄	N_5	
Nal	1Na + 15Hg	16	47	105	195	310	
Na2	1Na + 15Hg	16	47	105	194	310	
Na3	1Na + 15Hg	16	47	106	195	311	
Na4	14Hg	14	47	107	197	309	
Na5	14Hg	14	49	108	191	322	
Na6	14Hg	14	48	105	192	307	
Na7	15Hg	15	48	104	194	313	
Na8	14Hg	14	47	105	196	313	
Na9	14Hg	14	48	106	190	313	
Na10	14Hg	14	47	105	192	310	
Na11	14Hg	14	48	105	193	311	
Na12	15Hg	15	45	106	195	310	
Na13	14Hg	14	48	107	191	315	
Na14	15Hg	15	49	106	194	312	
Na15	14Hg	14	47	106	196	309	
Na16	15Hg	15	45	104	195	310	
Na17	14Hg	14	49	106	194	310	
Na18	15Hg	15	47	107	199	317	
Na19	15Hg	15	45	104	197	313	
Na20	15Hg	15	46	106	198	310	
Na21	15Hg	15	47	107	199	315	
Na22	14Hg	14	49	106	195	315	
Na23	15Hg	15	46	107	200	315	
Na24	15Hg	15	47	106	199	314	
Na25	14Hg	14	48	107	197	312	
Na26	14Hg	14	49	106	192	314	
Na27	14Hg	14	48	106	190	315	
Na28	14Hg	14	47	107	198	309	
Na29	15Hg	15	45	104	195	311	
Na30	15Hg	15	48	104	194	312	

Таблица 2. Локальное окружение атомов Na и значения координационных последовательностей

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы реализован в комплексе программ ToposPro [16].

Самосборка кристаллической структуры Na₉₉Hg₄₆₈-*hP*567. *Кристаллографические данные*. Пространственная группа *P*-6 (по. 174) с элементами точечной симметрии: g = -6 (1*a*, 1*b*, 1*c*, 1*d*, 1*e*, 1*f*), 3 (2*g*, 2*h*, 2*i*), *m* (3*j*, 3*k*). Порядок группы равен 6. Последовательность Вайкоффа для 132 кристаллографически-независимых атомов имеет вид $l^{60}k^{32}i^{34}ihgfda$.

Атомы Na имеют KЧ = 16 (3 атома), 15 (12 атомов), 14 (15 атомов). Атомы Na1, Na2, и Na3 связан с эквивалентными атомами Na1, Na2, и Na3 соответственно (табл. 2). Остальные 27 кристаллографически-независимых атомов Na связаны с атомами Hg (табл. 2).

Атомы Hg имеют KU = 11 (19 атомов), 12 (65 атомов), 13 (15 атомов) и 14 (3 атома). Атомы Hg89, Hg100, Hg102 содержат в локальном окружении только атомы Hg (рис. 1).

Рис. 1. Супракластеры-прекурсоры К175-А (*a*), К175-В (*б*) и К175-С (*в*) в виде трех связанных шестерных колец из Na-полиэдров, и расположенных на поверхности слоя атомов-спейсеров Na и Hg, и колец Hg₆.

Рис. 2. Колонны из супракластеров К175-А (а), супракластеров К175-В (б), супракластеров К175-С (в).

Рис. 3. Каркас из связанных колонн К175-А, К175-В и К175-С. Показаны Na-спейсеры и шестерные кольца Hg₆, расположенные на поверхности слоя.

Супраполиэдрические кластеры-прекурсоры. Определены три кристаллографическинезависимых супракластера-прекурсора К175-А, К175-В и К175-С в виде трех связанных шестерных колец из Na-полиэдров, лежащих в плоскости XY и обладающих симметрией g = -6 (рис. 1, табл. 2). Центры супракластеров находятся соответственно в позициях 1d, 1b и 1e. Каждое шестерное кольцо образовано из 6 кристаллографически независимых атомов Na, являющимися центральными атомами Na-полиэдров.

В слое над кольцами из Na-полиэдров расположены кольца Hg₆, четыре атомаспейсера Na, и три атома-спейсера Hg на кластере K175-A и по одному атому-спейсеру Hg на кластерах K175-B и K175-C.

Первичные цепи. Все три типа супракластеров в направлении [001] образуют первичные цепи в виде колонн. В этих колоннах супракластеры-прекурсоры К175-А, К175-В и К175-С связаны шестерными кольцами Hg_6 и атомами-спейсерами Na и Hg (рис. 2). В колоннах расстояние между супракластерами определяют значение модуля вектора трансляций c = 9.681 Å.

Каркас из первичных цепей. При образовании каркаса в локальном окружении колонны из супракластеров К175-С (с центром на высоте z = 0) находятся шесть колонн из чередующихся супракластеров К175-А и К175-В, расположенных со смещением 1/2 в направлении [001]. Расстояние между эквивалентными колоннами из кластеров К175 соответствует значению модулей векторов трансляций a = b = 39.703 Å (рис. 3).

ЗАКЛЮЧЕНИЕ

Определены три кристаллографически-независимых супракластера-прекурсора К175-А, К175-В и К175-С состава Na₁₈Hg₁₅₇ в виде трех связанных шестерных колец из Na-полиэдров, обладающих симметрией g = -6. Супракластеры-прекурсоры образу-

ют колонны, распространяющиеся в направлении [001]. В колоннах супракластеры связаны шестерными кольцами Hg₆, а также Na- и Hg-спейсерами.

При образовании каркаса в локальном окружении колонны из супракластеров K175-C (с центром на высоте z = 0) находятся шесть колонн из чередующихся супракластеров К175-А и К175-В, расположенных со смешением 1/2 в направлении [001].

Работа выполнена при поддержке Российского фонда фундаментальных исследований (РФФИ № 19-02-00636) и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. Wendorff M., Roehr C. Polar binary Zn/Cd-rich intermetallics: Synthesis, crystal and electronic structure of A $(Zn/Cd)_{13}$ (A = alkali/alkaline earth) and Cs_{1.34} Zn₁₆ // J. Alloys Compd. 2006. V. 421. P. 24–34.
- 3. Zintl E., Haucke E.Z. Elektrochem. Konstitution der intermetallischen Phasen NaZn₁₃, K Zn₁₃, K Cd₁₃, RbCd₁₃ und Cs Cd₁₃ // Angew. Phys. Chem. 1938. V. 44. P. 104–111. 4. *Mihajlov V., Roehr C.* Cadmium-rich cadmides of the system Na/K/Cd // Zeitschrift fuer Anorgan-
- ische und Allgemeine Chemie. 2010. V. 636. № 9–10. P. 1792–1802.
- Samson S. Crystal structure of NaCd₂ // Nature (London, U. K.). 1962. V. 195. P. 259–262.
 Todorov E., Sevov S.C. Intermetallic Frameworks: Synthesis, Characterization, and Bonding of K_{0.4}Cd₂ and Na₂₆Cd₁₄₁// Inorg. Chem. 1998. V. 37. P. 6341–6345.
- 7. Hoch C., Simon A. Na₁₁Hg₅₂: complexity in a polar metal // Angew. Chem. Int. ed.2012 V. 51. № 13. P. 3262-3265.
- 8. Nielson J.W., Baenziger N.C. The crystal strutures of NaHg₂, NaHg and Na₃Hg₂ // Acta Crystallographica. 1954. V. 7. P. 277–282.
- 9. Deiseroth H.J., Stupperich A., Pankaluoto R., Christensen N.E. A variant of the cesiumchloride structure: structuralrelations and electronic structure // Z. Anorg. Allg. Chem. 1991. V. 597. P. 41-50.
- 10. Tkachuk A.V., Mar A. Redetermination of Na3Hg2 // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2006. V. 62. P. i129-i130.
- 11. Deiseroth H.J., Toelstede D., Bauhofer W. Rb Hg2 und CsHg2, Darstellung, Kristallstruktur, elektrischeLeitfaehigkeit // Z. Anorg. Allg. Chem. 1990. V. 587. P. 103-109.
- 12. Deiseroth H.J., Rochnia M. Einkristallstudien zur Temperaturabhaengigkeit der Kristallstrukturvon alpha – Na₃Hg // Zeitschrift fuer Anorganische und Allgemeine Chemie 1994. V. 620. P. 1736–1740.
- 13. Deiseroth H.J., Rochnia M. Einkristallstudien zur Temperaturabhaengigkeit der Kristallstrukturvon beta – Na₃Hg // Angewandte Chemie (German Edition). 1993. V. 105. P. 1556–1558.
- 14. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Intermetallic compounds of the NaCd₂ family perceived as assemblies of nanoclusters // Struct. Chem. 2009. V. 20. № 6. P. 975–982.
- 15. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новые двухслойные кластеры-прекурсоры 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) и 0@(Na₃Cd₆)@(Na₆Cd₃₅) для самосборки кристаллической структуры Na₂₆Cd₁₄₁-hP168 // Физика и химия стекла. 2019. V. 45. № 5. Р. 311–316. двухслойные
- 16. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585. http://topospro.com/.
- 17. Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
- 18. Blatov V.A., Ilyushin G.D., Proserpio D.M. Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg₂Al₃ polymorphs // Inorg. Chem. 2010, V. 49. № 4. P. 1811–1818.
- 19. Ilyushin G.D. Modeling of the Self-OrInnization Processes in Crystal-Forming Systems. Tetrahedral Metal Clusters and the Self-Assembly of Crystal Structures of Intermetallic Compounds // Crystallography Reports. 2017. V. 62. 5. P. 670–683.
- 20. Ilyushin G.D. Symmetry and Topology Code of the Cluster Self-Assembly of Intermetallic Compounds $A_{16}^{[16]} B_{4}^{[12]}$ of the Friauf Families Mg₂Cu₄ and Mg₂Zn₄ // Crystallography Reports. 2018. V. 63. 4. P. 543-552.
- 21. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Симметрийный и топологический код (программа) кластерной самосборки икосаэдрических структур семейства NaZn₁₃-cF112 и TRB_{66} - cF1944 // Физика и химия стекла, 2015. V. 41. № 4. Р. 341–351.
- 22. Ilyushin G.D. The Crystal Chemistry of Intermetallic Lithium Compounds. A review // Russian J. Inorganic Chemistry. 2018. V. 63. № 14. P. 1786–1799.