МОДЕЛИРОВАНИЕ ПРОЦЕССОВ САМООРГАНИЗАЦИИ В КРИСТАЛЛООБРАЗУЮЩИХ СИСТЕМАХ. НОВЫЙ ДВУХСЛОЙНЫЙ КЛАСТЕР-ПРЕКУРСОР К44 = 0@8(Na₂In₆)@36(In₆Cd₆K₆)₂ ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ K₂₃Na₈Cd₁₂In₄₈-*hP*91

© 2019 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 30.04.19 г. После доработки 07.08.19 г. Принята к публикации 07.08.19 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллической структуры $K_{23}Na_8Cd_{12}In_{48}$ —*hP*91 (*a* = *b* =17.114 Å, *c* = 10.442 Å, пр. группа *P*6/*mmm*). Установлены химически различные кластеры-прекурсоры 0@8(Na₂In₆) и 0@K₂In₆ в виде гексагональных бипирамид. Центры кластеров Na₂In₆ занимают позиции 1*a* с симметрией 6/*mmm*. Центры кластеров K₂In₆-A и K₂In₆-B занимают позиции 2*c* с симметрией –6*m*2 и позиции 3*g* с симметрией *mmm*. Кластеры Na₂In₆ являются темплатами, на поверхности которых происходит образование атомных оболочек из 36 атомов. Состав двухслойного кластера K44 = 0@8(Na₂In₆)@36(In₆Cd₆K₆)₂. Образование слоя S²₃ происходит при связывании кластеров K44 с кластерами K₂Cd₆-A. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из супраполиэдрических прекурсоров K44 с участием полиэдрических кластеров K₂Cd₆ и атомов-спейсеров Na и K.

Ключевые слова: интерметаллид $K_{23}Na_8Cd_{12}In_{48}-hP91$, самосборка кристаллической структуры, полиэдрические кластеры $0@8(Na_2In_6)$ и $0@K_2In_6$, двухслойный кластер $K44 = 0@8(Na_2In_6)@36(In_6Cd_6K_6)_2$

DOI: 10.1134/S0132665119060210

введение

Кристаллизация интерметаллических соединений натрия установлена в 17 двойных системах Na-M (с участием 17 элементов), 87 тройных системах Na-M1-M2 (с участием 32 элементов) и 23 четверных Na-M1-M2-M3 системах (с участием 21 элемента) [1, 2]. Кристаллохимические причины, определяющие отсутствие кристаллических структур интерметаллидов натрия с другими 40 атомами металлов, остаются неизвестными.

Соединение	Пр. груп- па	Последова- тельность Уайкоффа	Класс Пирсона	Параметры элементарной ячейки в Å	<i>V</i> , Å ³
Na ₂ YbCdSb ₂ [9]	$Pmc2_1$	b^3a^3	oP12	4.664, 9.100, 7.795	330.8
K ₆ (NaCd) ₂ Tl ₁₂ Cd [10]	Im-3	geca	<i>cI</i> 46	11.321, 11.321, 11.321	1451.0
Na ₈ K ₂₃ Cd ₁₂ In ₄₈ [11]	P6/mmm	po ² n ² m ² lkhea	<i>hP</i> 91	17.114, 17.114, 10.442	2648.6
Na ₉ K ₁₆ Cd ₃ Tl ₁₈ [12]	<i>P</i> 6 ₃ / <i>mmc</i>	k6h2f2ec	<i>hP</i> 98	11.136, 11.136, 29.352	3152.3
Na ₃₄ Cu ₇ Cd ₆ Ga ₉₂ [13]	<i>R</i> -3 <i>m</i>	i5h12c3b	hR139	16.317, 16.317, 35.301	8139.5

Таблица 1. Кристаллографические данные интерметаллидов, образующихся в системах Na– Cd-M1-M2, где M1, M2 = K, Tl, Yb, In, Cu, Ga, Sb

В двойной системе Na–Cd образуются три интерметаллида Na₂Cd₁₁–cP39 [3], Na₂₆Cd₁₄₁–hP167 [4], Na₃₇₆Cd₇₈₆–cF1192 [5]. В работах [6–8] для этих кристаллических структур были установлены полиэдрические и супраполиэдрические кластеры-прекурсоры.

Кристаллизация семи тройных интерметаллидов в системах Na-Cd-M происходит с участием только шести химических элементов M = Au, Ga, Tl, Sn, Pb, Sb.

Кристаллизация четверных интерметаллидов установлена в пяти системах Na–Cd–M1-M2 и их образование происходит с участием атомов M1, M2 = K, In, Cu, Ga и Yb (табл. 1, [9–13]). Все кристаллические структуры имеют уникальный химический состав и кристаллохимически сложное строение.

Кристаллическая структура четверного интерметаллида **K**₂₃**Na**₈**Cd**₁₂**In**₄₈–*hP*91 [11], характеризуется большими значениями параметров гексагональной ячейки: a = b == 17.114 Å, c = 10.442 Å, V = 3784 Å³, пр. группой *P*6/*mmm* (по. 191), и 12 кристаллографически независимыми атомами с уникальной последовательностью Вайкоффа $po^{2}n^{2}m^{2}lkhea$. Атомы Na имеют значения KЧ = 14 и 15, атомы K – KЧ = 16, 17, 20, атомы Cd имеют KЧ = 12, и атомы In – KЧ = 11 и 12.

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры интерметаллида $K_{23}Na_8Cd_{12}In_{48}$ (пакет программ ToposPro [14]). Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из супраполиэдрических кластеров-прекурсоров K44 в виде: первичная цепь \rightarrow микрослой \rightarrow микрокаркас.

Работа продолжает исследования [6–8, 15–20] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

Методики, использованные при компьютерном анализе. Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [14], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома.

Атом	Локальное	Координационные последовательности					
	окружение	N_1	<i>N</i> ₂	<i>N</i> ₃	N_4	N_5	
Na1	2Na + 3K + 4Cd + 6In	15	53	116	224	368	
Na2	1Na + 1K + 6Cd + 6In	14	44	122	236	356	
K1	4K + 12In	16	49	107	223	340	
K2	1Na + 4K + 2Cd + 9 In	16	53	120	216	356	
K3	5K + 2Cd + 10In	17	56	122	235	402	
K4	8Na + 12Cd	20	62	146	266	380	
Cd1	3Na + 4K + 2Cd + 3In	12	53	117	227	369	
Inl	1Na + 4K + 6In	11	44	117	216	343	
In2	8K + 4In	12	55	119	210	340	
In3	5K + 6In	11	48	114	219	336	
In4	2Na + 3K + 1Cd + 5In	11	46	115	210	335	
In5	2Na + 4K + 4Cd + 2In	12	49	119	212	366	

Таблица 2. Локальное окружение атомов Na, K, Cd, In и значения координационных последовательностей

Полученные значения координационных последовательностей атомов в 3D-сетках приведены в табл. 2, в которой выделено число соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома. Все атомы характеризуются различными наборами координационных последовательностей $\{N_k\}$, следовательно, все атомы топологически (и функционально) различны.

Алгоритм разложения в автоматическом режиме структуры интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах:

(1) Структура образуется в результате самосборки из кластеров-прекурсоров. При этом кластеры-прекурсоры образуют каркас структуры, пустоты в котором заполняются кластерами-спейсерами, состоящими из небольшого числа атомов.

(2) Нанокластеры-прекурсоры не имеют общих внутренних атомов, но они могут иметь общие атомы на поверхности.

(3) Кластеры-прекурсоры занимают высокосимметричные позиции.

(4) Набор нанокластеров-прекурсоров и кластеров-спейсеров включает в себя все атомы структуры.

Самосборка кристаллической структуры $K_{23}Na_8Cd_{12}In_{48}-hP91$. Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [16]. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — механизм самосборки из цепи слоя (2-ой уровень) и затем из слоя — трехмерного каркаса (3-й уровень).

Рис. 1. Кластеры-прекурсоры К8, представляющие собой гексагональные бипирамиды.

Кристаллографические данные.

Параметры гексагональной ячейки: a = b = 17.114 Å, c = 10.442 Å, V = 3784 Å³. Пространственная группа *P6/mmm* (по. 191) с позициями Уайкоффа, обладающими точечной симметрией: g = 6/mmm (1*a*, 1*b*), -6m2 (2*c*, 2*d*), 6mm (2*e*), mmm (3*f*, 3*g*), 3m (4*h*) и др. Порядок группы равен 24.

Полиэдрические кластеры-прекурсоры К8.

Установлены полиэдрические кластеры-прекурсоры K8 состава Na_2In_6 и K_2In_6 , представляющие собой гексагональные бипирамиды (рис. 1). Центры кластеров Na_2In_6 занимают позиции 1*a* с симметрией 6/*mmm*. Центры кластеров K_2In_6 -А находятся в позициях 2*c* с симметрией –6*m*2, в центры кластеров K_2In_6 -В занимают позиции 3*g* с симметрией *mmm*.

Супраполиэдрические кластеры-прекурсоры К44.

Кластеры-прекурсоры Na_2In_6 являются темплатами, на поверхности которых происходит образование атомных оболочек из 36 атомов (рис. 2). Состав двухслойного супраполиэдрического кластера $K44 = 0@8(Na_2In_6)@36(In_6Cd_6K_6)_2$. В первичной цепи (в направлении [001]) между кластерами K44 расположены микрослои состава $K(Na_6)$.

Ранее [7] в кристаллической структуре $Na_{26}Cd_{141}-hP168$ также были установлены кластеры-прекурсоры представляющих собой гексагональные бипирамиды $Na_2Cd_{6,}$ но супраполиэдрические кластеры $K44 = 0@8(Na_2Cd_6)@36[(Na_6Cd_6)_2(Cd_{12})]$ имеют другую топологию (рис. 3). В первичной цепи (в направлении [001]) между кластерами K44 расположены микрослои состава **Cd(Cd_6)**.

Самосборка кристаллической структуры

2*D* Слой. Образование слоя S_3^2 происходит при связывании первичных цепей из кластеров K44 (рис. 4). Пустоты между первичными цепями занимают полиэдрические кластеры K_2Cd_6 -A и K_2Cd_6 -B.

Самосборка каркаса. 3D каркасная структура S_3^3 формируется при связывании 2D слоев в направлении [001] (рис. 5). В 3D каркасе расстояние между эквивалентными 2D слоями определяет значение вектора c = 10.442 Å.

Рис. 2. Кластер $K44 = 0@8(Na_2In_6)@36(In_6Cd_6K_6)_2$ (две проекции).

Рис. 3. Кластер К44 = $0@8(Na_2Cd_6)@36[(Na_6Cd_6)_2(Cd_{12})]$ (две проекции).

Рис. 4. 2D слой из кластеров K44 и K₂Cd₆-A.

Рис. 5. 3D каркас (две проекции).

ЗАКЛЮЧЕНИЕ

Осуществлен комбинаторно-топологический анализ и моделирование кластерной самосборки кристаллической структуры $K_{23}Na_8Cd_{12}In_{48}-hP91$. Установлены полиэдрические кластеры-прекурсоры $K8 = 0@8(Na_2In_6)$ и $0@K_2In_6$, представляющие собой

гексагональные бипирамиды. Кластеры Na₂In₆ являются темплатами, на поверхности которых происходит образование атомных оболочек из 36 атомов. Состав нового двухслойного темплатированного кластера K44 = 0@8(Na₂In₆)@36(In₆Cd₆K₆)₂.

Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров К44 в виде: первичная цепь → слой → каркас.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (РФФИ № 19-02-00636) и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Villars P., Cenzual K.* Pearson's Crystal Data–Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 2. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 3. *Mihajlov V., Roehr C.* Cadmium-rich cadmides of the system Na/K/Cd // Z. Anorgan. Allgem. Chem. 2010. V. 636. P. 1792–1802.
- 4. *Todorov E., Sevov S.C.* Intermetallic frameworks: Synthesis, characterization, and bonding of K_{0.4}Cd₂ and Na₂₆Cd₁₄₁ // Inorganic Chemistry. 1998. V. 37. P. 6341–6345.
- 5. Samson S. Crystal structure of NaCd₂ // Nature (London). 1962. V. 195. P. 259–262.
- 6. *Блатов В.А., Илюшин Г.Д.* Геометрический и топологический анализ икосаэдрических структур семейства Самсона Mg₂Zn₁₁ (*cP*39), K₆Na₁₅Tl₁₈H (*cP*40) и Tm₃In₇Co₉ (*cP*46): нанокластеры-прекурсоры, механизм самосборки и сверхструктурное упорядочение // Журн. неорганической химии. 2011. Т. 56. № 5. 729–737.
- 7. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новые двухслойные кластеры-прекурсоры 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) и 0@(Na₃Cd₆)@(Na₆Cd₃₅) для самосборки кристаллической структуры Na₂₆Cd₁₄₁-*hP*168 // Физика и химия стекла. 2019. Т. 45.№ 5. С. 311–315.
- 8. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Intermetallic compounds of the NaCd₂ family perceived as assemblies of nanoclusters // Struct. Chem. 2009. V. 20. № 6. P. 975–982.
- 9. *Saparov B., Saito M., Bobev S.* Syntheses, and crystal and electronic structures of the new Zintl phases Na₂ACdSb₂ and K₂ACd Sb₂ (A = Ca, Sr, Ba, Eu, Yb): Structural relationship with Yb₂CdSb₂ and the solid solutions $Sr_{(2-x)}A_{(x)}CdSb_2$, Ba_(2-x)A_(x)CdSb₂ and Eu_(2-x)Yb_(x)CdS // J. Solid State Chemistry. 2011. V. 184(2). P. 432–440.
- Tillard-Charbonnel M., Belin C.H.E., Manteghetti A.P., Flot D.M. Heteroatomic Centering of Icosahedral Clusters. Crystal and Electronic Structure of the K₆(NaCd)₂Tl₁₂Cd Compound Containing the Not-So-Naked Tl₁₂Cd₁₂- Polyanion // Inorganic Chemistry. 1996. V. 35. P. 2583–2589.
- Flot D.M., Tillard-Charbonnel M., Belin C.H.E. Na₈K₂₃Cd₁₂In₄₈: A Zintl phase containing icosahedral and triangular indium units and displaying a remarkable condensed metal fullarene stuffed with a tubular cluster. Synthesis and crystal and electronic structures // J. American Chemical Society. 1996. V. 118. P. 5229–5235.
- 12. *Huang Daping, Corbett J.D.* Na₉ K₁₆ Tl1₈ Cd₃: a novel phase containing (Tl₈Cd₃)(-) and Tl₅(7-) clusters // Inorganic Chemistry. 1999. V. 38. P. 316–320.
- Chahine A., Tillard-Charbonnel M., Belin C. Crystal structure of sodium copper cadmium gallium, Na₃₄ Cu₇ Cd₆ Ga₉₂ // Z. Kristallogr. 1994 V. 209. P. 542–543.
- 14. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585. http://topospro.com/.
- 15. Ilyushin G.D. Crystal Chemistry of Lithium Intermetallic Compounds: A Survey // Russian J. Inorganic Chemistry. 2018. V. 63. № 14. P. 1786–1799.
- 16. Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
- 17. Blatov V.A., Ilyushin G.D., Proserpio D. M. Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg₂Al₃ polymorphs // Inorg. Chem., 2010. V. 49. № 4. P. 1811–1818.

- 18. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Симметрийный и топологический код (программа) кластерной самосборки икосаэдрических структур семейства NaZn₁₃-cF112 и TRB₆₆ – cF1944 // Физика и химия стекла. 2015. V. 41. № 4. Р. 341–351.
- Ilyushin G.D. Modeling of the Self-Organization Processes in Crystal-Forming Systems. Tetrahedral Metal Clusters and the Self-Assembly of Crystal Structures of Intermetallic Compounds // Crystallography Reports. 2017. V. 62. 5. P. 670–683.
- Ilyushin G.D. Symmetry and Topology Code of the Cluster Self-Assembly of Intermetallic Compounds A₂^[16]B₄^[12] of the Friauf Families Mg₂Cu₄ and Mg₂Zn₄ // Crystallography Reports. 2018. V. 63. 4. P. 543–552.