КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ. НОВЫЙ ДВУХСЛОЙНЫЙ КЛАСТЕР-ПРЕКУРСОР К46 = 0@8(Ca₂Hg₆)@38(Hg₆ + CaHg₆)₂(Ca₆Hg₆) ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Ca₁₁Hg₅₄-*hP*65

© 2020 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия *e-mail: shevchenko@isc.nw.ru

> Поступила в редакцию 11.07.19 г. После доработки 04.10.19 г. Принята к публикации 08.10.19 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллической структуры $Ca_{11}Hg_{54}-hP65$ (a = b = 17.114 Å, c = 10.442 Å, гексагональная пр. группа *P*-6). Установлены 184 варианта кластерного представления 3D атомной сетки с числом структурных единиц 3–7. Определены полиэдрические кластеры K8 = 0@Ca₂Hg₆, представляющие собой гексагональные бипирамиды, полиэдрические кластеры K11 = 0@Ca₃Hg₈ и полиэдрические кластеры с центральным Hg-атомом K12 = $Hg(Ca_3Hg_8)$. Центры кластеров Ca₂Hg₆, 0@Ca₃Hg₈ и Hg(Ca₃Hg₈) занимают высокосимметричные позиции 1*c*, 1*b*, и 1*f* с симметрией –6. Кластеры-прекурсоры Ca₂Hg₆ являются темплатами, на поверхности которых происходит образование атомных оболочек из 38 атомов. Состав двухслойного темплатированного кластера K46 = 0@8(Ca₂Hg₆)@38(Hg₆ + CaHg₆)₂(Ca₆Hg₆). Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из нанокластеров-прекурсоров K46 с участием полиэдрических кластеров 0@Ca₃Hg₈ и Hg(Ca₃Hg₈).

Ключевые слова: интерметаллид Ca₁₁Hg₅₄—hP65, самосборка кристаллической структуры, полиэдрические кластеры K8 = Ca₂Hg₆ и K12 = Hg(Ca₃Hg₈), двухслойный кластер K46 = 0@8(Ca₂Hg₆)@38(Hg₆ + CaHg₆)₂(Ca₆Hg₆) **DOI**: 10.31857/S0132665120010199

ВВЕДЕНИЕ

Кристаллохимическое семейство двойных Hg-интерметаллидов насчитывает около 200 соединений [1]. Образование Hg-интерметаллидов установлено в 45 системах A–Hg. Наибольшее число кристаллохимически различных интерметаллидов (одиннадцать) установлено в двойной системе Ca–Hg, с широкой областью изменения соотношения атомов Hg : A от 11 до 0.33 (табл. 1, [2–6]).

Кристаллические структуры шести Hg-интерметаллидов входят в кристаллохимические семейства наиболее распространенных типов кристаллических структур, на-

Соединение	Hg/Ca	Струк- турный тип	Число соединений [1]	Пространствен- ная группа	Класс Пирсона	Параметры ячейки, Å	<i>V</i> , Å ³
Ca ₃ Hg [2]	0.33	Fe ₃ C	194	Pnma (62)	oP16	8.161, 10.150, 6.828	565.6
Ca ₃ Hg [3]	0.33	Cu ₃ Au	1827	<i>Pm</i> -3 <i>m</i> (221)	cP4	4.920, 4.920, 4.920	119.1
Ca ₂ Hg [2]	0.5	Co ₂ Si	43	<i>Pnma</i> (62)	oP12	7.860, 4.890, 9.870	379.4
Ca ₅ Hg ₃ [2]	0.6	Cr ₅ B ₃	183	<i>I</i> 4/ <i>mcm</i> (140)	tI32	8.189, 8.189, 14.701	985.8
Ca ₃ Hg ₂ [2]	0.66	U_3Si_2	142	P4/mbm (127)	tP10	8.476, 8.476, 4.197	301.5
Ca ₂ Hg ₂ [2]	1	CsCl	1797	<i>Pm</i> -3 <i>m</i> (221)	cP2	3.759, 3.759, 3.759	53.1
CaHg ₂ [2]	2	AlB ₂	43	<i>P-3m 1</i> (164)	hP3	4.894, 4.894, 3.571	74.1
Ca ₄ Hg ₉ [4]	2.25	Cu ₉ Al ₄	47	P-43m (215)	cP52	11.130, 11.130, 11.130	1378.8
CaHg ₃ [2]	3	Mg ₃ Cd	356	<i>P</i> 6 ₃ / <i>mmc</i> (194)	hP8	6.635, 6.635, 5.020	191.4
Ca ₁₁ Hg ₅₄ [5]	4.90	Ca ₁₁ Hg ₅₄	3	<i>P</i> -6 (174)	hP65	13.389, 13.389, 9.615	1492.7
CaHg ₁₁ [6]	11	BaHg ₁₁	13	<i>Pm</i> -3 <i>m</i> (221)	cP36	9.600, 9.600, 9.600	884.7

Таблица 1. Кристаллографические данные

считывающие по несколько сотен представителей; три Hg-интерметаллида принадлежат кристаллохимическим семействам с более чем сорока представителями (табл. 1). В работе [7, 8] проведено моделирование кластерной самосборки распространенных типов кристаллических структур, установленных для Hg-интерметаллидов.

Наиболее кристаллохимически сложное семейство интерметаллидов Ca₁₁Hg₅₄-*hP*65 включает в себя еще два соединения: Sr₁₁Hg₅₄-*hP*65 [5] и Yb₁₁Hg₅₄-*hP*65 [9]. Кристаллическая структура интерметаллида Ca₁₁Hg₅₄-*hP*65 [5] с пр. группой *P*-6 (по. 174) и V == 1492.7 Å³ характеризуется 18 кристаллографически независимыми атомами с последовательностью Вайкоффа $l^6k^3f^4ihgfa$. Для атомов Нg установлен широкий спектр значений KЧ = 11 (5 атомов), 12 (8 атомов) и 13 (1 атом). Атомы Ca имеют KЧ = 14 (1 атом), 15 (2 атома), 16 (1 атом).

В настоящей работе с помощью пакета программ ToposPro [10] проведен геометрический и топологический анализ кристаллической структуры интерметаллида $Ca_{11}Hg_{54}-hP65$. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из кластеров-прекурсоров K46 в виде: первичная цепь \rightarrow микрослой \rightarrow микрокаркас.

Работа продолжает исследования [7, 8, 11–16] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [10], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных

A	Локальное	Координационные последовательности					
ATOM	окружение	N ₁	<i>N</i> ₂	N ₃	N_4	N_5	
Cal	14Hg	14	47	106	189	312	
Ca2	15Hg	15	48	104	190	312	
Ca3	15Hg	15	47	105	200	310	
Ca4	1Ca + 15Hg	16	46	104	193	310	
Hg2	4Ca + 8Hg	12	47	106	189	294	
Hg3	3Ca + 8Hg	11	46	104	187	290	
Hg4	2Ca + 11Hg	13	47	108	188	297	
Hg5	3Ca + 9Hg	12	47	108	189	302	
Hg6	3Ca + 9Hg	12	47	103	190	299	
Hg7	4Ca + 8Hg	12	48	104	192	302	
Hg8	4Ca + 8Hg	12	47	109	193	309	
Hg9	1Ca + 11Hg	12	46	106	192	303	
Hg10	3Ca + 9Hg	12	46	105	194	316	
Hg11	3Ca + 9Hg	12	44	109	194	313	
Hg12	3Ca + 8Hg	11	44	101	188	302	
Hg13	3Ca + 8Hg	11	47	107	191	299	
Hg14	3Ca + 8Hg	11	44	107	182	305	
Hg15	11Hg	11	47	107	188	302	

Таблица 2. Локальное окружение атомов Са и Нд и значения координационных последовательностей

последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома.

Полученные значения координационных последовательностей атомов в 3D-сетках приведены в табл. 2, в которой выделено число соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома. Все атомы характеризуются различными наборами координационных последовательностей $\{N_k\}$, следовательно, все атомы топологически (и функционально) различны.

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах: структура образуется в результате самосборки из кластеров-прекурсоров. При этом кластеры-прекурсоры образуют каркас структуры, пустоты в котором заполняются кластерами-спейсерами (состоящими из небольшого числа атомов), нанокластеры-прекурсоры не имеют общих внутренних атомов, но они могут иметь общие атомы на поверхности, кластеры-прекурсоры занимают высокосимметричные позиции, набор нанокластеров-прекурсоров и кластеров-спейсеров включает в себя все атомы структуры.

Алгоритм реализован в комплексе программ ToposPro [10].

САМОСБОРКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Са₁₁Hg₅₄-*hP*65

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографи-

Рис. 1. Полиэдрические кластеры.

ческом пространстве [11]. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — механизм самосборки из цепи слоя (2-ой уровень) и затем из слоя-трехмерного каркаса (3-й уровень).

Кристаллографические данные. Параметры гексагональной ячейки: a = b = 13.389, c = 9.615 Å.

Пространственная группа *P*-6 (по. 174) с элементами точечной симметрией: g = -6 (1*a*, 1*b*, 1*c*, 1*d*, 1*e*, 1*f*), 3 (2*g*, 2*h*, 2*i*), *m* (3*j*, 3*k*). Порядок группы равен 6.

Полиэдрические кластеры К8, К11 и К12. Установлены 184 варианта кластерного представления 3D атомной сетки с числом структурных единиц от 3 до 7.

Определены полиэдрические кластеры $K8 = 0@Ca_2Hg_6$ представляющие собой гексагональные бипирамиды, полиэдрические кластеры $K11 = 0@Ca_3Hg_8$ и полиэдрические кластеры с центральным Hg-атомом $K12 = Hg(Ca_3Hg_8)$ (рис. 1).

Центры кластеров Ca_2Hg_6 , $0@Ca_3Hg_8$ и $Hg(Ca_3Hg_8)$ занимают наиболее высокосимметричные позиции 1*c*, 1*b*, и 1*f* с симметрией –6.

Супраполиэдрические кластеры-прекурсоры K46. Кластеры Ca_2Hg_6 являются темплатами, на поверхности которых происходит образование атомных оболочек из 38 атомов (рис. 2). Состав двухслойного кластера K46 = $0@8(Ca_2Hg_6)@38(Hg_6 + CaHg_6)_2(Ca_6Hg_6)$.

Самосборка кристаллической структуры. Первичная цепь. Образование первичных цепей S_3^1 происходит при связывании кластеров К46 тройными кольцами Hg₃ в направлении [001]. Расстояние между центрами кластеров К46 в первичной цепи определяет значение вектора трансляции c = 9.818 Å.

2D слой. Образование слоя S_3^2 происходит при связывании первичных цепей S_3^1 в направлении [100] (рис. 3). Расстояние между осями первичных цепей определяет значение вектора трансляции a = 13.602 Å. Пустоты в каркасе занимают полиэдрические кластеры 0@Ca₃Hg₈ и Hg(Ca₃Hg₈) и атомы-спейсеры Hg(14) (рис. 3).

Самосборка каркаса. 3D каркасная структура S_3^3 формируется при связывании 2D слоев (со сдвигом) в направлении [010] (рис. 3). В 3D каркасе расстояние между эквивалентными 2D слоями определяет значение вектора b = 13.602 Å.

Рис. 2. Кластер К46 (две проекции).

ЗАКЛЮЧЕНИЕ

Осуществлен комбинаторно-топологический анализ и моделирование кластерной самосборки кристаллической структуры Ca₁₁Hg₅₄-*hP*65.

Определены полиэдрические кластеры K8 = $0@Ca_2Hg_6$, представляющие собой гексагональные бипирамиды, полиэдрические кластеры K11 = $0@Ca_3Hg_8$ и полиэдрические кластеры с центральным Hg-атомом K12 = Hg(Ca_3Hg_8).

25

Рис. 3. Каркасная структура (две проекции).

Кластеры Ca_2Hg_6 являются темплатами, на поверхности которых происходит образование атомных оболочек из 38 атомов. Состав двухслойного темплатированного кластера $K46 = 0@8(Ca_2Hg_6)@38(Hg_6 + CaHg_6)_2(Ca_6Hg_6)$.

Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров K46 в виде "первичная цепь \rightarrow слой \rightarrow кар-кас". Пустоты между первичными цепями занимают полиэдрические кластеры 0@Ca₃Hg₈ и Hg(Ca₃Hg₈), а также атомы-спейсеры Hg.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (РФФИ № 19-02-00636) и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 2. Bruzzone G., Merlo F. The calcium-mercury system // J. Less-Common Met. 1973. V. 32. P. 237-241.
- 3. Cenzual K., Gelato L.M., Penzo M., Parthé E. Inorganic Structure Types with Revised Space Groups. I. // Acta Crystallogr. B .1991. V. 47. P. 433–439.
- Puselj M., Ban Z. Ternäre Gamma-Messing Phasen in den Systemen Calcium-M(Ib/IIb)-Quecksilber // Z. Naturforsch. B. 1980. V. 35. P. 1594–1595.
- Tkachuk A.V., Mar A. Alkaline-earth metal mercury intermetallics A(11 x) Hg(54 + x) (A = Ca, Sr) // Inorganic Chemistry. 2008. V. 47(4). P. 1313–1318.
- Puselj M., Ban Z. Beitrag zur Kenntnis des Systems Quecksilber-Calcium // Croatica Chemica Acta. 1978. V. 51(1). P. 75–79.
- Ilyushin G.D. Modeling of self-organization processes in crystal forming systems: the symmetry and topological code of cluster self-assembly for intermetallics // Russian J. Inorganic Chemistry. 2017. V. 62. Issue 13. P. 1730–1769.
- Ilyushin G.D. Modeling of the Self-OrInnization Processes in Crystal-Forming Systems. Tetrahedral Metal Clusters and the Self-Assembly of Crystal Structures of Intermetallic Compounds // Crystallography Reports. 2017. V. 62. 5. P. 670–683.
- Tambornino Frank, Hoch Constantin. The simplest representative of a complex series. The Hg-rich amalgam Yb₁₁Hg₅₄. Zeitschrift fuer Kristallographie – Crystalline Materials. 2017. V. 232. P. 557–565.
- 10. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585. https://topospro.com/
- Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
- 12. Blatov V.A., Ilyushin G.D., Proserpio D.M. Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg₂Al₃ polymorphs // Inorg. Chem. 2010. V. 49. № 4. P. 1811–1818.
- Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Симметрийный и топологический код (программа) кластерной самосборки икосаэдрических структур семейства NaZn₁₃-cF112 и TRB₆₆-cF1944//Физика и химия стекла. 2015. V. 41. № 4. Р. 341–351.
- 14. *Ilyushin G.D.* The Crystal Chemistry of Intermetallic Lithium Compounds. A review // Russian J. Inorganic Chemistry. 2018. V. 63. № 14. P. 1786–1799.
- 15. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новые двухслойные кластеры-прекурсоры 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) и 0@(Na₃Cd₆)@(Na₆Cd₃₅) для самосборки кристаллической структуры Na₂₆Cd₁₄₁-*h*P168 // Физика и химия стекла. 2019. V. 45. № 4. Р. @.
- Ilyushin G.D. Symmetry and Topology Code of the Cluster Self-Assembly of Intermetallic Compounds A₂^[16] B₄^[12] of the Friauf Families Mg₂Cu₄ and Mg₂Zn₄// Crystallography Reports. 2018. V. 63. 4. P. 543–552.