КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: НОВЫЙ КЛАСТЕР-ПРЕКУРСОР 0@8(Sr₂Au₆) ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ (Sr₂Au₆)(Ga₃)-*hR*66

© 2020 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия ²Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия ³Федеральный научно-исследовательский центр "Кристаллография и фотоника",

Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 24.08.19 г. После доработки 04.10.19 г. Принята к публикации 08.10.19 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллической структуры $(Sr_2Au_6)(Ga_3)-hR66$ (пр. гр. R-3с, a = b = 8.419, c = 21.911 Å, V = 1345 Å³). Установлен новый геометрический тип полиэдрического кластера-прекурсора K8 = $0@8(Sr_2Au_6)$, в основании которого кольца Au_6 , а вершины – атомы Sr. Симметрия кластера K8 соответствует –3, а центр кластера занимает позицию 6b. Другой кластер K3 = $0@Ga_3$ также обладает высокой симметрией 32 и центр кластера занимает позицию 6a. Образование первичной цепи S_3^1 происходит при связывании димеров [(Sr₂Au₆)(Ga₃)]₂. Расстояние между центрами димеров определяет значения модуля вектора трансляции a = 8.419 Å. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из кластеров-прекурсоров K8 и K3.

Ключевые слова: интерметаллид (Sr₂Au₆)(Ga₃)-*hR*66, самосборка кристаллической структуры, кластеры 0@8(Sr₂Au₆) и 0@Ga₃ **DOI:** 10.31857/S0132665120010205

ВВЕДЕНИЕ

В работах [1–3] определены геометрические типы металлокластеров-прекурсоров для наиболее распространенных типов кристаллических структур интерметаллидов [4, 5] с использованием алгоритмов разложения структурных графов на кластерные структуры (пакет программ ToposPro [6]). Было установлено, что в типичных кристаллических структурах интерметаллидов металлокластерами-прекурсорами являются в основном тетраэдрические металлокластеры K4 = 0@4, октаэдрические металлокластеры K6 = 0@6 и икосаэдрические металлокластеры K12 = 0@12 и K13 = 1@12. Эти полиэдры характеризуются максимальным числом связей каждого атома с соседними атомами и относятся к семейству дельтаэдров (полиэдров с треугольными гранями).

Новый тип дельтаэдра в виде гексагональной бипирамиды K8 = 0@8 впервые был установлен в сложных по составу интерметаллидах $K_{23}Na_8Cd_{12}In_{48}-hP91$ [7, 8],

Соединение	Пространственная группа	Параметры ячейки (Å) и углы (град)	<i>V</i> , Å ³
(Eu ₂ Au ₆)Al ₃	<i>R</i> -3 <i>c</i>	8.380, 8.380, 21.771	1324.0
$(Eu_2Au_6)Zn_3$	<i>R</i> -3 <i>c</i>	8.377, 8.377, 21.845	1327.6
(Eu ₂ Au ₆)Ga ₃	<i>R</i> -3 <i>c</i>	8.381, 8.381, 21.917	1333.2
(Sr ₂ Au ₆)Al ₃	<i>R</i> -3 <i>c</i>	8.444, 8.444, 21.689	1339.4
$(Sr_2Au_6)(Au_{1.33}Al_{1.67})$	C2/c	14.956, 8.564, 8.672, 90.00, 123.86, 90.00	922.3
$(Sr_2Au_6)Zn_3$	<i>R</i> -3 <i>c</i>	8.416, 8.416, 21.915	1344.3
$Sr_2Au_6(AuZn_2)$	C2/c	14.701, 8.463, 8.700, 90.00, 123.21, 90.00	905.6
(Sr ₂ Au ₆)Ga ₃	<i>R</i> -3 <i>c</i>	8.419, 8.419, 21.911	1345.0
$Ba_2Au_6(Au_{0.40}Zn_{2.60})$	<i>R</i> -3 <i>c</i>	8.639, 8.639, 21.963	1419.4
$Ba_2Au_6(Au_{1.11}Zn_{1.89})$	<i>R</i> -3 <i>c</i>	8.675, 8.675, 22.004	1434.0
$Ba_2Au_6(Au_{1.89}Zn_{1.11})$	<i>R</i> -3 <i>c</i>	8.676, 8.676, 22.238	1449.7
$Ba_2Au_6(Au_{1.97}Zn_{1.03})$	<i>R</i> -3 <i>c</i>	8.665, 8.665, 22.325	1451.5
Ba ₂ Au ₆ (AuGa ₂)	<i>R</i> -3 <i>c</i>	8.719, 8.719, 21.816	1436.1
$Ba_2Au_6(AuCd_2)$	<i>R</i> -3 <i>c</i>	8.835, 8.835, 22.510	1521.7
$Ba_2Au_6(AuIn_2)$	<i>R</i> -3 <i>c</i>	8.848, 8.848, 22.487	1524.5

Таблица 1. Кристаллографические данные интерметаллидов $A_2Au_6B_3$ [4, 5, 14–16]

 $Na_{26}Cd_{141}-hP168$ [9, 10] и $Ca_{11}Hg_{54}-hP65$ [11, 12]. Два химически различных кластерапрекурсора K8 = 0@8(Na_2In_6) и K8 = 0@8(K_2In_6) найдены в кристаллической структуре $K_{23}Na_8Cd_{12}In_{48}-hP91$. Кластеры Na_2In_6 являлись темплатами, на поверхности которых происходило образование атомных оболочек из 36 атомов. Химический состав супраполиэдрического кластера K44 – 0@8(Na_2In_6)@36(In_6Cd_6K_6)_2. Самосборка каркасной 3D структуры $K_{23}Na_8Cd_{12}In_{48}$ из супраполиэдрических прекурсоров K44 происходит с участием полиэдрических кластеров K_2Cd_6 .

Поиск в базе данных кристаллический структур интерметаллидов содержащих локальные кластерные структуры в виде гексагональных бипирамид $K8 = A_2B_6$ и их топологических аналогов со связанностью вершин в бипирамиде $2^{7}6^4$ (со связями атомов А–А, А–В и В–В) и 2^{66^4} (со связями атомов А–В и В–В) показал их присутствие в двойных и тройных интерметаллидах. Представители открытого в 2013 г. кристаллохимического семейства тройных интерметаллидов (A_2Au_6)(B_3)–hR66, где A = Sr, Ba, Eu, B = Al, Zn, Ga, Cd, In с ромбоэдрической пр. группой R-3c и Sr_2Au_6 (AuZn₂)-mC44 и (Sr_2Au_6)($Au_{1.33}Al_{1.67}$)-mC44 с моноклинной пр. группой C2/c [5, 13–15] приведены в табл. 1.

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры интерметаллида $(Sr_2Au_6)(Ga_3)-hR66$. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры $(Sr_2Au_6)(Ga_3)-hR66$ из кластеров-прекурсоров $0@8(Sr_2Au_6)$ и $0@Ga_3$.

Атом	Локальное окружение	Координационные последовательности							
		N_1	<i>N</i> ₂	<i>N</i> ₃	N_4	N ₅			
$(\mathrm{Sr}_2\mathrm{Au}_6)\mathrm{Ga}_3-hR66$									
Sr1	3Ga + Sr + 12Au	16	48	112	215	313			
Au1	3Ga + 4Sr + 4Au	11	48	105	192	325			
Gal	2Ga +2Sr + 6Au	10	42	102	182	310			
$Sr_2Au_6(AuZn_2) - mC44$									
Srl	3Zn + 12Au	15	46	112	210	308			
Aul	3Zn + 4Sr + 4Au	11	47	102	190	321			
Au2	3Zn + 4Sr + 4Au	11	47	102	190	321			
Au3	3Zn + 4Sr + 4Au	11	47	102	190	321			
Au5	2Zn + 2Sr + 6Au	10	42	102	180	306			
Zn1	2Zn + 2Sr + 6Au	10	42	102	180	306			

Таблица 2. Локальное окружение атомов Sr, Au, Ga, Zn и значения координационных последовательностей. Жирным шрифтом выделено KЧ атомов

Работа продолжает исследования [1–3, 7, 9, 11, 16–19] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [6], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома.

Полученные значения координационных последовательностей атомов в 3D-сетках приведены в табл. 2, в которой выделено число соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома. Атомы, которые характеризуются различными наборами координационных последовательностей $\{N_k\}$, топологически (и функционально) различны.

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах: структура образуется в результате самосборки из кластеров-прекурсоров. При этом кластеры-прекурсоры образуют каркас структуры, пустоты в котором заполняются кластерами-спейсерами (состоящими из небольшого числа атомов), нанокластеры-прекурсоры не имеют общих внутренних атомов, но они могут иметь общие атомы на поверхности, кластеры-прекурсоры занимают высокосимметричные позиции, набор нанокластеров-прекурсоров и кластеров-спейсеров включает в себя все атомы структуры.

Алгоритм реализован в комплексе программ ToposPro [6].

САМОСБОРКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ (Sr₂Au₆)(Ga₃)-*hR*66

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [16–19]. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее – механизм самосборки из цепи слоя (2-ой уровень) и затем из слоя – трехмерного каркаса структуры (3-й уровень).

Кристаллографические данные семейства $A_2Au_6B_3$ —hR66. Пространственная группа *R*-3*c* с элементами точечной симметрией: g = 32 (6*a*), -3 (6*b*), 3 (12*c*), -1 (18*d*), μ 2 (18*e*). Последовательность Вайкоффа *fec*.

В табл. 1 приведено локальное окружение атомов Sr, Au, Ga в кристаллической структуре $(Sr_2Au_6)(Ga_3)-hR66$ и значения их координационных последовательностей. Атомы Ga имеют KU = 10, атомы Au – KU = 11 и атомы Sr – KU = 16.

Кластер-прекурсор К8. Полиэдрический кластер К8 в кристаллических структурах $A_2Au_6B_3-hR66$ представляет собой бипирамиду, в основании которой лежит кольцо Au₆, а в вершинах – связанные атомы A – Sr, Ba, Eu (рис. 1). Максимальная симметрия кластера K8 соответствует 6/*mmm*. В кластерах A_2Au_6 значения длин связей A–Au в кристаллических структурах семейства $A_2Au_6B_3$, как и двойном интерметаллиде Sr(Sr₂Au₆)–oI12 [20], несколько различаются (рис. 1). Симметрия кластеров A_2Au_6 в $A_2Au_6B_3-hR66$ и Sr(Sr₂Au₆)–oI12 соответствует –3 и 2/*m*.

Кластер-прекурсор К3. Кластеры К3 состава Al₃, Zn₃, Ga₃ в кристаллических структурах $(Sr_2Au_6)(B_3)-hR66$ сохраняют высокую симметрию 32 (центр кластера занимает позиции 6*a*).

Кристаллическая структура $(Sr_2Au_6)(Zn_2Ga)-mC44$ с моноклинной пр. группой C2/c и последовательностью Вайкоффа f^5e [14] характеризуется упорядоченным расположением атомов Zn в кластере K3 (общие позиции 8*f*) и атомов Ga (частная позиции 4*e* с симметрией 2). Симметрия кластера Sr_2Au_6 соответствует -1 (позиции 4*d*). Уменьшение KЧ атомов Sr с 16 до 15 связано с разрывом связи Sr–Sr в кластере Sr_2Au_6 (табл. 2).

 $Димер [(Sr_2Au_6)(Ga_3)]_2$. При образовании димера $(Sr_2Au_6)(Ga_3) + (Sr_2Au_6)(Ga_3)$ число связей между мономерами равно 11 (рис. 2*a*). Симметрия димера соответствует 2, центр находится в позиции 18*e* (1/6, 5/6, 0.58).

Тетрамер $[(Sr_2Au_6)(Ga_3)]_4$. При образовании тетрамера $[(Sr_2Au_6)(Ga_3)]_2 + [(Sr_2Au_6)(Ga_3)]_2$ число связей между димерами равно 11 (рис. 26). Симметрия тетрамера $[(Sr_2Au_6)(Ga_3)]_4$ соответствует 2. Расстояние между центрами димеров в тетрамере определяет значения модуля вектора трансляции a = 8.419 Å (рис. 26).

Октамер $[(Sr_2Au_6)(Ga_3)]_8$. 3D-каркасная структура $[(Sr_2Au_6)(Ga_3)]_4$ формируется при связывании тетрамеров $[(Sr_2Au_6)(Ga_3)]_4 + [(Sr_2Au_6)(Ga_3)]_4$ со сдвигом (рис. 3).

Рис. 1. Кластеры *А*₂*B*₆.

ЗАКЛЮЧЕНИЕ

Осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллической структуры $(Sr_2Au_6)(Ga_3)-hR66$. Установлен новый геометрический тип полиэдрического кластера-прекурсора $K8 = 0@8(Sr_2Au_6)$, в основании которого находятся кольца Au_6 , а вершины заняты атомами Sr. Симметрия кластера K8 соответствует -3 и центр кластера занимает позиции 6b. Другой кластер $K3 = 0@Ga_3$ также обладает высокой симметрией 32 и центр кластера занимает позиции 6a. Реконструирован симметрийный и топологический код процессов самосборки 3D-структуры из кластеров-прекурсоров K8 и K3 в виде: димер-тетрамер \rightarrow октамер.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (РФФИ № 19-02-00636) и Министерства науки и высшего образования в рам-

Рис. 2. Супракластеры: димер (а), тетрамер (две проекции) (б).

Рис. 3. Каркасная структура (две проекции).

ках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- Ilyushin G.D. Modeling of the Self–Organization Processes in Crystal-Forming Systems. Tetrahedral Metal Clusters and the Self–Assembly of Crystal Structures of Intermetallic Compounds // Crystallogr. Rep. 2017. V. 62. P. 670–683.
- Ilyushin G.D. Modeling of Self-Organization Processes in Crystal-Forming Systems: Symmetry and Topology Code for the Cluster Self-Assembly of Crystal Structures of Intermetallic Compounds // Russ. J. Inorg. Chem. 2017. V. 62. 13. P. 1730.
- 3. *Ilyushin G.D.* Symmetry and Topology Code of the Cluster Self–Assembly of Intermetallic Compounds $A_2^{[16]}B_4^{[12]}$ of the Friauf Families Mg₂Cu₄ and Mg₂Zn₄ // Crystallogr. Rep. 2018. V. 63. 4. P. 543–552.
- P. Villars, K. Cenzual. Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 6. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585. http://topospro.com/
- 7. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новый двухслойный кластер-прекурсор K44 = = 0@8(Na₂In₆)@36(In₆Cd₆K₆)₂для самосборки кристаллической структуры K₂₃Na₈Cd₁₂In₄₈-hP91 // Физ. и хим. стекла. 2019. Т. 45. в печати.
- Flot D.M., Tillard-Charbonnel M., Belin C.H.E. Na₈K₂₃Cd₁₂In₄₈: A Zintl phase containing icosahedral and triangular indium units and displaying a remarkable condensed metal fullarene stuffed with a tubular cluster. Synthesis and crystal and electronic structures // J. Amer. Chem. Soc. 1996. V. 118. P. 5229–5235.
- 9. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новые двухслойные кластеры-прекурсоры 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) и 0@(Na₃Cd₆)@(Na₆Cd₃₅) для самосборки кристаллической структуры Na₂₆Cd₁₄₁-*h*Pl68 // Физ. и хим. стекла. 2019. Т. 45. в печати.
- Todorov E., Sevov S.C. Intermetallic frameworks: Synthesis, characterization, and bonding of K_{0.4}Cd₂ and Na₂₆Cd₁₄₁ // Inorg. Chem. 1998. V. 37. P. 6341–6345.
- Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем. Новый двухслойный кластер-прекурсор К46 = 0@8(Ca₂Hg₆)@38 (Hg₆ + CaHg₆)₂(Ca₆Hg₆) для самосборки кристаллической структуры Ca₁₁Hg₅₄-*hP*65 // Физ. и хим. стекла. 2019. Т. 45. в печати.
- 12. *Tkachuk A.V., Mar A.* Alkaline-earth metal mercury intermetallics $A_{(11-x)} Hg_{(54+x)} (A = Ca, Sr) // Inorg. Chem. 2008. V 47(4). P. 1313–1318.$
- Lin Qisheng, Mishra Trinath, Corbett John D. Hexagonal-diamond-like gold lattices, Ba and (Au, T)₃ interstitials, and delocalized bonding in a family of intermetallic phases Ba₂ Au₆(Au, T)₃ (T = Zn, Cd, Ga, In or Sn) // J. Amer. Chem. Soc. 2013. V. 135. P. 11023–11031
- 14. *Mishra Trinath, Lin Qisheng, Corbett John D.* Gold network structures in rhombohedral and monoclinic $Sr_2 Au_6 (Au, T)_3 (T = Zn, Ga)$. A transition via relaxation // Inorg. Chem. 2013. V. 52. P. 13623–630.
- 15. Gerke Birgit, Poettgen Rainer. Sr₂ Au₆Al₃ and Eu₂Au₆Al₃ First representatives of the Sr₂ Au₆Zn₃ type with aluminum triangles // Z. Naturforsch. V. 69b. P. 121–124.
- Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
- Blatov V.A., Ilyushin G.D., Proserpio D.M. Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg₂Al₃ polymorphs // Inorg. Chem. 2010. V. 49. № 4. P. 1811–1818.
- Ilyushin G.D. The Crystal Chemistry of Intermetallic Lithium Compounds. A review // Russ. J. Inorg. Chem. 2018. V. 63. № 14. P. 1786–1799.
- Shevchenko V.Ya., Blatov V.A., Il'yushin G.D. Cluster Self-Organization of Intermetallic Systems. New Cluster Precursor (InNa₅)(AuAu₅) and Primary Chain with the 5 m Symmetry for the Self-Assembly of the Na₃₂Au₄₄In₂₄-oP100 Crystal Structure // Glass Phys. Chem. 2019. V. 45. P. 245–250.
- 20. Zachwieja U. Synthesis and structure of Ca Au₂ and Sr Au₂ // J. Alloys Compd. 1996. V. 235. P. 12–14