СВЕРХТОНКИЕ ВЗАИМОДЕЙСТВИЯ ⁶¹Ni И ⁶³Cu В УЗЛАХ МЕДИ СВЕРХПРОВОДЯЩИХ КЕРАМИЧЕСКИХ МЕТАЛЛОКСИДОВ ДВУХВАЛЕНТНОЙ МЕДИ И ИХ ДИЭЛЕКТРИЧЕСКИХ АНАЛОГОВ

© 2020 г. Г. А. Бордовский¹, А. В. Марченко¹, Ф. С. Насрединов², А. Б. Жаркой¹, А. А. Лужков¹, П. П. Серегин^{1, *}

¹Российский государственный педагогический университет им. А.И. Герцена, наб. реки Мойки, 48, Санкт-Петербург, 191186 Россия

²Санкт-Петербургский политехнический университет Петра Великого, 1 ул. Политехническая, 29, Санкт-Петербург, 195251 Россия

*e-mail: ppseregin@mail.ru

Поступила в редакцию 01.11.19 г. После доработки 03.12.19 г. Принята к публикации 05.12.19 г.

Измерены эмиссионные мессбауэровские спектры 61 Cu(61 Ni) высокотемпературной сверхпроводящей керамики, а также ряда диэлектрических и антиферромагнитных металлоксидов двухвалентной меди, которые являются структурными аналогами высокотемпературных сверхпроводников. Определены константы квадрупольного взаимодействия ядер 61 Ni и установлены их линейные корреляции с рассчитанными значениями тензора решеточного градиента электрического поля (ГЭП) в узлах меди. Найдены линейные корреляции между константами квадрупольного взаимодействия ядер 61 Ni, и для ядер 63 Cu, что позволило определить валентные вклады в ГЭП для обоих зондов.

Ключевые слова: высокотемпературные сверхпроводники, эмиссионная мессбауэровская спектроскопия, ЯМР, тензор градиента электрического поля **DOI:** 10.31857/S013266512002002X

ВВЕДЕНИЕ

Некоторые высокотемпературные сверхпроводники (ВТСП) были получены из близких к ним по структуре, но при этом диэлектрических и антиферромагнитных соединений, таких как YBa₂Cu₃O₆ [1], La₂CuO₄ [2], Nd₂CuO₄ [3], CaCuO₂ [4], SrCuO₂ [5], Ca₂CuO₂Cl₂ [6] и Sr₂CuO₂Cl₂ [7], путем гетеровалентного замещения редкоземельных металлов или изменения степени окисления атомов меди. Интерес представляет исследование изменений, происходящих в электронной и атомной структуре медных подрешеток при такой трансформации. Важным инструментом для таких исследований является изучение сверхтонких взаимодействий, т.е. взаимодействий определенных ядер атомов кристалла с локальными магнитными и неоднородными электрическими полями.

Одним из методов для изучения сверхтонких взаимодействий является примесная мессбауэровская спектроскопия [8]. Эта методика позволяет помещать в узлы меди мессбауэровские зонды различной природы. При использовании эмиссионного варианта мессбауэровской спектроскопии на изотопах ⁶¹Cu(⁶¹Ni) зонда ⁶¹Ni²⁺ после радио-

активного распада образуется ⁶¹Cu в узлах меди. Ядерные характеристики зонда ⁶¹Ni (мультипольность перехода, значения магнитного и квадрупольных моментов) дают возможность определения параметров комбинированного сверхтонкого взаимодействия [9].

В настоящей работе эмиссионная мессбауэровская спектроскопия на 61 Cu(61 Ni) применяется для исследования сверхпроводящих и диэлектрических соединений Ca_{1-x}Sr_xCuO₂, Ca₂CuO₂Cl₂, SrCuO₂, Sr₂CuO₂Cl₂, YBa₂Cu₃O_{7-x}, La_{2-x}Sr_xCuO₄ и Nd_{2-x}Ce_xCuO₄. Их результаты сопоставлены с известными данными о сверхтонких взаимодействиях 63 Cu в тех же материалах [10–12] и с расчетами градиента электрического поля в узлах меди.

МЕТОДИКА ЭКСПЕРИМЕНТА

При приготовлении образцов Ca_{1-x}Sr_xCuO₂, Ca₂CuO₂Cl₂, SrCuO₂, Sr₂CuO₂Cl₂, YBa₂Cu₃O_{7-x}, La_{2-x}Sr_xCuO₄ и Nd_{2-x}Ce_xCuO₄ использовали технологические процессы и их режимы, описанные в [1–9]. Фазовый состав образцов определяли рентгенофазовым анализом. Для сверхпроводников дополнительно контролировали критическую температуру.

Радиоактивная ⁶¹Си была получена по реакции ⁶¹Ni(p, n)⁶¹Cu, а затем из мишени хроматографически был выделен безносительный препарат ⁶¹CuCl₂. Для приготовления мессбауэровских источников в готовых керамических образцах проводили диффузию ⁶¹Cu [9]. Легирование радиоактивным изотопом ⁶¹Cu оксидов меди CuO и никеля NiO проводили в процессе термического разложения соответствующих нитратов.

Эмиссионные мессбауэровские спектры снимали при 80 К на спектрометре SM 4201 TerLab с использованием поглотителя $Ni_{0.86}V_{0.14}$ с поверхностной плотностью 1500 мг/см², который дает одиночную линию шириной 1 мм/с.

Для интерпретации полученных спектров проводили расчет тензора решеточного ГЭП в узлах меди всех исследованных материалов. При этом использовали модель точечных зарядов, а параметры элементарных ячеек соответствующих кристаллов были взяты из [13–16]. Компоненты тензора решеточного ГЭП вычисляли по формулам:

$$V_{pp} = \sum_{k} e_{k}^{*} \sum_{i} \frac{1}{r_{ki}^{3}} \left(\frac{3p_{ki}^{2}}{r_{ki}^{2}} - 1 \right) = \sum_{k} e_{k}^{*} G_{ppk},$$

$$V_{pq} = \sum_{k} e_{k}^{*} \sum_{i} \frac{3p_{ki}q_{ki}}{r_{ki}^{5}} = \sum_{k} e_{k}^{*} G_{pqk},$$
(1)

где k — индекс суммирования по подрешеткам, i — индекс суммирования по узлам подрешетки, q, p — декартовы координаты, e_k^* — заряды атомов k-подрешетки, r_{ki} — расстояние от ki-иона до рассматриваемого узла. Решеточные суммы G_{ppk} и G_{pqk} считали на ЭВМ, суммирование проводили внутри сферы радиуса 30 Å. Увеличение радиуса суммирования не приводило к изменению значений компонент тензора более, чем на 0.01%.

Для большинства решеток заряды атомов при расчетах V_{zz} принимались равными их обычной валентности. Для сверхпроводящих оксидов распределение зарядов атомов по узлам решетки было взято из работы [8].

Расчеты показали, что главная ось тензора решеточного ГЭП направлена вдоль кристаллографической оси *с* для всех узлов меди всех рассмотренных решеток, а значения V_{zz} меняются в интервале 0.55 e/Å³ до 1.0 e/Å³. Параметр асимметрии тензора решеточного ГЭП $\eta = (V_{yy} - V_{xx})/V_{zz}$ в узлах меди оказался равным 0. Исключение со-

Рис. 1. Мессбауэровские спектры 61 Cu(61 Ni) сверхпроводящих металлоксидов меди La_{1.85}Sr_{0.15}CuO₄, Nd_{1.85}Ce_{0.15}CuO₄ и YBa₂Cu₃O_{6.9}. Для La_{1.85}Sr_{0.15}CuO₄ и Nd_{1.85}Ce_{0.15}CuO₄ показано разложение спектров на пять компонент квадрупольного мультиплета, а для спектра YBa₂Cu₃O_{6.9} показано положение квадрупольных мультиплетов, отвечающих центрам 61 Ni в узлах Cu(1) (пунктирная линия) и Cu(2) (сплошная линия).

ставляют узлы Cu(1) в YBa₂Cu₃O_{6.9}, для которых $\eta \sim 1$ и главная ось тензора ориентирована вдоль кристаллографической оси *a*.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Измеренные мессбауэровские спектры 61 Cu(61 Ni) некоторых из исследованных соединений показаны на рис. 1—3. Они представляют собой плохо разрешенные мультиплеты, соответствующие сверхтонким взаимодействиям ядер 61 Ni.

Спектры сверхпроводящих соединений YBa₂Cu₃O_{6.9}, La_{1.85}Sr_{0.15}CuO₄ и Nd_{1.85}Ce_{0.15}CuO₄ и Nd_{1.85}Ce_{0.15}CuO₄ и Saumodeйствия квадрупольных моментов обоих, основного и возбужденного, состояний ядер ⁶¹Ni с тензором градиента электрического поля (ГЭП) в узлах меди. Основной уровень ядра расщепляется на два (спин I = 3/2, квадрупольный момент $Q_{gr}^{61} = 0.162$ барн [8]), а возбужденный – на три подуровня ($I_{ex} = 5/2$, $Q_{ex}^{61} = -0.2$ барн [8]). В итоге экспериментальные спектры представляют собой наложение пяти линий с отношением интенсивностей 10 : 4 : 1 : 6 : 9 (рис. 1). В структуре YBa₂Cu₃O_{6.9} медь находится в двух структурно неэквивалентных позициях Cu(1) и Cu(2), заселенных в соотношении 1 : 2, так что мессбауэровский спектр представляет собой наложение двух квадрупольных мультиплетов (рис. 1).

Диэлектрические соединения $Ca_{1-x}Sr_xCuO_2$, $YBa_2Cu_3O_6$, La_2CuO_4 , Nd_2CuO_4 , $CaCuO_2$, $SrCuO_2$, $Ca_2CuO_2Cl_2$ и $Sr_2CuO_2Cl_2$, а также оксиды никеля NiO и меди CuO, являются антиферромагнетиками с температурами Нееля выше 200 К [1–9]. Поэтому их месс-

Рис. 2. Мессбауэровские спектры 61 Cu(61 Ni) оксидов NiO и диэлектрических металлоксидов меди SrCuO₂, Ca_{0.85}Sr_{0.15}CuO₂, Sr₂CuO₂Cl₂ и Ca₂CuO₂Cl₂. Показано разложение спектров на двенадцать компонент зеемановского мультиплета.

бауэровские спектры, полученные при 80 К (рис. 2, 3), следует рассматривать как результат комбинированного квадрупольного и зеемановского взаимодействия ядер ⁶¹Ni с локальными полями. На полученных спектрах это обнаруживается как существенное расширение диапазона скоростей, в котором регистрируются спектральные линии.

Для чисто зеемановского взаимодействия мессбауэровский спектр должен симметрично расщепляться на 12 линий с отношением интенсивностей 10:4:1:6:6:3:3:6:6: :1:4:10, как это наблюдается для случая спектра окиси никеля NiO (рис. 2).

В случае комбинированного сверхтонкого магнитного и электрического взаимодействия собственные значения гамильтониана для каждого, основного и возбужденного уровня могут быть найдены из соотношения:

$$E_m^I = mgH + [eQU_{zz}/4I(2I-1)] [3m^2 - I(I+1)][(3\cos^2\theta - I)/2],$$
(2)

здесь I – спин ядра; H – магнитное поле на ядре; U_{zz} – главная компонента тензора ГЭП на ядре; θ – угол между главной осью тензора ГЭП и направлением магнитного поля; m –

Рис. 3. Мессбауэровские спектры 61 Cu(61 Ni) диэлектрических металлоксидов меди La₂CuO₄, Nd₂CuO₄, YBa₂Cu₃O₆. Показано разложение спектров La₂CuO₄, Nd₂CuO₄ на двенадцать компонент зеемановского мультиплета, а для спектра YBa₂Cu₃O₆ показано положение квадрупольного мультиплета, отвечающего центрам 61 Ni в узлах Cu(1) (пунктирная линия) и разложение спектра, отвечающего центрам 61 Ni в узлах Cu(2), на двенадцать компонент зеемановского мультиплета (сплошная линия).

магнитное квантовое число; g – гидромагнитное отношение (для ядра ⁶¹Ni в основном состоянии g = -0.070083 мм/с Тл и в возбужденном состоянии $g_{ex} = 0.0268$ мм/с Тл [9]). Симметричное расположение линий спектра при этом нарушается (рис. 2, 3).

Расчетный спектр подгоняли к экспериментальному методом наименьших квадратов. Подгоночными параметрами были параметры гамильтониана H и $U_{zz}[(3\cos^2\theta - 1)/2]$, общие для обоих ядерных уровней, а также интенсивности линий (при этом величину множителя $(3\cos^2\theta - 1)/2$ определяли с использованием данных [9–16]). Ширины линий были приняты равными 1 мм/с [9]. Из-за того, что в спектрах ⁶¹Ni диапазон наблюдавшихся изомерных сдвигов значительно меньше ширины спектральной линии, мы следили за тем, чтобы центр тяжести расчетного мультиплета не отклонялся от нулевой скорости больше, чем на 0.05 мм/с. Согласие расчетного и экспериментального спектров оценивали по критерию χ^2 .

Обработка мессбауэровских спектров позволила получить константы квадрупольного взаимодействия $C_{\text{Ni}} = e Q_{gr}^{61} U_{zz}$ для основного состояния ⁶¹Ni и индукцию эффективного магнитного поля на ядре *H*. Никаких значимых корреляций между этими параметрами для разных соединений не было обнаружено, а значения величины *H* были в пределах 8.5–11.0 Тл.

Puc. 4. Зависимость константы квадрупольного взаимодействия для центров ⁶¹Ni в узлах меди от главной компоненты тензора решеточного ΓЭΠ в этих узлах. Обозначения узлов меди в решетках: $La_{1.85}Sr_{0.15}CuO_4$ (*1*), Cu(2) в YBa₂Cu₃O_{6.9} (*2*), La₂CuO₄ (*3*), Cu(2) в YBa₂Cu₃O₆ (*4*), CuO (*5*), Sr₂CuO₂Cl₂ (*6*), Ca₂CuO₂Cl₂ (*7*), Nd_{1.85}Ce_{0.15}CuO₄ (*8*), Nd₂CuO₄ (*9*), SrCuO₂ (*10*), Ca_{0.85}Sr_{0.15}CuO₂ (*11*), Cu(1) в YBa₂Cu₃O_{6.9} (*12*).

Результаты обработки мессбауэровских спектров и расчетов параметров тензора решеточного ГЭП представлены на рис. 4 в виде зависимости константы квадрупольного взаимодействия $C_{\rm Ni}$ для центров ⁶¹Ni в узлах меди от расчетной величины главной компоненты решеточного тензора ГЭП V_{zz} в тех же узлах. Зависимость на рис. 3 линейна и описывается соотношением:

$$C_{\rm Ni} = 47V_{zz} - 79,\tag{3}$$

(здесь и далее значения констант квадрупольного взаимодействия приводятся в единицах МГц).

Все экспериментальные данные укладываются на одну прямую вне зависимости от того, к какой группе соединений, сверхпроводниковой или диэлектрической, они относятся. В родственных парах сверхпроводник—диэлектрик (точки 1–3, 2–4 и 8–9) сверхпроводникам соответствуют меньшие значения V_{zz} и меньшие по абсолютной величине значения константы квадрупольного взаимодействия. Связи между значениями критической температуры сверхпроводников и положением соответствующей точки на графике $C_{\rm Ni}-V_{zz}$ не обнаружено.

Далее при интерпретации величин C_{Ni} были использованы известные значения констант квадрупольного взаимодействия $C_{\text{Cu}} = eQ^{63}U_{zz}$ центров ⁶³Cu, полученные для тех же материалов методом ядерного магнитного резонанса (ЯМР) [10–12] (здесь Q^{63} – квадрупольный момент ядра ⁶³Cu). На рис. 5 показана корреляция между C_{Ni} и $|C_{\text{Cu}}|$ в узлах меди металлоксидов меди (низкое значение спина ⁶³CuI = 3/2 не позволяет определить знак C_{Cu} , и поэтому она указана по абсолютной величине).

Точки на рис. 5 удовлетворительно укладываются на прямую:

$$C_{\rm Ni} = -30 \left| C_{\rm Cu} \right| - 32. \tag{4}$$

Исключение составляет точка, соответствующая узлу Cu(1) в решетке YBa₂Cu₃O_{6.9}.

Соотношение (5) показывает, что линейная зависимость (3) является следствием одинаковой величины валентной составляющей ГЭП для зонда Ni²⁺ во всех изучен-

Рис. 5. Зависимость константы квадрупольного взаимодействия для центров ⁶¹Ni в узлах меди C_{Ni} от модуля константы квадрупольного взаимодействия для центров ⁶³Cu этих же узлах $|C_{Cu}|$ (величины $|C_{Cu}|$ взяты из [13–16]). Обозначения узлов меди в решетках даны в подписи к рис. 3.

Рис. 6. Зависимость модуля константы квадрупольного взаимодействия для центров ⁶³Cu в узлах меди $|C_{Cu}|$ от главной компоненты тензора решеточного ГЭП в этих узлах V_{zz} (величины $|C_{Cu}|$ взяты из [10–12]). Обозначения узлов меди в решетках дано в подписи к рис. 3.

ных металлоксидах двухвалентной меди. Ее значение для центров Ni²⁺ в ряду рассмотренных соединений $eQ_{gr}^{61}(1-R)W_{zz}$ отрицательно и равно -81 (2) МГц.

Для зондов никеля и меди справедливо соотношение:

$$eQU_{zz} = eQ(1-\gamma)V_{zz} + eQ(1-R)W_{zz},$$
(5)

где U_{zz} , V_{zz} и W_{zz} – главные компоненты тензоров суммарного, решеточного и валентного ГЭП, а ү и R – коэффициенты Штернхеймера для иона-зонда.

Существенное отклонение точки, отвечающей узлам Cu(1) в решетке YBa₂Cu₃O_{6.9}, от прямой на рис. 5 связано с другим обстоятельством. Во-первых, заряд Cu(1) (и, соответственно, вклад валентных электронов в ГЭП) заметно отличается от +2e. Во-вторых, направления главных осей для тензоров суммарного (z||b) и решеточного (z||a) ГЭП в узлах Cu(1) не совпадают (см., например, [8]). Для всех остальных соединений такого несоответствия не наблюдается. Тот факт, что соответствующая точка на рис. 4 не отклоняется от общей линейной зависимости, объясняется тем, что зонд Ni²⁺ является примесным ионом, который не наследует характер сверхтонких взаимодействий материнского иона меди в узле Cu(1).

Для сравнения на рис. 6 приведена зависимость модуля константы квадрупольного взаимодействия $|C_{Cu}|$ для центров ${}^{63}Cu^{2+}$ в узлах меди от главной компоненты тензора решеточного ГЭП в этих узлах (для построении этой зависимости использовались данные ЯМР на изотопе ${}^{63}Cu$ [10–12]).

Видно, что зависимость на рис. 6 линейна и описывается соотношением:

$$|C_{\rm Cu}| = -151V_{zz} + 153,\tag{6}$$

которое выполняется и для сверхпроводниковых, и для диэлектрических материалов.

Как и в случае зависимости $C_{\text{Ni}} = f(|C_{\text{Cu}}|)$ на рис. 5, из прямой на рис. 6 выпадает точка, отвечающая узлам Cu(1) в YBa₂Cu₃O_{6.9}, что объясняется теми же причинами.

Соотношение (5) означает, что линейная зависимость (6) является следствием неизменной величины валентной составляющей в ГЭП для зонда Cu²⁺ в металлоксидах двухвалентной меди. Уменьшение $|C_{Cu}|$ с ростом V_{zz} свидетельствует о том, что для центров Cu²⁺ знаки валентного и решеточного вкладов в формуле (5) противоположны и между ними выполняется соотношение $|(1 - R)W_{zz}| > |(1 - \gamma)V_{zz}|$. Поскольку значения $V_{zz} > 0$, а $Q_{gr}^{63} = -0.211$ барн [8], то решеточный вклад отрицателен $eQ_{gr}^{63}(1 - \gamma)V_{zz} < 0$ и, следовательно, валентный вклад положителен $eQ_{gr}^{63}(1 - R)W_{zz} = 153(2)$ МГц. Таким образом, расчеты ГЭП для узлов меди позволили установить знак констант квадрупольного взаимодействия для центров Cu²⁺, недоступный для прямого измерения [10–12]. Соотношение (6) может быть переписано без знака модуля: $C_{Cu} = -151V_{zz} + 153$.

Главные значения тензоров валентного ГЭП W_{zz} для обоих зондов Cu²⁺ и Ni²⁺ можно оценить, исходя из найденных валентных вкладов в их константы квадрупольного взаимодействия $eQ(1 - R)W_{zz}$ и известных квадрупольных моментов ядер. Эти оценки будут содержать неопределенности, связанные с неизвестными значениями коэффициента Штернхеймера *R*. Но если принять для (1 - R) типичное значение 0.7, то $W_{zz} = -30 \text{ e/Å}^3$ и $W_{zz} = -20 \text{ e/Å}^3$ для Cu²⁺ и Ni²⁺ соответственно. Их абсолютные значения и их примерное равенство для разных матриц, конечно, требуют квантово-механических расчетов, но их отрицательные знаки, которые непосредственно следуют из уменьшения абсолютных величин констант квадрупольного взаимодействия, качественно можно объяснить в рамках модели кристаллического поля.

Во всех рассмотренных соединениях ближайшим окружением узлов меди является квадрат ионов O²⁻ [13–16]. В этом случае расщепление в сильном кристаллическом поле приводит к тому, что наименьшую энергию имеет d_{z^2} -орбиталь, а наибольшую $d_{z^2-y^2}$ -орбиталь. Электроны на этих орбиталях создают на ядре валентные ГЭП со значениями $W_{zz} = -\frac{4}{7}e\langle r^{-3}\rangle$ и $W_{zz} = \frac{4}{7}e\langle r^{-3}\rangle$, соответственно, где $\langle r^{-3}\rangle$ – среднее значение обратного куба радиуса *d*-орбитали. Ион Ni²⁺ имеет электронную конфигурацию $4s^23d^6$, в которой пять *d*-электронов образуют полузаполненную сферическую оболоч-ку, а шестой попадает на нижний свободный d_{z^2} -уровень и создает $W_{zz} < 0$. Ион Cu²⁺ имеет конфигурацию $3d^9$, что соответствует дырке в замкнутой 3*d*-оболочке на ее верхнем $d_{z^2-y^2}$ - уровне. Электрон на этом уровне создавал бы $W_{zz} > 0$, а дырка создает

 $W_{zz} < 0$. Полученные из этих соображений значения $\langle r^{-3} \rangle$ составляют 52.5 и 35 Å⁻³ для ионов Cu²⁺ и Ni²⁺ соответственно. Эти оценки справедливы, по-видимому, не только в рассмотренной группе соединений, но и для более широкого круга кристаллов с квадратным окружением узлов меди. В пользу этого говорит тот факт, что точки, соответствующие окиси меди CuO, попадают на прямые представленные на рис. 4–6.

ЗАКЛЮЧЕНИЕ

Эмиссионные мессбауэровские спектры 61 Cu(61 Ni) для диэлектрических металлоксидов двухвалентной меди Ca_{1-x}Sr_xCuO₂, Ca₂CuO₂Cl₂, Sr₂CuO₂Cl₂, YBa₂Cu₃O₆, La₂CuO₄ и Nd₂CeCuO₄ отвечают комбинированному квадрупольному и зеемановскому сверхтонкому взаимодействию ядер 61 Ni с локальными полями в узлах меди. Для сверхпроводящих металлоксидов YBa₂Cu₃O₇, La_{1.85}Sr_{0.15}CuO₄ и Nd_{1.85}Ce_{0.15}CuO₄ спектры соответствуют взаимодействию квадрупольных моментов 61 Ni с тензором градиента электрического поля. Для обеих групп металлоксидов наблюдаются линейные зависимости константы квадрупольного взаимодействия как на ядрах 61 Ni (данные эмиссионной мессбауэровской спектроскопии на изотопах 61 Cu(61 Ni)), так и на ядрах 63 Cu (ЯМР данные на изотопе 63 Cu) от расчетных значений главной компоненты тензора решеточного градиента электрического поля в узлах меди. Этот факт объясняется тем, что как для зондов 61 Ni²⁺, так и для зондов 61 Cu²⁺ валентная составляющая в суммарный тензор ГЭП в узлах меди не зависит от состава металлоксида. Из полученных значений валентной составляющей ГЭП оценены средние обратные кубы радиусов 3*d*-орбиталей ионов Cu²⁺ и Ni²⁺.

СПИСОК ЛИТЕРАТУРЫ

- 1. Farina D., De Filippis G., Mishchenko A.S., Nagaosa N., Yang Jhih-An, Reznik D., Wolf Th., Cataudell V. Electron-phonon coupling in the undoped cuprate YBa₂Cu₃O₆ estimated from Raman and optical conductivity spectra // Phys. Rev. B. 2018. 98. 121104(R).
- Yamamoto Shoji, Noriki Yusaku. Spin-wave thermodynamics of square-lattice, antiferromagnets revisited // Phys. Rev. 2019. B 99. 094412.
- Miyamoto T., Matsui Y., Terashige T., Morimoto T., Sono N., Yada H., Ishihara S., Watanabe Y., Adachi S., Ito T., Oka K., Sawa A., Okamoto H. Probing ultrafast spin-relaxation and precession dynamics in a cuprate Mott insulator with seven-femtosecond optical pulses // Nature Communications. 2018. 9. 3948.
- Perucchi A., Di Pietro P., Lupi S., Sopracase R., Tebano, A., Giovannetti G., Petocchi F., Capone M., Di Castro D. Electrodynamic properties of an artificial heterostructured superconducting cuprate // Phys. Rev. B. 2018. 97. 045114.
- Zhong Y., Han S., Wang Y., Luo Z., Zhang D., Wang L., Li W., He K., Song C.-L., Ma X.-C., Xue Q.-K. Atomic visualization of copper oxide structure in the infinite-layer cuprate SrCuO₂ // Phys. Rev. B. 2018. 97. 245420.
- 6. *Liu G.Q., Hao Q.B., Zheng H.L., Zhang S.N., Xu X.Y., Jiao G.F., Cui L.J., Wang P.F.Li C.S.* Effect of grinding method on the precursor powder of Bi2223 and properties of strip // Journal of Physics: Conference Series. 2018. 1054. 01204230.
- Petersen J.C., Farahani A., Sahota D.G., Liang Ruixing, Dodge J.S. Transient terahertz photoconductivity of insulating cuprates // Phys. Rev. B. 2017. 96. 115133.
- Seregin N., Marchenko A., Seregin P. Emission Mössbauer spectroscopy. Electron defects and Bosecondensation in crystal lattices of high-temperature superconductors // Verlag: LAP LAMBERT. Academic Publishing GmbH & Co. KG Saarbrücken. Deutschland/Germany. 325 p. 2015.
- 9. Bordovsky G.A., Marchenko A.V., Nikolaeva A.V., Seregin P.P., Bobokhuzhaev K.U. Determination of atom charge states in lattices of superconducting metal oxides of copper by ⁶¹Cu(⁶¹Ni) and ⁶⁷Cu(⁶⁷Zn) emission Mössbauer spectroscopy // Glass Physics and Chemistry. 2015. 41. 237.

- Takatsuka T., Kumagai K., Nakajima H., Yamanaka A. Hyperfine fields and quadrupole frequencies at each Cu site in RBa₂Cu₃O₆ and RBa₂Cu₃O₇ (R: rare earth element) // Physica C 1991. 185–189. P. 1071–1072.
- 11. Yoshinari Y., Yasuoka H., Shimizu T., Takagi H., Tokura Y., Uchida S. Antiferromagnetic Nuclear Resonance of Cu in Nd₂CuO₄ // J. Phys. Soc. Jap 1990. 59. 36–39.
- Shimizu T. On the Electric Field Gradient at Copper Nuclei in Oxides // J. Phys. Soc. Jap. 1993. 62. 772–778.
- 13. Siegrist T., Zahurak S.M., Murphy D.W., Roth R.S. The parent structure of the layered high-temperature superconductors // Nature.1988. 334. 231–232.
- Yvon K., Francois M. Crystal structure of high-T_c oxides // Z. Phys. D Condensed Matter. 1989. 76. 413.
- Zhou X., Wu F., Yin B., Liu W., Dong C., Li J., Zhu W., Jia S., Yao Y., Zhao Z. Structure and superconductivity in the infinite-layer Sr_{1-x}CuO₂ system prepared under high pressure // Phys. C. 1994. 233. 311–320.
- 16. Haas H., Correia J.G. EFG calculations for Cu²⁺ compounds // Hyperfine Interact. 2007. 176. 9–13.