ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ ВИСМУТСОДЕРЖАЩИХ КОМПОЗИТОВ НА ОСНОВЕ ВЫСОКОКРЕМНЕЗЕМНЫХ ПОРИСТЫХ СТЕКОЛ

© 2020 г. М. А. Гирсова^{1, *}, Г. Ф. Головина¹, Л. Н. Куриленко¹, И. Н. Анфимова¹

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия *e-mail: girsovama@vandex.ru

> Поступила в редакцию 26.04.19 г. После доработки 19.11.19 г. Принята к публикации 05.12.19 г.

Синтезированы висмутсодержащие композиционные материалы (BKM) путем пропитки матриц из термически модифицированных высококремнеземных пористых стекол (ПС) в 0.5 М водных растворах азотнокислого висмута с последующей термообработкой в широком диапазоне температур 50–875°С. Методом инфракрасной спектроскопии в области частот 1100–400 см⁻¹ исследованы висмутсодержащие композиционные материалы в зависимости от температур модифицирования ПС (120, 400, 600°С) и термообработки ВКМ. При температуре больше 570°С наблюдаются полосы, связанные с колебаниями связей v_{as} (Bi–O–Si), v_s (Bi–O) в [BiO₃] и [BiO₆] группах и возможным наличием в композитах α -Bi₂O₃.

Ключевые слова: висмутсодержащие композиционные материалы, высококремнеземные пористые стекла, инфракрасная спектроскопия, спектры пропускания **DOI**: 10.31857/S0132665120020043

введение

В настоящее время повышенный интерес вызывают исследования висмутсодержащих материалов, полученных на основе высококремнеземных пористых стекол (ПС) [1–8]. Их синтез осуществляют в несколько этапов: сначала ПС пропитывают водным азотнокислым раствором нитрата висмута с последующим удалением воды и полным разложением соли при прокаливании на воздухе или в других атмосферах [1–8]. Постепенная медленная термическая обработка висмутсодержащих материалов приводит к разложению введенной соли в порах вплоть до образования оксида висмута. Согласно [9] процесс термического разложения пентагидрата нитрата висмута на воздухе может быть представлен следующей схемой:

$$\operatorname{Bi}(\operatorname{NO}_3)_3 \cdot 5\operatorname{H}_2\operatorname{O} \xrightarrow{50-60^\circ \mathbb{C}} [\operatorname{Bi}_6\operatorname{O}_6]_2(\operatorname{NO}_3)_{11}(\operatorname{OH}) \cdot 6\operatorname{H}_2\operatorname{O} \xrightarrow{77-130^\circ \mathbb{C}} \rightarrow [\operatorname{Bi}_6\operatorname{O}_6]_2 \cdot 4\operatorname{H}_2\operatorname{O} \xrightarrow{440-450^\circ \mathbb{C}} \alpha - \operatorname{Bi}_2\operatorname{O}_3 \xrightarrow{710-740^\circ \mathbb{C}} \delta - \operatorname{Bi}_2\operatorname{O}_3.$$
(1)

В ходе этого многоступенчатого процесса происходит удаление воды и NO₃-ионов, образование низкотемпературной моноклинной фазы α -Bi₂O₃ (см. обзор в [9, 10]). Затем при нагревании выше 710°С модификация α -Bi₂O₃ переходит в высокотемпературную кубическую модификацию δ -Bi₂O₃, которая стабильна до температуры 1098 К (825°С), соответствующей температуре плавления (см. обзор в [10]). Анализ данных (см. обзор в [9, 10]) показал, что фазовые превращения полиморфных форм (α , β , γ , δ) Ві₂O₃ происходят в широком температурном интервале 330–825°С. О сложности процесса свидетельствует и тот факт, что при температурах 400–450°С пентагидрат нитрата висмута может разлагаться до оксинитрата Bi₅O₇NO₃, который при температурах выше 565°С переходит в α -Bi₂O₃ [9]. Использование разных температурно-временных режимов разложения Bi(NO₃)₃ · 5H₂O внутри порового пространства материала может приводить к формированию оксинитрата висмута, различных полиморфных форм оксида висмута вплоть до плавления оксида и схлопывания пор [3, 12]. Следует отметить, что благодаря такой технологии висмут в материале может существовать в разных степенях окисления и постепенно преобразовываться от ионов Bi³⁺ вплоть до кластеров и димеров висмута (см. обзор в [10, 12]). Важным аспектом является равномерность распределения висмута по толщине материала, зависящая от условий его получения [4, 11]. Ранее нами было установлено, что висмут распределяется наиболее равномерно в висмутсодержащих композиционных материалах (BKM), спеченных при *T* = 870°C [11].

В настоящей работе были продолжены исследования ВКМ [11, 13], полученных на основе термически модифицированных высококремнеземных ПС в зависимости от температуры термической обработки ВКМ (*T*). В большинстве случаев синтезируемые ВКМ, в зависимости от условий их получения, являются рентгеноаморфными и дополнительную информацию об их структуре можно получить методом ИК спектроскопии.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Висмутсодержащие композиционные материалы (ВКМ) двух типов, висмутсодержащие пористые (ВПС) и кварцоидные стекла (ВКС), были получены по технологии [8, 11, 13]. Для синтеза использовали микропористые высококремнеземные ПС, содержащие малые добавки P₂O₅ и фторид-ионов (далее ПС-НФФ). ПС-НФФ были получены путем сквозного химического травления (выщелачивания) двухфазного натриевоборосиликатного стекла НФФ в водном 4 М растворе HNO_3 при кипячении, последующей промывки в дистиллированной воде и сушке на воздухе. Двухфазные стекла НФФ состава (по анализу, мас. %): 6.11Na2O, 23.85B2O3, 69.35SiO2, 0.08|F|, 0.61Р₂О₅ были изготовлены в заводских условиях по технологии варки оптических стекол [13]. Термическое модифицирование ПС-НФФ проводили по трем разным режимам: при температуре термического модифицирования $T_{\text{T.M.}} = 120^{\circ}\text{C}$ в течение 1 ч (ПС-НФФ-120), при *T*_{Т.М.} = 400°С в течение 2 ч (ПС-НФФ-400), при *T*_{Т.М.} = 600°С в течение 2 ч (ПС-НФФ-600). По данным химического анализа базовые ПС-НФФ-120 и кварцоидные КС-НФФ-120 (то есть ПС-НФФ-120, подвергнутые обработке при T= $= 870 \pm 5^{\circ}$ C, в результате которой происходит полное схлопывание пор в образцах) содержат, мас. %: (0.46-0.55) Na₂O, (6.42-6.85) B₂O₃, (92.56-93.09) SiO₂, (0.03-0.04) |F|, $\leq 0.01 P_2 O_5 [13].$

Согласно данным [11], матрицы ПС-НФФ-120, ПС-НФФ-400 и ПС-НФФ-600 имеют следующие параметры пор (в указанном ряду): пористость W - 30, 30, 29%, удельная поверхность пор $S_{yg} - 55$, 53, 43 м²/г, средний диаметр пор D - 12, 13, 15 нм. Определение усредненных значений W, S_{yg} , D и абсолютной погрешности измеряемых величин осуществляли по методу наименьших квадратов (по среднестатистическому разбросу величин (3–5 измерений, доверительная вероятность $\alpha = 0.95$)). Погрешность определения не превышала ±5%.

Растворы азотнокислого висмута для пропитки пористых стекол были приготовлены на основе водного 2M раствора HNO_3 и соли $Bi(NO_3)_3 \cdot 5H_2O$ марки "ч. д. а.". ВПС были получены путем пропитки ПС-НФФ-120, ПС-НФФ-400, ПС-НФФ-600 при комнатной температуре в водных 0.5 М растворах Bi(NO₃)₃ в течение 24 ч (с сушкой при $T \sim 50^{\circ}$ C). Затем серия образцов ВПС была подвергнута термической обработке на воздухе при температурах $T = 400 - 870^{\circ}$ C с изотермическими выдержками в течение 15-120 мин. Термическая обработка производилась по специально разработанным многостадийным режимам накопительного принципа с промежуточными изотермическими выдержками по методике [8]. Ранее нами было установлено по данным энергодисперсионной спектроскопии [11], что концентрация висмута в ВКМ на базе ПС-НФФ-600 в ~2-3 раза выше, чем в образцах других серий. Это может указывать на кластеризацию висмута в данных композитах, чего следует избегать. Нужно также отметить, что в интервале температур 200-600°C удаляется координационно-связанная вода, центрами которой являются атомы кислорода силанольных групп и примесные атомы бора (см. обзор в [14]). При температурах 600-800°С происходит дегидроксилирование связанных силанольных групп. Дальнейшее повышение температуры приводит к схлопыванию пор и получению монолитного кварцоидного материала (см. обзор в [14]). В табл. 1 сведены все данные о предыстории образцов с указанием режимов термического модифицирования ПС-НФФ, температуры сушки и обработки ВКМ.

По данным химического анализа в исследуемых образцах ВПС и ВКС содержится, мас. %: (0.42–0.71) Na₂O, (6.18–6.76) B_2O_3 , (90.60–91.31) SiO₂, (1.76–2.12) Bi_2O_3 [11, 13]. Содержание P_2O_5 и фторид-ионов (|F|) в ВПС и ВКС не определяли.

Исследования ПС-НФФ, КС-НФФ, ВПС и ВКС методом ИК спектроскопии были проведены с помощью спектрофотометра SPECORD M-80 (Carl Zeiss JENA) в области частот 1100–400 см⁻¹ со спектральным разрешением 4 см⁻¹. Измерения проводили при комнатной температуре на образцах в виде таблеток диаметром 13 мм, спрессованных из смеси порошков стекол или ВКМ с КВг. Для изготовления таблеток была использована пресс-форма ПФ-13 в условиях вакуумной откачки (давление в вакуумной системе не более 20 мм рт. ст.). ИК спектры пропускания были измерены от 2 до 5 раз для каждого образца исследуемых стекол и висмутсодержащих композиционных материалов. Экспериментальные спектры были обработаны в программе Origin Lab 8.6 32Bit. Сглаживание (Smooth) графиков осуществлено методом FFT Filter.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлены спектры пропускания ПС-НФФ-120, ПС-НФФ-400, ПС-НФФ-600, композиционных материалов (ВПС и ВКС) на их основе, КС-НФФ-120, КС-НФФ-400, КС-НФФ-600 в диапазоне частот 1100–400 см⁻¹. Экспериментальные данные, полученные с помощью метода инфракрасной спектроскопии, сведены в табл. 2.

На ИК спектральных кривых всех базовых матриц (ПС-НФФ-120, ПС-НФФ-400, ПС-НФФ-600) и кварцоидных стекол (КС-НФФ-120, КС-НФФ-400, КС-НФФ-600) были обнаружены фундаментальные полосы при 964–952, 864–860, 852, 736–732, 720, 640–636, 604, 592, 580 см⁻¹. Полосы в области 964–952 см⁻¹ возможно связаны с валентными колебаниями немостиковых Si–OH v (Si–OH) групп и Si–O связей v (Si–O) [15–17]. Наличие полос при 964–952 см⁻¹ и наблюдаемое интенсивное поглощение при 864–860 и 852 см⁻¹ могут относиться к асимметричным валентным колебаниями Si–O–Si связей v_{as} (Si–O–Si) и валентным колебаниями SiO₄ тетраэдров v [SiO₄] [18, 19]. У базовых матриц наблюдается полоса при 736–732 см⁻¹, а у кварцоидных стекол происходит смещение полос в диапазоне 732–720 см⁻¹. Полосы при 736–732, 720, 640–636, 604, 592, 580 см⁻¹, скорее всего, связаны с симметричными валентными колебаниями Si–O–Si связей v_s (Si–O–Si) и Si–O связей v_s (Si–O) [16–18, 20].

Теперь перейдем к рассмотрению ИК спектров пропускания висмутсодержащих композиционных материалов. Из табл. 2 видно, что у ВКМ в большинстве случаев на-

Номера образцов	Обозначения стекол/композитов	Температура термической обработки ПС (термическое модифицирование) <i>Т</i> _{Т.М.} , °С	Температура сушки*/термической обработки висмутсодержащих ком- позиционных материалов <i>T</i> , °C
1	ПС-НФФ-120	120 ± 2	_
2	ВПС	120 ± 2	$50 \pm 15^{*}$
3	ВПС	120 ± 2	400 ± 10
4	ВПС	120 ± 2	570 ± 5
5	ВПС	120 ± 2	650 ± 5
6	ВПС	120 ± 2	730 ± 5
7	ВПС	120 ± 2	800 ± 3
8	КС-НФФ-120	120 ± 2	870 ± 5
9	BKC	120 ± 2	870 ± 5
10	ПС-НФФ-400	400 ± 10	—
11	ВПС	400 ± 10	$50 \pm 15^{*}$
12	ВПС	400 ± 10	400 ± 10
13	ВПС	400 ± 10	570 ± 5
14	ВПС	400 ± 10	650 ± 5
15	ВПС	400 ± 10	730 ± 5
16	ВПС	400 ± 10	800 ± 3
17	КС-НФФ-400	400 ± 10	870 ± 5
18	BKC	400 ± 10	870 ± 5
19	ПС-НФФ-600	600 ± 5	—
20	ВПС	600 ± 5	$50 \pm 15^{*}$
21	ВПС	600 ± 5	400 ± 10
22	ВПС	600 ± 5	570 ± 5
23	ВПС	600 ± 5	650 ± 5
24	ВПС	600 ± 5	730 ± 5
25	ВПС	600 ± 5	800 ± 3
26	КС-НФФ-600	600 ± 5	870 ± 5
27	ВКС	600 ± 5	870 ± 5

Таблица 1. Обозначение типов образцов исследуемых стекол и висмутсодержащих композиционных материалов

блюдается смещение фундаментальных полос в сторону ме́ньших волновых чисел по сравнению с базовыми матрицами и кварцоидными стеклами. В ИК спектрах всех композитов присутствует пять полос в областях частот 964–944, 868–852, 748–712, 648–636, 612–580 см⁻¹. Следует отметить, что у ВКМ (при $T \ge 400^{\circ}$ C) по сравнению с другими композитами наблюдаются дополнительные полосы при 564–544 см⁻¹. Это, возможно, связано с формированием оксида висмута внутри порового пространства ВКМ, а также с удалением координационно-связанной воды и дегидроксилированием связанных силанольных групп, что может приводить к формированию Bi–O–Si связей.

Поглощение при 964–960 и 952 см⁻¹, наблюдаемое у ВПС, можно приписать валентным колебаниям немостиковых Si–OH ν (Si–OH) и Si–O групп [15–17]. У ВКМ были обнаружены полосы со смещением в область частот 948–944 см⁻¹, отличающие-

Номера образцов*	Положение полос поглощения, см ⁻¹					
1	964	864	736	640	592	
2	964	856	728	640	592	
3	960	864	732	640	592	556
4	948	864	744	648	612	544
5	952	868	732	640	604	556
6	944	856	716	648	600	544
7	944	852	724	636	600	548
8	952	864	720	640	604	
9	944	864	732	640	604	564
10	960	860	732	640	592	
11	960	864	736	648	592	
12	964	864	732	640	596	
13	944	860	748	648	600	548
14	944	864	736	640	592	552
15	944	860	736	636	600	552
16	944	860	728	644	584	544
17	960	864	732	636	604	
18	948	860	720	636	592	
19	960	864	732	640	592	
20	952	864	736	636	596	
21	952	864	736	640	596	
22	944	864	740	648	600	
23	952	864	744	640	604	552
24	944	852	712	640	584	544
25	952	852	720	640	596	
26	956	852	720	640	580	
27	960	852	720	640		556

Таблица 2. Полосы поглощения (в диапазоне 1100–400 см⁻¹), обнаруженные у ПС-матриц, кварцоидных стекол и висмутсодержащих композиционных материалов в зависимости от условий их получения

* Примечание. Нумерация образцов соответствует нумерации в таблице 1.

ся по положению от полос в спектрах ПС-матриц и КС (964–952 см⁻¹). Полосы при 948–944 см⁻¹ появляются у большинства ВКМ (при $T \ge 570^{\circ}$ С), что может говорить о симметричных валентных колебаниях Ві–О связей v_s (Bi–O) в [BiO₃] группах [18].

Интенсивные полосы, обнаруженные у ВКМ, в области частот 868–852 см⁻¹ (совпадают с ПС и КС) можно отнести к асимметричным валентным колебаниями Si–O– Si связей v_{as} (Si–O–Si) и валентным колебаниям SiO₄ тетраэдров v [SiO₄] [18, 19]. Симметричные валентные колебания Si–O–Si связей v_s (Si–O–Si) и Si–O связей v_s (Si–O) наблюдаются у композитов при 648–636 см⁻¹, а также у ВПС при 736–728, 596–592 см⁻¹; у BKC при 732 или 720, 604 см⁻¹ [16–18, 20]. В отличие от ПС-матриц, у ВПС были выявлены полосы в областях частот 748–740, 724–712 см⁻¹, а у ВКС (в сравнении с КС) при 732 или 720 см⁻¹. Полосы при 748–740, 724–712 см⁻¹ (ВПС при $T \ge 570^{\circ}$ С), при 732

Рис. 1. ИК спектры пропускания висмутсодержащих композиционных материалов и стекол. Номера кривых соответствуют номерам образцов в табл. 1.

или 720 см⁻¹ (ВКС) могут быть вызваны симметричными валентными колебаниями Bi–O связей v, (Bi–O) в [BiO₃] группах [18, 21, 22]. В низкочастотной области спектра 612-580 см⁻¹ у композитов происходит смещение полос по сравнению с ПС-НФФ (592 см^{-1}) и КС-НФФ (604, 580 см $^{-1}$). Обнаруженные у ВПС полосы при 612–600 и 584 см⁻¹, а у ВКС – при 592 см⁻¹, возможно связаны с изменением локальной симметрии сильно искаженных [BiO₆] многогранников [18]. Наличие у композитов дополнительных полос в области 564-544 см⁻¹ может говорить о валентных колебаниях связей Bi-O в октаэдрических [BiO₆] структурных единицах и асимметричных валентных колебаниях Bi-O-Si связей v_{as} (Bi-O-Si) [21]. Кроме того, наличие данных полос может указывать на колебания катионов Bi^{3+} в [BiO₆] и/или [BiO₃] структурных единицах [22]. Следует отметить, что по литературным данным [23-25] известно, что кристаллические модификации оксида висмута имеют ряд полос в области частот 650-400 см⁻¹. Для низкотемпературной моноклинной модификации оксида висмута (α -Ві₂О₃) характерны ИК полосы поглощения при 645, 595, 540-534, 510-505, 465, 446, 425-422 см⁻¹ [23-25]. Известно, что ИК спектр чистого γ-Ві₂O₃ характеризуется наличием четкой полосы поглощения в области частот 500-400 см⁻¹ [26]. По другим литературным данным (см. обзор в [27]) у кристаллов Ві₂О₃ (колебания связей Ві-О в $[BiO_3]$ структурных единицах) присутствуют полосы при 840, 620–540, 470 см⁻¹, а у кристаллов α-Bi₂O₃ (колебания связей Bi–O в [BiO₆] структурных единицах) – при 595, 540, 510, 465, 425 cm^{-1} . Поэтому наличие у ВКМ полос поглощения в низкочастотных областях 612-600 и 548-544 см⁻¹ и отсутствие полос в области 500-400 см⁻¹ может указывать на наличие в композитах кристаллов Bi₂O₃, включая низкотемпературную модификацию α -Bi₂O₃. Ранее методом рентгенофазового анализа в BKM (при $T > 400^{\circ}$ C), полученных на основе высококремнеземных ПС без дополнительных добавок, было установлено наличие высокотемпературных кубических модификаций γ - и δ -Bi₂O₃ при соблюдении определенных условий синтеза [10].

Все обнаруженные у ПС-матриц, КС и ВКМ ИК полосы с их отнесением сведены в табл. 3.

Таким образом, установлено, что в ВКМ при $T \ge 400^{\circ}$ С присутствуют полосы в области 564—544 см⁻¹, которые могут быть связаны с наличием в композитах α -Bi₂O₃ и говорить о колебаниях катионов Bi³⁺ в [BiO₆] и/или [BiO₃] структурных единицах и асимметричных валентных колебаниях Bi–O–Si связей. При $T \ge 570^{\circ}$ С у большинства ВКМ проявляются полосы при 948—944 см⁻¹, которые скорее всего относятся к симметричным валентным колебаниям Bi–O связей v_s (Bi–O) в [BiO₃] группах.

ЗАКЛЮЧЕНИЕ

Синтезирована серия образцов висмутсодержащих композиционных материалов с содержанием 1.76—2.12 мас. % Bi_2O_3 на основе термически модифицированных высококремнеземных пористых стекол, подвергнутых термической обработке в диапазоне температур от 50 до 870°C.

Исследованы спектральные зависимости пропускания (в диапазоне частот 1100–400 см⁻¹) образцов методом ИК спектроскопии в зависимости от условий термического модифицирования ПС ($T_{\text{T.M.}} = 120, 400, 600^{\circ}$ С) и температуры обработки висмутсодержащих композиционных материалов.

Методом ИК спектроскопии во всех исследуемых образцах были идентифицированы колебания: v_s [SiO₄] тетраэдров, v (Si–OH) групп; v_{as} (Si–O–Si), v (Si–O) связей. У

Положение полос поглощения, см ⁻¹	Отнесение				
964–952	Колебания v (Si–OH) групп и v (Si–O) связей				
964–952	Колебания v _{as} (Si–O–Si) и v [SiO ₄]				
868-860					
852					
948–944	Колебания v _s (Bi–O) в [BiO ₃] группах				
736–728	Колебания v _s (Si–O–Si) и v _s (Si–O) связей				
720					
648–636					
604					
596-592					
580					
748-740	Колебания v _s (Bi–O) в [BiO ₃] группах				
732					
724–712					
612-600	Изменение локальной симметрии сильно искаженных				
592	[BiO ₆] многогранников				
584					
612-600	Наличие α-Bi ₂ O ₃				
564-544					
564–544	Колебания v (Bi–O) в [BiO ₆] группах, v _s (Bi–O–Si) связей, колебания катионов Bi ³⁺ в [BiO ₆] и/или [BiO ₃] структурных единицах				

Таблица 3. Полосы поглощения (в диапазоне 1100–400 см⁻¹), обнаруженные у ПС-матриц и висмутсодержащих композиционных материалов, и их отнесение

образцов ВКС и ВПС, подвергнутых термической обработке при температуре выше 570°С, были выявлены полосы при 948–944, 748–740, 732–712, 612–600, 564–544 см⁻¹, связанные с колебаниями v_s (Bi–O) связей в [BiO₃] и [BiO₆] группах и v_{as} (Bi–O–Si) связей. Можно также говорить о наличии в композитах α -Bi₂O₃.

Авторы благодарят сотрудников ЛФХС ИХС РАН Т.Г. Костыреву, Л.Ф. Дикую и Е.А. Семенову за проведение химического анализа образцов.

Работа выполнена при финансовой поддержке стипендии Президента Российской Федерации молодым ученым и аспирантам (проект СП-1914.2018.1). Образцы пористых стекол были изготовлены в рамках государственного задания по Программе фундаментальных научных исследований государственных академий наук на 2013–2020 годы (тема № АААА-А19-119022290087-1).

СПИСОК ЛИТЕРАТУРЫ

- Zhou S., Jiang N., Zhu B., Yang H., Ye S., Lakshminarayana G., Hao J., Qiu J. Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers // Advanced Functional Materials. 2008. V. 18. № 9. P. 1407–1413.
- Zhou S., Lei W., Jiang N., Hao J., Wu E., Zeng H., Qiu J. Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser // J. Materials Chemistry. 2009. V. 19. P. 4603–4608.

- Пак В.Н., Голов О.В., Грабов В.М., Демидов Е.В., Стожаров В.М. Пористое стекло в качестве реактора синтеза наночастиц висмута // Журн. общей химии. 2015. Т. 85. Вып. 10. С. 1600– 1604.
- Iskhakova L.D., Mashinsky V.M., Milovich F.O., Velmiskin V.V., Plastinin E.A., Firstov S.V., Lukashova M.V., Somov P.A., Dianov E.M. Microstructure, composition, and luminescent properties of bismuth-doped porous glass and optical fiber performs // J. Non-Crystalline Solids. 2019. V. 503– 504. P. 28–35.
- 5. Фирстов С.В., Гирсова М.А., Дианов Е.М., Антропова Т.В. Люминесцентные свойства термоиндуцированных активных центров в кварцоидных стеклах, активированных висмутом // Физ. и хим. стекла. 2014. Т. 40. № 5. С. 689–695.
- Girsova M.A., Firstov S.V., Antropova T.V. Structural and optical properties of the bismuth-containing quartz-like glasses // J. Physics: Conference Series. 2014. V. 541, article 012022. https://doi.org/10.1088/1742-6596/541/1/012022
- 7. Гирсова М.А., Фирстов С.В., Антропова Т.В. Свойства висмут-содержащих высококремнеземных стекол в зависимости от концентрации висмута и режима тепловой обработки. II. Люминесцентные свойства // Физ. и хим. стекла. 2019. Т. 45. № 2. С. 111–119.
- 8. Пат. 2605711 Российская Федерация, МПК-2006.01 С 09 К 11/08, С 09 К 11/74, С 03 С 4/12; МПК-2011.01 В 82 Y 40/00. Способ изготовления люминесцентного висмут-содержащего кварцоидного материала на основе высококремнеземного пористого стекла / Антропова Т.В., Гирсова М.А., Анфимова И.Н., Головина Г.Ф., Куриленко Л.Н., Фирстов С.В.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук. № 2015117713/05; заявл. 12.05.2015; опубл. 27.12.2016, Бюл. № 36. 17 с.: ил.
- 9. Юхин Ю.М., Михайлов Ю.И. Химия висмутовых соединений и материалов. Новоссибирск: Изд-во СО РАН. 2001. 360 с.
- Гирсова М.А. Синтез, структура и спектрально-оптические свойства композиционных материалов на основе силикатных пористых стекол, содержащих галогениды серебра или оксиды висмута. Дис. канд. хим. наук. СПб., 2015. 170 с.
- 11. Гирсова М.А., Анфимова И.Н., Куриленко Л.Н., Дикая Л.Ф. Влияние условий термообработки на оптические свойства висмутсодержащих композитов на основе высококремнеземных пористых стекол // Физ. и хим. стекла. 2019. Т. 45. № 6. С. 590–595. https://doi.org/10.1134/S0132665119060064.
- 12. Гирсова М.А., Головина Г.Ф., Анфимова И.Н., Куриленко Л.Н. Свойства висмутсодержащих высококремнеземных стекол в зависимости от концентрации висмута и режима тепловой обработки. І. Спектрально-оптические свойства // Физ. и хим. стекла. 2018. Т. 44. № 5. С. 464–472.

https://doi.org/10.7868/S0132665118050025

- 13. Гирсова М.А., Головина Г.Ф. Исследование висмутсодержащих композитов на основе термически модифицированных пористых стекол с малыми добавками P₂O₅ и фторид-ионов методом ближней инфракрасной спектроскопии // Физ. и хим. стекла. 2018. Т. 44. № 6. С. 599–606. https://doi.org/10.1134/S0132665118060070
- 14. Антропова Т.В. Физико-химические процессы создания пористых стекол и высококремнеземных материалов на основе ликвирующих щелочноборосиликатных систем. Дисс. докт. хим. наук. Санкт-Петербург, 2005. 588 с.
- Dimitriev Y., Krupchanska M., Ivanova Y., Staneva A. Sol-gel synthesis of materials in the system Bi₂O₃−SiO₂ // J. University of Chemical Technology and Metallurgy. 2010. V. 45. № 1. P. 39–42.
- Чукин Г.Д. Химия поверхности и строение дисперсного кремнезёма. М.: Типография Паладин, ООО " Принта", 2008. 172 с.
- 17. *Husung R.D., Doremus R.H.* The infrared transmission spectra of four silicate glasses before and after exposure to water // J. Materials Research. 1990. V. 5. № 10. P. 2209–2217. https://doi.org/10.1557/jmr.1990.2209
- 18. Hammad A.H., Abdelghany A.M., ElBatal H.A. Thermal, Structural, and Morphological Investigations of Modified Bismuth Silicate Glass-Ceramics // Silicon. 2017. V. 9. № 2. P. 239–248.
- 19. Ahlawat N., Sanghi S., Agarwal A., Rani S. Effect of Li₂O on structure and optical properties of lithium bismosilicate glasses // J. Alloys and Compounds. 2009. V. 480. № 2. P. 516–520. https://doi.org/10.1016/j.jallcom.2009.01.116
- 20. Лазарев А.Н. Колебательные спектры и строение силикатов. Л.: Изд-во Наука, Ленингр. отд., 1968. 347 с.
- Dult M., Kundu R.S., Berwal N., Punia R., Kishore N. Manganese modified structural and optical properties of bismuth silicate glasses // J. Molecular Structure. 2015. V. 1089. P. 32–37. https://doi.org/10.1016/j.molstruc.2015.02.025
- 22. Kundu R.S., Dult M., Punia R., Parmar R., Kishore N. Titanium induced structural modifications in bismuth silicate glasses // J. Molecular Structure. 2014. V. 1063. P. 77–82. https://doi.org/10.1016/j.molstruc.2014.01.057

- 23. Betsch R.J., White W.B. Vibrational spectra of bismuth oxide and the sillenite-structure bismuth oxide derivatives // Spectrochimica Acta Part A: Molecular Spectroscopy. 1978. V. 34. № 5. P. 505–514. https://doi.org/10.1016/0584-8539(78)80047-6
- McDevitt N.T., Baun W.L. Infrared absorption study of metal oxides in the low frequency region (700–240 cm⁻¹) // Spectrochimica Acta. 1964. V. 20. P. 799–808.
- 25. Sammes N.M., Tompsett G., Cartner A.M. Characterization of bismuth lead oxide by vibrational spectroscopy // J. Materials Science. 1995. V. 30. № 17. P. 4299–4308. https://doi.org/10.1007/bf00361509
- 26. Бобкова Н.М., Трусова Е.Е. Структура висмутборатных стекол с оксидами группы RO по данным ИК-спектроскопии // Стекло и керамика. 2015. № 3. С. 3–7.
- 27. *Iordanova R., Dimitriev Y., Dimitrov V., Kassabov S., Klissurrski D.* Glass formation and structure in the V₂O₅−Bi₂O₃−Fe₂O₃ glasses // J. Non-Cryst. Solids. 1996. V. 204. № 2. P. 141–150.