= КРАТКОЕ СООБЩЕНИЕ ===

ЗАРЯДОВЫЕ СОСТОЯНИЯ СОРБЦИОННЫХ ЦЕНТРОВ В МАТРИМИДЕ

© 2020 г. А. В. Петров^{1, *}, А. М. Тойкка¹

¹Санкт-Петербургский государственный университет, Университетская наб., 7/9, Санкт-Петербург, 199034 Россия *e-mail: a.petrov@spbu.ru

> Поступила в редакцию 11.11.19 г. После доработки 13.11.19 г. Принята к публикации 05.12.19 г.

Рассмотрены особенности электронной структуры Матримида, важные для оценки сорбционной способности указанного полимера как мембранного материала. Методом теории функционала плотности рассчитаны зарядовые состояния сорбционных центров в Матримиде. Исследованы наиболее вероятные атомы полимера, ответственные за невалентные взаимодействия полярных молекул газов или жидкостей при прохождении через мембраны на основе данного полимера.

Ключевые слова: Матримид, теория функционала плотности **DOI**: 10.31857/S0132665120020092

Матримид (Матримид[®]5218) является известным стеклообразным термопластом из класса полиимидов, обладающим достаточно высокой температурой стеклования (в форме полимерных пленок выше ~550 K) [1]. Это определило его широкое применение как мембранного материала для газоразделения и первапорации.

Известны, в частности, мембраны на основе Матримида для разделения промышленно значимых газов [2, 3], водно-органических и органических смесей [4, 5]. В указанных работах авторы ограничиваются преимущественно общей констатацией эффективности мембранного материала, без оценки сорбционных характеристик в ходе диффузии пенетранта в теле мембраны. Подобная информация существенна не только для анализа особенностей взаимодействия "полимер-пенетрант", но и для прогнозирования хода мембранного разделения в целом, в частности, для оценки коэффициентов диффузии. В первую очередь, важна характеристика электростатических взаимодействий, которые вносят наибольший вклад в невалентные связи и, соответственно, влияют на сорбционные свойства. При прохождении молекул растворителя или газа через мембрану влияние активных сорбционных центров молекул полимера является одним из главных факторов, определяющих диффузию пенетрантов. С целью оценки этого влияния в нашей работе исследованы зарядовые состояния сорбционных центров в молекуле Матримида. Эти задачи решались с использованием различных функционалов, применяемых в методе ТФП. Влияние растворителя на величины зарядов оценивалось в рамках модели COSMOS.

В соответствии с проведенным анализом литературных данных, квантово-химические расчёты полиимидов, выполненные с различными приближениями, хорошо объясняют физико-химические свойства: ультрафиолетовые фотоэлектронные спектры [6], оптические абсорбционные спектры [7], фотоэмиссионные спектры [8], конформационные свойства [9], тонкая структура плотности состояний валентной зоны [10],

Рис. 1. Фрагмент молекулы Матримида.

адгезия меди и никеля [11], ИК-спектр [12], энергетика больших деформаций [13], диэлектрическая постоянная и энергетическая щель [14]. Однако, изучению зарядовых состояний атомов в полиимидах и, в частности, в Матримиде, практически не уделяется внимание. В то же время, такая информация представляется полезной и значимой при оценке механизмов сорбции полярных молекул в Матримиде в ходе мембранного разделения.

Атомы кислорода и азота в составе молекулы Матримида (детальный фрагмент молекулы представлен на рис. 1) являются сорбционными центрами: это связано с электростатическим взаимодействием с полярными молекулами диффундирующего флюида. Заряды на этих центрах формируются в результате распределения электронной плотности в молекуле Матримида. Неоднородность такого распределения оценивается по схеме Малликена [15] для относительного сравнения зарядовых состояний, выполненных в рамках одной методики.

Для расчетов электронной структуры мономера Матримида с полной оптимизацией геометрии применялся метод ТФП, реализованный на атомном базисе DNP (v. 4.4) с функционалами PBE [16], PW91 [17] и HCTH [18] в программе DMol³ [19] из программного пакета Materials Studio. Как видно из результатов расчётов в вакууме, представленных в таблице, максимальный отрицательный заряд имеют атомы кислорода O_1 и O_2 , которые смещают на себя электронную плотность связанных с ними атомов углерода C_1 и C_2 . Таким образом, атомы C_1 и C_2 имеют положительные заряды, близкие к атомам кислорода по абсолютной величине. Значительный отрицательный заряд имеет атом кислорода O_3 , который не компенсирует положительный заряд ближайшего атома углерода C_3 . Атом азота также имеет значительный отрицательный заряд, но меньший в сравнении с атомами кислорода.

Оценку взаимодействия полярных жидкостей с полимером проводили на основе континуальной модели окружающей среды COSMOS. Рассматривали конкретные жидкости — воду и метанол. Расчеты показали, что распределение электронной плотности, по сравнению с вакуумом, меняется таким образом, что отрицательные заряды атомов кислорода увеличиваются (по абсолютной величине), а заряд атома азота уменьшается (см. табл. 1). Наибольшие отрицательные заряды имеют атомы кислорода, что определяет их преимущественное влияние на сорбцию полярных молекул в ходе диффузии.

Сравнительный анализ применения различных функционалов обобщенной градиентной аппроксимации отражает сохранение общих тенденций в расчетах зарядовых состояний сорбционных центров Матримида, как в вакууме, так и в полярных жидкостях, что говорит об устойчивости распределения электронной плотности в полимере.

Функционал	N	O _{1, 2}	O ₃	C _{1, 2}	C ₃	C ₄
Вакуум						
PBE	-0.303	$-0.386 \\ -0.391$	-0.380	0.388 0.386	0.343	0.195
PW91	-0.305	$-0.391 \\ -0.387$	-0.380	0.386 0.389	0.336	0.185
НСТН	-0.337	$-0.393 \\ -0.397$	-0.380	0.394 0.388	0.318	0.212
Вода						
PBE	-0.289	$-0.442 \\ -0.441$	-0.435	$0.408 \\ 0.405$	0.361	0.179
PW91	-0.293	$\begin{array}{c}-0.442\\-0.440\end{array}$	-0.435	$0.407 \\ 0.405$	0.353	0.171
НСТН	-0.317	$-0.451 \\ -0.450$	-0.436	0.413 0.407	0.340	0.194
Метанол						
PBE	-0.290	$-0.439 \\ -0.440$	-0.432	$0.407 \\ 0.405$	0.361	0.180
PW91	-0.294	$-0.439 \\ -0.439$	-0.433	$\begin{array}{c} 0.407 \\ 0.404 \end{array}$	0.353	0.172
НСТН	-0.318	$-0.450 \\ -0.448$	-0.435	0.413 0.406	0.339	0.195

Таблица 1. Заряды сорбционных центров в Матримиде (в единицах заряда электрона)

Полученные данные позволяют утверждать, что именно рассмотренные сорбционные центры должны оказывать существенное влияние на диффузию полярных флюидов в непористой полимерной мембране.

Работа выполнена при финансовой поддержке Российского научного фонда (РНФ), грант № 16-13-10164.

СПИСОК ЛИТЕРАТУРЫ

- Konnertz N., Bohning M., Schonhals A. Dielectric investigations of nanocomposites based on Matrimid and Polyhedral Oligomeric Phenethyl-Silsesquioxanes (POSS) // Polymer. 2016. Vol. 90.P. 89. https://doi.org/10.1016/j.polymer.2016.02.060
- Castro-Muñoz R., Martin-Gil V., Ahmad M.Z., Fíla V. Matrimid® 5218 in preparation of membranes for gas separation: Current state-of-the-art // Chem. Eng. Comm. 2018. V. 205(2). P. 161. https://doi.org/10.1080/00986445.2017.1378647
- 3. *Aziz F., Ismail A.F.* Preparation and characterization of cross-linked Matrimid® membranes using para-phenylenediamine for O2/N2 separation // Sep. Purif. Technol. 2010. V. 73. P. 421. https://doi.org/10.1016/j.seppur.2010.05.002
- 4. *Castro-Muñoz R., Galiano F., Fíla V., Drioli E., Figoli A.* Matrimid®5218 dense membrane for the separation of azeotropic MeOHMTBE mixtures by pervaporation // Sep. Purif. Technol. 2018. 199. P. 27. https://doi.org/10.1016/j.seppur.2018.01.045
- Jiang L.Y., Chung T.-S., Rajagopalan R. Dehydration of alcohols by pervaporation through polyimide Matrimid asymmetric hollow fibers with various modifications // Chem. Eng. Sci. 2008. V. 63. P. 204. https://doi.org/10.1016/j.ces.2007.09.026
- Brédas J.L., Clarke T. C. Electronic structure of polyimide // J. Chem. Phys. 1987. V. 86. P. 253. https://doi.org/10.1063/1.452615
- 7. LaFemina J.P., Arjavalingam G., Hougham G. Electronic structure and ultraviolet absorption spectrum of polyimide // J. Chem. Phys. 1989. V. 90. P. 5154. https://doi.org/10.1063/1.456558
- 8. Meyer III H.M., Wagner T.J., Weaver J.H., Feyereisen M.W., Almlof J. Photoemission, inverse photoemission, and ab initio SCF investigations of the electronic structure of polyimide // Chem.

Phys. Lett. 1989. V. 164. P. 527.

https://doi.org/10.1016/0009-2614(89)85251-0

 Kafafi S.A., LaFemina J.P., Nauss J.L. Electronic Structure and Conformation of Polymers from Cluster Molecular Orbital and Molecular Mechanics Calculations: Polyimide // J. Am. Chem. Soc. 1990, V. 112, P. 8742.

https://doi.org/10.1021/ja00180a015

- Kowalczyk S.P., Stafström S., Brédas J.L., Salaneck W.R., Jordan-Sweet J.L. Electronic structure of polyimide and related monomers: Theory and experiment // Phys. Rev. B. V. 41. 1990. P. 1645. https://doi.org/10.1103/PhysRevB.41.1645
- 11. Zhang J., Sullivan M.B., Zheng J.W., Loh K.P., Wu P. Theoretical Study on Polyimide-Cu(100)/Ni(100) Adhesion // Chem. Mater. 2006. V. 18. P. 5312. https://doi.org/10.1021/cm052865n
- Nishikawa Y., Nakano Y., Noda I. Two-Dimensional Correlation Analysis of Polyimide Films using Attenuated Total Reflection-Based Dynamic Compression Modulation Step-Scan Fourier Transform Infrared Spectroscopy // Appl. Spectroscopy. 2007. V. 61. P.873. https://doi.org/10.1366/000370207781540015
- 13. Fujinami A., Ogata S., Kimizuka H., Shibutani Y. The Energetics of Large Deformations of a Single Polyimide Molecular Chain: DFT and MO Calculations // Macromol. Theory Simul. 2008. V. 17. P. 488.

https://doi.org/10.1002/mats.200800058

- 14. Ma R., Baldwin A.F., Wang C., Offenbach I., Cakmak M., Ramprasad R., Sotzing G.A. Rationally Designed Polyimides for High Energy Density Capacitor Applications // Appl. Mater. Interfaces. 2014. V. 6. P. 10445. https://doi.org/10.1021/am502002v
- Mulliken R.S. Electronic population analysis on LCAO-MO molecular wave functions. I and Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies // J. Chem. Phys., 1955. V. 23. P. 1833. https://doi.org/10.1063/1.1740588,10.1063/1.1740589
- Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett., 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- 17. Perdew J.P., Wang Y. Generalized Gradient Approximation Made Simple // Phys. Rev. B. 1992. V. 45. P. 13244.
 https://doi.org/10.1103/Phys.Rev. B 45.12244.

https://doi.org/10.1103/PhysRevB.45.13244

- Boese A.D., Handy N.C. A new parametrization of exchange-correlation generalized gradient approximation functionals // J. Chem. Phys. 2001. V. 114. P. 5497. https://doi.org/10.1063/1.1347371
- Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules // J. Chem. Phys. V. 92. P. 508. https://doi.org/10.1063/1.458452