ВЛИЯНИЕ ПЕРЕОХЛАЖДЕНИЯ И ОТКЛОНЕНИЙ ОТ СТЕХИОМЕТРИИ НА КИНЕТИКУ И МЕХАНИЗМ КРИСТАЛЛИЗАЦИИ СТЕКЛА As₂Se₃

© 2020 г. Е.В.Школьников*

Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., 5, Санкт-Петербург, 194021 Россия

*e-mail: eshkolnikov@yandex.ru

Поступила в редакцию 15.04.19 г. После доработки 13.11.19 г. Принята к публикации 05.12.19 г.

Проведено сравнительное исследование кинетики массовой объемной кристаллизации массивных стекол As₂Se₃, As_{1.9}Se₃, As_{2.1}Se₃ при 240°С с использованием модели Колмогорова–Аврами. Выполнен теоретический анализ экспериментальных зависимостей скорости линейного роста кристаллов As₂Se₃ от температуры и вязкости стекла As₂Se₃. Показано, что в стекле As₂Se₃ при переохлаждениях $\Delta T = 30-135^{\circ}$ С вероятен дислокационный рост кристаллов в форме сферолитов. Для индивидуальных пластинчатых кристаллов As₂Se₃ с бездислокационными гранями внутри сферолитов при $\Delta T = 75-135^{\circ}$ С вероятен механизм роста с поверхностной двумерной нуклеацией (2Dsg-model).

Ключевые слова: массовая объемная и поверхностная кристаллизация стекол, влияние переохлаждения и отклонений от стехиометрии на кинетику и механизм линейного роста кристаллов

DOI: 10.31857/S0132665120020109

введение

В работах [1, 2] исследовано влияние малых добавок олова и свинца на кинетические параметры ступенчатых превращений при изотермической объемной кристаллизации стекол на основе As_2Se_3 . Чистое стекло As_2Se_3 , используемое в электронной технике и волоконной ИК оптике, при термообработке значительно выше температуры стеклования кристаллизуется преимущественно с поверхности в изотермических [2] и неизотермических условиях [3]. Кинетику изотермической кристаллизация стекла As_2Se_3 исследовали методами измерения плотности, электропроводности и рентгенофазового анализа [2], дифференциальной сканирующей калориметрии и микроскопии с учетом влияния условий синтеза и дисперсности стеклопорошков [4—6].

Влияние величины переохлаждения ΔT на механизм и кинетические параметры кристаллизации стекла As₂Se₃ изучено недостаточно, а влияние отклонений от стехиометрии на кристаллизацию As₂Se₃ не исследовано.

Цель работы — теоретический анализ результатов экспериментальных исследований кинетики изотермического линейного роста кристаллов в стекле As_2Se_3 , сравнительный анализ кинетики и механизма изотермической кристаллизации стекол As_2Se_3 , $As_1 gSe_3$ и $As_2 gSe_3$ в интервале температур 240–330°С.

МЕТОДИКА ЭКСПЕРИМЕНТА

Стекла $A_{s_2}Se_3$, $A_{s_1}Se_3$ и $A_{s_2}Se_3$, называемые ниже стеклами соответственно I, II и III синтезировали методом вакуумной плавки из особо чистых элементных веществ с общей массой 7 г в интервале 500-700°С с последующей закалкой кварцевых ампул с расплавами в воздухе от 700°С. Контроль стеклообразования и однородности закаленных сплавов проводили аналогично [7]. При исследовании поэтапной объемной изотермической кристаллизации стекол в форме шлифованных дисков (4 образца в закрытых бюксах с воздухом) для исключения вклада поверхностной кристаллизации в измеряемые свойства стекол механически удаляли внешний закристаллизованный слой. Эффективную плотность d кристаллизующихся стекол определяли при комнатной температуре гидростатическим взвешиванием в толуоле, микротвердость Н измеряли методом Виккерса на приборе ПМТ-3. Рентгенофаовый анализ (РФА) выполняли в основном на дифрактометре УРС-50ИМ аналогично [1, 2]. Дифференциальный термический анализ (ДТА) проводили в вакуумированных кварцевых ампулах на дериватографе системы F. Paulik, J. Paulik, L. Erdey. Удельную электропроводность σ полупроводниковых сплавов измеряли в изотермических условиях в интервале 20-100°C с помощью моста постоянного тока Р4060. Среднюю скорость линейного роста кристаллов определяли, как и ранее [8], с погрешностью $\pm 5-10\%$, измеряя по ГОСТ 22290-76 с помощью микроскопа толщину закристаллизованного слоя в нескольких точках по периметру скола полированных пластин после термообработки в бюксе с силиконовым маслом.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При выборе температурного интервала кристаллизации учитывали результаты ДТА при скорости нагревания 6°С/мин: температуры стеклования T_g (174, 170 и 172 ± 2°С), температуры максимума экзотермического эффекта кристаллизации T_{max} (327, 322 и 338 ± 2°С) соответственно для стекол As₂Se₃, As_{1.9}Se₃ и As_{2.1}Se₃ и температуру плавления T_m (375 ± 2°С) выделяющейся фазы стабильного соединения α -As₂Se₃ [2].

Влияние отклонений от стехиометрии на кинетику массовой изотермической кристаллизации стекла As₂Se₃.

Исследование поэтапной кристаллизации стекол I–III при 240°С показало, что отклонения от стехиометрии на 1.2 ат. % мышьяка (селена) увеличивали по сравнению с As_2Se_3 склонность стекол к поверхностной кристаллизации, протекавшей быстрее объемного превращения и затруднявшей его исследование. Удаление поверхностного закристаллизованного слоя у стекол $As_{1.9}Se_3$ и $As_{2.1}Se_3$ приводило к образованию трещин и разрушению образцов до завершения объемной кристаллизации. Полученные результаты, представленные в табл. 1, проанализированы по методике, описанной в работе [1].

Из данных табл. 1 (см. этапы № 2) следует, что избыток 1.2 ат. % Аѕ в 1.5 раза увеличивает, а избыток 1.2 ат. % Ѕе в 4 раза уменьшает индукционный период $\tau_{инд}$ объемной кристаллизации стекла As₂Se₃ при 240°С. В течение $\tau_{инд}$ исследуемые образцы не содержали кристаллических включений, видимых в инфракрасный микроскоп МИК-1, и были рентгеноаморфными; плотность, микротвердость и параметры электропроводности образцов практически не изменялись. Последующее выделение кристаллической фазы As₂Se₃ в стеклах I–III приводило к постепенному повышению эффективной плотности (на 3.1% при чувствительности метода 0.03%) и энергии активации собственной электропроводности E_{σ} полупроводниковых стеклокристаллических ма-

N⁰	Время,	$H\pm 3$	$-\lg\sigma_{293}$	$\lg\sigma_0\pm 0.1$	$E_{\sigma} \pm 0.02,$	$d \pm 0.002$,	P_d	P_x	Фазовый состав	
этапа	Ч	кг/мм²	(Ом ⁻	¹ см ⁻¹)	эВ	г/см3	%		по данным РФА	
Стекло As ₂ Se ₃										
1	0	140	12.1	3.2	1.80	4.607	0		Аморфная фаза	
2	12	140	12.1	3.3	1.82	4.607	0	0		
3	24	143	12.2	3.5	1.84	4.613	4.0		Аs ₂ Se ₃ и аморф-	
4	33	141				4.616	6.5		ная фаза	
5	44	140	12.3	3.4	1.83	4.630	16			
6	55	112	12.4	3.6	1.85	4.642	25			
7	60	109				4.671	45			
8	76	106	12.5	3.6	1.86	4.695	60			
9	100	101	12.6	3.5	1.88	4.710	72	65		
10	125	72	12.8	3.5	1.95	4.746	97	90		
11	150	68				4.748	98.6			
12	190	63	13.4	3.6	2.01	4.749	99.3			
13	220	61	13.5	3.9	2.09	4.750	100	100	As ₂ Se ₃	
				С	текло As _{1/}	₉ Se ₃				
1	0	136	11.9	3.2	1.78	4.606	0		Аморфная фаза	
2	2.9	138	11.9	3.2	1.78	4.606	0	0		
3	9	137	12.0	3.3	1.80	4.612	4.0		Аs ₂ Se ₃ и аморф-	
4	12	137				4.622	11		ная фаза	
5	15	136	12.2	3.2	1.81	4.639	23			
6	22	130				4.662	39			
7	30	114	12.5	3.6	1.86	4.695	62			
8	35	105	12.6	3.6	1.87	4.708	71	65		
Стекло As _{2.1} Se ₃										
1	0	137	12.0	3.1	1.78	4.609	0		Аморфная фаза	
2	18	140	12.2	3.1	1.80	4.609	0	0		
3	41	143	12.2	3.5	1.84	4.612	2.0		Аs ₂ Se ₃ и аморф-	
4	50.5	142				4.614	3.2		ная фаза	
5	60	136	12.3	3.3	1.83	4.619	7.0			
6	69	134				4.625	11			
7	80	134	12.3	3.4	1.84	4.626	12	10		

Таблица 1. Кинетические данные объемной кристаллизации стекол As $_2$ Se $_3$, As $_{1.9}$ Se $_3$ и As $_{2.1}$ Se $_3$ при 240°C

Рис. 1. Изотермы степени объемной кристаллизации стекол As₂Se₃ (*1*), As_{1.9}Se₃ (*2*) и As_{2.1}Se₃ (*3*) при 240°C по данным измерения эффективной плотности закаленных образцов.

териалов, а также к понижению их микротвердости и удельной электроповодности. Определенные аналогично [1, 2] значения процента объемной кристаллизации по данным измерения плотности (P_d ,) и данным РФА (P_x) удовлетворительно согласуются, свидетельствуя о замедляющем действии избытка 1.2 ат. % Аѕ и ускоряющем действии избытка 1.2 ат. % Se на объемную кристаллизацию стекла As₂Se₃ (табл. 1).

Анализ изотерм α (τ) на рис. 1 проведен на основе уравнения Колмогорова–Аврами для неполных [1] изотермических фазовых превращений

$$\alpha = 1 - \exp(-k\tau_{\text{KHH}}^n),\tag{1}$$

где α – степень завершенности кристаллизации по отношению к анализируемой фазе, принятая равной ~0.01 P_d (табл. 1), так как для фазы As₂Se₃ предельное значение объемной доли равно 1.0 в стекле I и ~0.95 в стелах II и III; k, n – константа скорости и кинетический параметр массовой кристаллизации; $\tau_{кин}$ – кинетическое время (время превращения), определяемое разностью общего времени термообработки τ и индукционного периода $\tau_{инд}$ кристаллизации. При выводе уравнения Колмогорова–Аврами предполагались отсутствие индукционного периода, неизменность скорости нуклеации или концентрации готовых зародышей, а также скорости роста кристаллов в течение всего процесса превращения. Следует заметить, что при наличии индукционного периода на экспериментальных изотермах α (τ) использование общего времени термообработки τ вместо времени фиксируемого превращения $\tau_{кин}$ приводит к получению завышенных значений параметра n массовой кристаллизации стекол [2, 4, 5].

Найденные двукратным логарифмированием уравнения (1) с использованием для величины α данных P_d (табл. 1) и метода наименьших квадратов (рис. 2) значения кинетических параметров равны: $n = 2.05 \pm 0.11$, 2.00 ± 0.13 и 2.1 ± 0.2 , $-\lg k = 11.1 \pm 0.6$, 10.0 ± 0.6 и 12.1 ± 1.2 для кристаллизации стекол соответственно As₂Se₃, As_{1.9}Se₃ и As_{2.1}Se₃. Полученные значения кинетического параметра *n* указывают на преимущественно гетерогенное зарождение и двумерный рост пластинчатых кристаллов As₂Se₃ в стеклах I–III. Морфология роста в виде пластинок характерна для монокристаллов As₂Se₃ и установлена прямым методом электронной микроскопии для растущих индивидуальных кристаллов в стекле As₂Se₃ в интервале температур 240–350°C [4].

При гетерогенном объемном зарождении и двумерном росте кристаллов (*n* = 2) константа скорости массовой изотермической кристаллизации определяется формулой [1, 2]

$$k = \pi l N u^2, \tag{2}$$

где l – толщина растущей пластинки кристалла(~10⁻⁷ см для As₂Se₃), N – объемная концентрация готовых центров кристаллизации, u – скорость линейного роста кри-

Рис. 2. Графическое решение уравнения $\alpha = 1 - \exp(-k \tau_{KHH}^n)$ для объемной изотермической кристаллизации стекол As₂Se₃ (*I*), As_{1.9}Se₃ (*2*) и As_{2.1}Se₃ (*3*) при 240°C.

сталлов. Оценка концентрации готовых центров *N* по формуле (2) с использованием приведенных выше значений *k* и экспериментальных значений *u* (см. табл. 2) дает для объемной изотермической кристаллизации стекла As_2Se_3 при 240°C 1.3 × 10⁹ см⁻³, а по скорости гомогенного зарождения ($I \sim 3 \text{ см}^{-3} \text{ с}^{-1}$) и индукционному периоду ($\sim 5 \times 10^4 \text{ c}$) – $2 \times 10^5 \text{ см}^{-3}$ [2]. Поэтому вкладом гомогенного зарождения (< 0.02% при 240°C) кристаллов As_2Se_3 в концентрацию готовых центров *N* в формуле (2) можно пренебречь. Аналогичная оценка величины *N* для объемной кристаллизации стекол $As_{1.9}Se_3$ и $As_{2.1}Se_3$ при 240°C дает соответственно $1.8 \times 10^9 \text{ u} 5 \times 10^8 \text{ см}^{-3}$. Индукционный (скрытый) период изменяется антибатно концентрации готовых центров объемной кристаллизации в ряду стекол $As_{1.9}Se_3 \rightarrow As_2Se_3 \rightarrow As_{2.1}Se_3$ и равен, соответственно, 2.9 ± 0.3 , 12 ± 1 и 18 ± 2 ч при 240°C. Что касается природы гетерогенных центров *N*, то ими могут быть наночастицы малорастворимых селенидов примесных тяжелых металлов (Sn, Pb, Bi, In по 10^{-4} мас. %) в использованном для синтеза селене квалификации "ос. ч. 17-3". Согласно [1, 2], малые добавки селенидов этих металлов As_2Se_3 и значительно уменьшать индукционный период объемной кристаллов As_2Se_3 и значительно уменьшать индукционный период объемной кристаллов добъемной кристаллов (Sn, Pb, Bi, In ериод объемное зарождение кристаллов As_2Se_3 и значительно уменьшать индукционный период объемной кристаллизации стекла.

Влияние переохлаждения и отклонений от стехиометрии на кинетику и механизм линейного роста кристаллов в стекле As₂Se₃

Экспериментальные зависимости толщины *l* поверхностного закристаллизованного слоя стекол I–III от времени термообработки τ при 270°С представлены на рис. 3. Линейный характер этих и аналогичных зависимостей при других температурах, наблюдаемый по истечении индукционного периода $\tau_{инд}$, указывает на кинетический контроль скорости роста поверхностного кристаллического слоя в стеклах I–III. Первичное зарождение кристаллов происходило вероятнее всего гетерогенно на дефектах полированной поверхности [9] и в нашей работе не исследовалось. При выборе темпе-

Стекло	$T \pm 1 ^{\circ}\mathrm{C}$		т _{инд,}	и	$u_T(\Phi.3)$	$\lg u_T(\Phi.3) - \lg u$
CICKIO		Ч	с		см/с	
As ₂ Se ₃	240	27	9.7×10^4	$\begin{array}{c} 2.0 \times 10^{-7} \\ 3.4 \times 10^{-7} \ [4] \\ 1.3 \times 10^{-7} \ [6] \end{array}$	9×10^{-8}	$-0.35 \\ -0.58 \\ -0.16$
	270	5.0	1.8×10^4 ~3 × 10 ³ [4]	$\begin{array}{c} 1.4 \times 10^{-6} \\ 2.4 \times 10^{-6} \ [4] \\ 1.2 \times 10^{-6} \ [6] \end{array}$	8.2×10^{-7}	$-0.23 \\ -0.46 \\ -0.12$
	310	0.5	1.8×10^{3}	1.4×10^{-5} 1.1×10^{-5} [6]	1.2×10^{-5}	-0.06 + 0.08
	330	0.083	3.0×10^{2}	3.3×10^{-5} 2.0×10^{-5} [6]	2.7×10^{-5}	-0.11 + 0.13
As _{1.9} Se ₃	240	7	2.4×10^{4}	4.2×10^{-7}	1.4×10^{-7}	-0.46
	270	2.0	7.2×10^{3}	2.8×10^{-6}	1×10^{-6}	-0.4
As _{2.1} Se ₃	240	39	1.4×10^{5}	1.3×10^{-7}	6.4×10^{-8}	-0.30
-	270	7	2.5×10^{4}	9.8×10^{-7}	6.3×10^{-7}	-0.19

Таблица 2. Сравнительное влияние температуры и отклонений от стехиометрии на индукционный период и скорость линейного изотермического роста индивидуальных кристаллов в сферолитах [4], сферолитов [6] и роста поверхностного кристаллического слоя в стекле As₂Se₃^{*}

* u – экспериментальные данные Э.Ю. Бессоновой и автора в первых строках, в следующих строках – из работ [4] и [6], u_T – расчет автора по теоретической формуле (3).

ратурного интервала кристаллизации стекол на основе As₂Se₃ учитывали возможность взаимосвязи (приближенного равенства) кинетических параметров роста кристаллов и вязкого течения стекол [8] при температурах выше температуры декаплинга диффузии и вязкости [10].

Рис. 3. Зависимости толщины повехностного закристаллизованного слоя от времени термообработки при 270° С в стеклах: As₂Se₃ (*1*), As_{1.9}Se₃ (*2*), As_{2.1}Se₃ (*3*).

Рис. 4. Температурные зависимости скорости роста u (1-3), приведенной скорости u_c (см. текст) роста кристаллов(4-6) и величины $u/\Delta T^2$ (7-9) в стекле As₂Se₃ (анализ эксперименентальных данных u (см. табл. 2) из работ [4] (кривые 1, 4, 7), [6] (кривые 2, 5, 8), данных Э.Ю. Бессоновой и автора (кривые 3, 6, 9)).

Найденные из зависимостей $l(\tau)$ значения $\tau_{инд}$ и средней скорости линейного изотермического роста *и* закристаллизованного слоя в стеклах I–III приведены в табл. 2 и на рис. 4. Как видно, экспериментальные значения *и* скорости поверхностной кристаллизации полированного стекла As₂Se₃ в настоящей работе являются промежуточными между результатами работ [6] и [4]. В работе [6] определяли линейную скорость роста сферолитов (сферических агрегатов пластинчатых кристаллов) в объеме стекла As₂Se₃ с использованием оптической микроскопии, а в работе [4] – максимальные значения скорости анизотропного роста индивидуальных кристаллов As₂Se₃ в сферолитах, полученные методом сканирующей электронной микроскопии с предварительным селективным травлением аморфной фазы. При наличии согласованности экспериментальных зависимостей *и* (*T*) наблюдается заметное различие скорости роста кристаллов u (рис. 4, кривые 1-3), вызванное в основном различием методик получения образцов As₂Se₃ и измерения скорости линейного роста кристаллов в них.

В отличие от стекла стехиометрического состава As₂Se₃ с тригонально-пирамидальными структурными единицами ("с. е.") AsSe_{3/2}, избыточный мышьяк (1.2 ат. %) в стекле As_{2.1}Se₃ образует с. е. As₂Se_{4/2}, характерные для трудно кристаллизующегося стекла AsSe, а избыточный селен (1.2 ат. %) в стекле As_{1.9}Se₃ образует цепочечные с. е. SeSe_{2/2}, характерные для тригонального и довольно легко кристаллизующегося стеклообразного селена. По сравнению с As₂Se₃ стекло As_{2.1}Se₃ имеет более высокие, а стекло As_{1.9}Se₃ – более низкие значения динамической вязкости η [11] и индукционного периода кристаллизации $\tau_{инд}$ (рис. 3, кривые *1–3*, табл. 2). Скорость линейного роста поверхностного кристаллического слоя *и* при 270°C в стекле As_{2.1}Se₃ примерно в 1.5 раза меньше, а в стекле As_{1.9}Se₃ больше в 2 раза, чем в стекле стехиометрического состава As₂Se₃ (табл. 2).

Для определения механизма роста кристаллов в исследуемых стеклах использовали сравнение экспериментально найденных температурных зависимостей скорости роста кристаллов u(T) с теоретическими зависимостями, ожидаемыми для известных механизмов. Нормальный рост кристаллов с малой энтропией плавления ($\Delta S_m < 2R$) происходит равновероятно в любой точке атомно-шероховатой грани по нормали к ней и наблюдается в жидкостях с малой вязкостью [12]. Для кристаллов с $\Delta S_m > 4R$, включая As₂Se₃ (63.5 Дж/моль К [13]) плотно упакованные грани согласно [12] должны быть атомно-гладкими, а анизотропия роста – достаточно выраженной и определяемой дислокациями реального кристалла.

Из сравнения результатов измерения [6] и расчета lgu (табл. 2, 3) следует, что скорость стационарного роста пластинчатых (plate-like) кристаллов As₂Se₃ в стекле того же состава при t = 240-345°C ($\Delta T = 135-30$ °C) может быть удовлетворительно рассчитана, если в теоретическую формулу [14] ввести вероятностный фактор f [13] роста на ступенях винтовых дислокаций согласно

$$u = f \,\delta \text{vexp}(-G_a^{"}/RT) \left[1 - \exp(\Delta G/RT)\right],\tag{3}$$

где R – газовая константа, T – абсолютная температура, $f(T\Delta T)$ – вероятностный фактор, или плотность точек роста (см. ниже и табл. 3); δ – элементарное перемещение фронта кристаллизации, принятое равным сумме эффективной толщины полимерно-сетчатого слоя и кратчайшего расстояния между слоями, параллельными плоскости спайности (010). Величина δ оценена по структурным данным [15] равной ~0.68 нм. Уменьшение свободной энергии при кристаллизации ΔG на моль As₂Se₃ рассчитано аналогично [8] и представлено в табл. 3. В качестве величины v принята основная частота валентных колебаний мостиковых атомов селена, равная согласно колебательным спектрам стекла As₂Se₃ (6.5–6.4) × 10¹² с⁻¹ в интервале температур 220–358°C [16]. Свободная энергия активации нереконструктивного роста кристаллов $\Delta G_a^{"}$ при расчете скорости дислокационного роста по формуле (3) принималась, как и ранее [8], равной свободной энергии активации вязкого течения стекол $\Delta G_{\eta}^{#}(T)$, найденной по формуле (4) и представленной в табл. 3. Величина $\Delta G_{\eta}^{\#}$ определена нами по экспериментальным данным вязкости η (T) стекла As₂Se₃ [11] с использованием наиболее общего уравнения Эйринга

$$\Delta G_{\rm n}^{\#} = RT[\ln\eta - \ln(N_{\rm A}h/V_{\rm n})],\tag{4}$$

где V_{η} – мольный объем мостиковых атомов селена (~19 см³/ грамм-атом Se, найденный по структурным данным [15]; *h* – постоянная Планка, $N_{\rm A}$ – число Авогадро.

<i>T</i> , °C	lgη (η, Π) [11]	$\Delta G_{\eta}^{\#} \pm 0.9$	$\Delta G_{\rm a}^{"} \pm 0.8$	$-\Delta G \pm 0.2$	_	—lg <i>u</i> (<i>u</i> , см/с)				
		кДж/моль			$f \times 10^2$	расчет	данные измерений			
						по формуле (3)	[6]	[4]	*	
Стекло As ₂ Se ₃										
240	7.44	109.5.	108.9	6.8	3.2	7.05	6.89	6.47	6.70	
250	7.02	107.4.	108.1	6.4	3.0	6.71	6.66	6.17	6.42	
260	6.65	105.6.	106.8	6.0	2.8	6.38	6.38	5.89		
270	6.30	104.0.	103.7	5.4	2.6	6.08	5.96	5.62	5.85	
280	5.90	101.7	102.1	5.2	2.4	5.75	5.70	5.34		
290	5.50	99.2	100.3	4.7	2.2	5.41	5.44	5.10	5.27	
300	5.19	97.6	98.6	4.2	2.0	5.28	5.22	4.90		
310	4.85	95.5	96.7.	3.7	1.7	4.91	4.99		4.85	
317	4.60	93.8.	95.5	3.4	1.6	4.76	4.88			
330	4.23	91.6	93.1	2.7	1.3	4.56	4.69		4.48	
335	4.08	90.1	92.6	2.4	1.1	4.47	4.67			
345	~3.8	88.7	90.4	1.8	0.85	4.32	4.60			
350	~3.7	88.1	89.4	1.6	0.74	4.43	4.59			
Стекло As _{2.1} Se ₃										
240	7.48	109.8		6.2	2.9	7.19			6.89	
270	6.34	104.4		4.9	2.3	6.20			6.01	
Стекло As _{1.9} Se ₃										
240	7.1	106.1		5.7	2.8	6.84			6.38	
270	~6.1	~102		4.4	2.2	~6.0			5.55	

Таблица 3. Результаты расчета и измерений скорости роста кристаллов в стеклах As_2Se_3 , $As_{2.1}Se_3$ и $As_{1.9}Se_3$

* Данные Э.Ю. Бессоновой и автора.

Вероятностный фактор f для дислокационного роста кристаллов возрастает с увеличением $T\Delta T$ (табл. 3) согласно выражению [8]

$$f = \frac{\delta T \Delta T \Delta H_m}{4\pi\sigma T_m^2 V_M},\tag{5}$$

где σ – поверхностное натяжение стекло-кристалл для торцевой грани пластинчатого кристалла As₂Se₃(1.5 × 10⁻⁵ Дж/см²) определялось с учетом анизотропии роста кристаллов As₂Se₃ в интервале температур 240–350°С [4, 17] как утроенная величина σ_l для боковых граней, найденная по соотношению Скапского–Тернбалла (Skapski–Turnbull relation) $\sigma = \beta \Delta H_m / (N_A^{1/3} V_m^{2/3})$ [14]. Здесь β – константа, равная 0.2; ΔH_m – молярная энтальпия плавления, T_m – температура плавления, V_m – мольный объем кристалла. Величины ΔH_m , T_m и V_m для кристалла As₂Se₃ приняты равными, соответственно, 41 кДж/моль, 648 К и 81.4 см³/моль. По данным микроскопии [17] рост кристаллов со слоистой структурой As₂Se₃ в стекле 0.9As₂Se₃ · 0.1Sb₂Se₃ в перпендикулярном направлении к плоскости спайности (010) происходил в три раза медленнее, чем вдоль плоскости спайности.

эпертия активации (кедж/ моло) в указанном интервате переоблазодении									
способ 1		способ 2		спос	соб 3	способ 4			
Ea	ΔT^0 , °C	$\Delta H_a^{"}$	ΔT^0 , °C	$\Delta H_a^{"}$	ΔT^0 , °C	$\Delta H_a^{"}$	ΔT^0 , °C		
140-150	75-135	153 ± 4	45-135	176 ± 5	45-135	190 ± 5	45-135		
142-158	75-135	156 ± 3	75-135	179 ± 4	75-135	192 ± 4	75-135		
150-162	75-135	167 ± 5	30-135	193 ± 5	10-135	207 ± 5	10-135		

Таблица 4. Экспериментальная энергия активации роста кристаллов в стекле As₂Se³ Энергия активации (кЛж/моль) в указанном интервале переохлажлений

* Анализ экспериментальных данных настоящей работы в первых строках, в следующих строках – анализ данных из работ [4] и [6].

Для стекол As_{1.9}Se₃ и As_{2.1}Se₃ расчеты с использованием формул (3)–(5) являются приближенными (табл. 2, 3) из-за неизбежных допущений при переходе к ним от стеклообразующего соединения As₂Se₃ и осложнены недостатком количественной информации о параметрах, необходимых при выполнении подобных расчетов. Динамическую вязкость η указанных стекол при 240 и 270°С оценивали методом интерполяции экспериментальных данных [11] для стекол соответственно As_{1.84}Se₃ и As₂Se₃,

Аs_{2.19}Se₃ и As₂Se₃ и использовали для расчета величины $\Delta G_{\eta}^{\#}$ по уравнению (4) и кинетического фактора $\exp(-\Delta G_{a}^{"}/RT)$ в формуле (3). Для определения величины переохлаждения ΔT , необходимой для расчетов вероятностного фактора *f* по формуле (5) и термодинамического фактора 1 — $\exp(\Delta G/RT)$ в формуле (3) проводили оценку температур ликвидуса (363 и 368°C) по известному логарифмическому уравнению Шредера в интегральной форме соответственно для составов As_{1.9}Se₃ и As_{2.1}Se₃ в области максимума при составе устойчивого соединения As₂Se₃ (375 ± 2°C) на диаграмме состояния системы As–Se [18]. Молярные доли основного компонента As₂Se₃, равные 0.86 и 0.92, учитывали также в расчетах изменения xимического потенциала µ при кристаллизации As₂Se₃ соответственно в стеклах As_{1.9}Se₃ и As_{2.1}Se₃ с заменой ΔG на $\Delta \mu$ (As₂Se₃) в формуле (3).

Результаты измерения и теоретического расчета скорости *и* линейного роста кристаллов As₂Se₃ в стеклах As_{2.1}Se₃ и As_{1.9}Se₃ (табл. 2, 3) с использованием формул (3)–(5) указывают на возможность дислокационного механизма роста кристаллов в этих стеклах с экспериментальной энергией активации соответственно 154 и 146 ± 2 кДж/моль в исследованном интервале температур 240–270°C ($\Delta T = 93-123^\circ$). Последующий анализ кинетики роста кристаллов (табл. 4, рис. 4–7) выполнен для стекла стехиометрического состава As₂Se₃, изученного прямыми методами микроскопии в широком интервале температур.

Кинетика и механизм изотермического роста кристаллов в стекле As₂Se₃

Из сопоставления рассчитанных по формуле (3) и экспериментальных значений скорости u линейного роста кристаллов в стекле As_2Se_3 (табл. 3) следует, что в интервале температур 300–240°C с увеличением переохлаждения от 75 до 135°C монотонно увеличивается различие результатов расчета и измерения в работе [4] максимальной скорости роста индивидуальных кристаллов в сферолитах As_2Se_3 . Вместе с тем наблюдается удовлетворительное согласие результатов расчета и экспериментальных значений u, недавно полученных в работе [6], а также Э.Ю. Бессоновой и автором (табл. 2, 3).

Рис. 5. Графическое решение уравнения $u\eta = C(\Delta T)^n$ по экспериментальным данным вязкости η [11] и скорости изотермического линейного роста кристаллов *u* в стекле As₂Se₃ (анализ данных *u* из работ [4] (*I*), [6] (*2*), Э.Ю. Бессоновой и автора (*3*)).

Рис. 6. Графическое решение уравнения $u/[1 - \exp(\Delta G/RT)]T\Delta T = b/\eta^m$ по экспериментальным данным вязкости η [11] и скорости изотермического линейного роста кристаллов *u* в стекле As₂Se₃ (обозначения кривых *1–3* см. рис. 5).

Для определения кинетических параметров роста кристаллов в стекле As_2Se_3 выполнили, как и ранее [8], анализ различными способами экспериментальных зависимостей скорости роста кристаллов от температуры (рис. 4, кривые 1-3). Как видно из

Рис. 7. Графическое решение уравнения $u = C \exp(-\Delta G_{\eta}^{\#}/RT) \exp(-B/T\Delta T)$ по экспериментальным данным вязкости [11] и скорости изотермического линейного роста кристаллов *u* в стекле As₂Se₃ (обозначения кривых *1–3* см. рис. 5).

табл. 4, эффективная энергия активации роста кристаллов E_a , определенная из криволинейных зависимостей $\lg u(T^{-1})$, возрастает при увеличении переохлаждения ΔT (см. способ 1). Графические решения уравнения (3) в координатах $\lg u_c = f(T^{-1})$, где $u_c = u/[1 - \exp(\Delta G/RT)]$ и в координатах $\lg u_c/\Delta T = f(^{-1})$ позволяют в соответствии с формулами (3) и (5) исключить влияние не только термодинамического фактора $1 - \exp(\Delta G/RT)$ (способ 2), но и переохлаждения ΔT (см. числитель в формуле (5), способ 3) на скорость роста кристаллов $\operatorname{As}_2\operatorname{Se}_3$ и получить прямолинейные зависимости в интервале температур 240–345°C (рис. 3, линии 4–6) и найти из них значения энтальпии активации линейного роста кристаллов $\Delta H_a''$ (табл. 4, способы 2 и 3). Близкие к ним результаты (табл. 4, способ 4) получены графическим решением в координатах $\lg u/\Delta T^2 = \varphi(T^{-1})$ (рис. 4, линии 7–9) уравнения

$$u = A_{\mathfrak{I}} \left(\Delta T \right)^2 \exp(-\Delta H_a^{"} / RT), \tag{6*}$$

соответствующего при небольших ΔG полученному ранее [13] комбинированием формул (3) и (5) приближенному теоретическому уравнению для дислокационного роста кристаллов

$$u = A_{\rm T} \left(\Delta T\right)^2 \exp(-\Delta G_a^{\rm m} / RT), \tag{6}$$

где $A_3 = A_T \exp(\Delta S_a''/R)$, $A_T \approx \delta^2 \Delta S_m^2 v/(4\pi \sigma V_M RT_m)$. Найденное из сопоставления экспериментального A_3 по данным [6] и теоретического множителя A_T среднее значение энтропии активации дислокационного роста кристаллов $\Delta S_a''$ равно 195 ± 3 Дж/(моль K) в стекле As₂Se₃ ($T = 240-345^{\circ}$ C). Среднее значение энтропии активации вязкого тече-

ния $\Delta S_{\eta}^{\#}$ в этом интервале температур, определенное из температурной зависимости $\Delta G_{\eta}^{\#}$ (табл. 3), равно 198 ± 3 Дж/(моль K).

Используя найденные величины $\Delta S_a^"$ и известное соотношение $\Delta G_a^" = \Delta H_a^" - T \Delta S_a^"$, можно рассчитать отсюда по значениям $\Delta H_a^"$ (табл. 4, способ 4) свободную энергию активации роста кристаллов $\Delta G_a^"$. Полученные значения $\Delta G_a^"$ (107.0 и 86.5.0 кДж/моль, соответственно, при 240 и 345°С) удовлетворительно согласуются с значениями $\Delta G_a^"$ (табл. 3), вычисленными непосредственно по теоретическим значениям предэкспоненциального множителя и экспериментальным значениям скорости роста кристаллов *u* [6] в формуле (3) при *f* < 1 (см. табл. 3).

Для определения взаимосвязи кинетических параметров кристаллизации и вязкого течения провели анализ экспериментальных зависимостей $u(\eta)$ для стекла As₂Se₃. С помощью известного соотношения Стокса—Эйнштейна между коэффициентом самодиффузии и вязкостью переохлажденной жидкости получили на основе теоретической модели роста кристаллов [14] выражение

$$u = \frac{fkT}{3\pi\eta\delta^2} [1 - \exp(\Delta G/RT)], \tag{7}$$

где f, δ , ΔG аналогичны величинам в формуле (3), k – константа Больцмана.

Выражение (6) при небольших ΔG переходит с учетом формулы (5) в приближенную зависимость

$$u\eta = c(\Delta T)^n,\tag{8}$$

где *с* – константа стекла, $n \approx 2$ для дислокационного роста кристаллов. Графическое решение (рис. 5) уравнения (8) по экспериментальным данным вязкости η [11], скорости линейного роста индивидуальных кристаллов в сферолитах [4], скорости роста сферолитов [6] и поверхностного закристаллизованного слоя (данные Э.Ю. Бессоновой и автора, см. табл. 3) дает, соответственно, значения n = 2.6, 2.0 и 2.1 при $\Delta T = 75-135$, 25–135 и 45–135°С для кристаллизации стекла As₂Se₃. Полученные значения n = 2.0 и 2.1 (линии 2 и 3, рис. 5) согласуются с дислокационным механизмом роста кристаллов в стеклах [8, 12–14]. К такому же заключению о механизме роста кристаллов в стекле As₂Se₃ приводит анализ экспериментальных зависимостей *u* (η) графическим решением (рис. 6) уравнения

$$u/[1 - \exp(\Delta G/RT)]T\Delta T = b/\eta^m, \qquad (9)$$

полученного комбинированием формул (7) и (5) с введением дополнительного параметра *m* (показателя степени при вязкости η) для проверки соотношения (7) между скоростью роста кристаллов и вязкостью стекла [13]. В уравнении (9) *m* и *b* – константы в нешироком температурном интервале, определяемые свойствами стекла и образующегося кристалла [19]. Найденные значения показателя *m* по экспериментальным данным *u* [6] Э.Ю. Бессоновой и автора равны, соответственно, 0.96 и 0.93 и близки к теоретическому значению *m* = 1 выше температуры декаплинга диффузии и вязкости. Показатель *m*, определенный по данным скорости роста индивидуальных кристаллов в сферолитах As_2Se_3 [4] и данным вязкости [11], заметно ниже (0.87). Согласно электронно-микроскопическим наблюдениям [4] в интервале 240–350°С изотермический рост индивидуальных кристаллов As_2Se_3 в сферолитах происходил двумерно в форме пластин постоянной толщины. Поэтому провели анализ экспериментальных данных *u*(*T*) в табл. 3 на возможность механизма роста кристаллов с поверхностной двумерной нуклеацией (two-dimensional surface nucleated growth), или 2Dsg-model [20, 21], экспериментально доказанного при изучении бездислокационных граней кристаллов серебра [22] и весьма вероятного для процесса поверхностной кристаллизации стекла TlAsSe₂ при переохлаждениях больше 120°C [8], а также стекла PbO · SiO₂, по крайней мере, при малых переохлаждениях [23].

2Dsg-механизм вероятен при $\Delta S_m > 4R$ для послойного роста анизотропных кристаллов, лимитируемого образованием двумерных зародышей (ступеней роста) на атомно-гладкой поверхности раздела кристалл—жидкость по уравнению

$$u = C \exp(-E/RT) \exp(-B/T\Delta T), \qquad (10)$$

где C – коэффициент, слабо зависящий от температуры, E – энергия активации кристаллизации (для As₂Se₃ принята равной $\Delta G_n^{\#}$, табл. 3); $B = \pi \delta \sigma^2 V_M / 3k \Delta S_m$; δ – толщина двумерного зародыша. Графическое решение уравнения (10) в координатах $\ln u + (\Delta G_n^{\#}/RT) =$ $=f(10^5/T\Delta T)$ при наличии 2Dsg-механизма роста кристаллов должно давать прямые линии [8]. Как видно из рис. 7 (линия 1), прямолинейная зависимость наблюдается лишь при использовании экспериментальных данных [4] для роста индивидуальных кристаллов As₂Se₃ в сферолитах. Аналогичные по форме зависимости получены при построении графика в координатах $\ln u_c \eta / T = f(10^5 / T \Delta T)$ по экспериментальным данным [4, 6, 11] и настоящей работы. Таким образом, при одинаковых переохлаждениях 75–135°С в стеклах As₂Se₃ послойный рост кристаллов может происходить по механизму поверхностной двумерной нуклеации [4] или по дислокационному механизму (анализ данных [6] и настоящей работы). По нашему мнению, отмеченное различие механизмов роста кристаллов связано с тем, что авторы работы [4] измеряли в стекле As₂Se₃, полученном медленным охлажденном расплава от 500°C, максимальную скорость (параллельно плоскости спайности) бокового двумерного роста совершенных и чистых (99.999%) индивидуальных кристаллов As₂Se₃ с плоскими треугольными гранями без готовых ступеней роста, образуемых дислокациями (ступени роста эти авторы наблюдали в электронный микроскоп только на некоторых кристаллах при $\Delta T < 25^{\circ}$ C). В работе [6] и в настоящей работе измеряли усредненную скорость анизотропного роста в основном реальных кристаллов, определяющих соответственно линейный рост сферолитов и поверхностного закристаллизованного слоя.

Из прямолинейной зависимости на рис. 7 (линия *1*) для роста кристаллов As₂Se₃ [4] при $\Delta T = 75-135^{\circ}$ C найдены величины $B = 2.0 \times 10^{6} \text{ K}^{2}$ и $\delta \sigma_{e}^{2} = 2.1 \times 10^{-18} \text{ Дж}^{2}/\text{см}^{3}$. Отсюда при $\delta = 6.8 \times 10^{-8}$ см получили оценку поверхностного натяжения стекло-кристалл $\sigma = 5.5 \times 10^{-6} \text{ Дж/см}^{2}$ для поверхностной двумерной нуклеации и послойного роста кристаллов As₂Se₃. Графическое определение σ в координатах $\ln u_{c}\eta/T = f(10^{5}/T\Delta T)$ по экспериментальным данным [4, 11] дает значение $4.8 \times 10^{-6} \text{ Дж/см}^{2}$, близкое к значению, определенному с использованием рис. 7, а также к величине σ_{l} ($5.0 \times 10^{-6} \text{ Дж/см}^{2}$) для боковых граней пластин, найденной по соотношению Скапского–Тернбалла (см. выше).

Для изотермического линейного роста сферолитов [6] и поверхностного закристаллизованного слоя (данные Э.Ю. Бессоновой и автора) в стекле As_2Se_3 при переохлаждении 25–135°С ($T < T_{u \text{ max}}$) поверхностная двумерная нуклеация мало вероятна (рис. 7, кривые 2 и 3) и более вероятен механизм роста кристаллов на винтовых дислокациях в соответствии с формулами (3) и (5). Наличие у выхода винтовой дислокации на грань кристалла незарастающей ступени способно обеспечить согласно [12] послойный рост кристаллов без образования двумерных зародышей.

При температурах выше $T_{u \max}(350^{\circ}\text{C})$ в массивных стеклах и стеклопорошках As_2Se_3 [4] преобладает одномерный рост индивидуальных кристаллов в форме прутков (rod-like) с ориентацией по радиальным направлениям в сферолитах.

ЗАКЛЮЧЕНИЕ

При отклонениях от стехиометрического состава As_2Se_3 избыток 1.2 ат. % Se уменьшает в 4 раза, а избыток 1.2 ат. % As в 1.5 раза увеличивает индукционный период объемной и поверхностной кристаллизации стекол при 240°С. С использованием модели Колмогорова—Аврами установлено преимущественно гетерогенное зарождение и двумерный рост пластинчатых кристаллов фазы As_2Se_3 в стеклах.

Выполнен теоретический анализ экспериментальных зависимостей скорости линейного роста кристаллов As₂Se₃ от температуры и вязкости стекла As₂Se₃. В интервале температур 240–345°С (переохлаждение $\Delta T = 135-30$ °С) для линейного роста сферолитов и поверхностного закристаллизованного слоя в массивном стекле As₂Se₃ вероятен дислокационный механизм. Для индивидуальных кристаллов с бездислокационными гранями в сферолитах As₂Se₃ вероятен механизм роста в форме пластин (plate-like) с поверхностной двумерной нуклеацией (2Dsg-model).

Скорость линейного роста кристаллов в стекле As₂Se₃ при 240–345°С, а в стеклах As_{2.1}Se₃ и As_{1.9}Se₃, по крайней мере, при 240–270°С теоретически рассчитывается, если в формулу Тернбала–Коэна ввести вероятностный фактор $f(T\Delta T)$ роста на ступенях винтовых дислокаций, а свободную энергию активации роста кристаллов $\Delta G_a^{"}(T)$ принять равной кинетическому барьеру при вязком течении стекла $\Delta G_{\eta}^{\#}(T)$ в уравнении Эйринга.

СПИСОК ЛИТЕРАТУРЫ

- 1. Школьников Е.В. Кинетика ступенчатой объемной кристаллизации стекол AsSe_{1.5}Sn_x ($x \le 0.28$) // Физ. и хим. стекла. 2017. Т.43. №2. С. 172—183. [*Shkol'nikov E.V.* Kinetics of Stepwise Bulk Crystallization of AsSe_{1.5}Sn_x ($x \le 0.28$) Glasses // Glass Phys. Chem. 2017. V.43. № 2. Р. 137—145.].
- 2. Школьников Е.В Влияние добавок Pb на кинетику и механизм кристаллизации стекла As₂Se₃ // Физ. и хим. стекла. 2019. Т. 45. № 1. С. 16–28. [Shkol'nikov E.V. Influence of Pb Additives on the Kinetics and Mechanism of As₂Se₃ Glass Crystallization // Glass Phys. Chem. 2019. V. 45. № 1. Р. 10–18].
- 3. Svoboda R.A., Malek J. Non-Isothermal crystallization kinetics of As₂Se₃ glass studied by DSC // Thermochem. Data. 2014. V. 579. № 1. P. 56–63.
- 4. *Henderson D.W., Ast D.G.* Viscosity and crystallization kinetics of As₂Se₃ // J. Non-Crystalline Solids. 1984. V. 64. № 1. P. 43–70.
- 5. *Cernoskova E., Holubova J., Cernosek Z.* Crystallization kinetics of glassy As₂Se₃ // J. Therm. Anal. Calorim. 1999. V. 56. № 2. P. 423–428.
- Malek J., Shanelova J., Martinkova S., Pilny P., Kostal P. Crystal growth velocity in As₂Se₃ supercooled liquid // Crystal Growth Design. 2017. V. 17. № 9. P. 4990–4999Š.
- 7. Школьников Е.В. Структурно-химические особенности кристаллизующихся стекол систем Se–Sn и As₂Se₃–Sn // Физ. и хим. стекла. 2013. Т.39. №4. С. 529–537. [*Shkol'nikov E.V.* Snructural-Chemical Features of Crystallizing Glasses of Se–Sn and As₂Se₃–Sn Systems // Glass Phys. Chem. 2013. V. 39. № 4. Р. 364–371.].
- Школьников Е.В. Структурно-химические особенности и механизм кристаллизации стекол TlAsX₂(X = S, Se) // Физ. и хим. стекла. 2016. Т.42. № 4. С. 500–511. [Shkol'nikov E.V. Snructural-Chemical Features and Mechanism of Crystallization of TlAsX₂ Glasses (X = S, Se) // Glass Phys. Chem. 2016. V. 42. № 4. P. 363–371.].
- 9. Филипович В.Н., Калинина А.М., Фокин В.М., Юрицын Н.С., Сычева Г.А. Кинетические закономерности зарождения кристаллов в объеме и на поверхности силикатных стекол // Физ. и хим. стекла. 1999. Т. 25. № 2. С. 327–336.
- Schmelzer Ju. W.P., Abyzov A.S., Fokin V.M., Schick Ch., Zanotto E.D. Crystallization in glass-forming liquids: Effects of decoupling of diffusion and viscosity on crystal growth // J. Non-Crystalline Solids. 2015. V. 429. P. 45–53.
- Немилов С.В., Петровский Г.Т. Исследование вязкости стекол системы селен-мышьяк // Журн. прикл. химии. 1963. Т. 36. № 5. С. 977–981.
- 12. Jackson K.A., Uhlmann D.R., Hunt J.D. On the nature of crystal growth from the melt // J. Crystal Growth. 1967. V. 1. № 1. P. 1–36.

- Школьников Е.В. О взаимосвязи структурно-химических особенностей и кинетических параметров кристаллизации стекла // Стеклообразное состояние. Тр. V11 Всес. Совещ. Л.: Наука, 1983. С. 131–135.
- Turnbull D., Cohen M.H. Crystallization kinetics and glass formation // In: Modern aspects of the vitreous state. London, 1960. P. 38–62.
- 15. Zallen R., Slade M.L., Ward A.T. Lattice vibrations and interlayer interactions in crystalline As₂S₃ and As₂Se₃ // Phys. Rev. B. 1971. V. 3. № 12. P. 4257–4273.
- 16. Arai T., Komiya S., Kudo K. Temperature dependence of vibrational spectra in crystalline, amorphous and liquid As₂Se₃ // J. Non-Crystalline Solids. 1975. V. 18. № 2. P. 289–294.
- Platakis N.S., Gatos R.C. Devitrification characteristics of the semiconductor system (1 –x)As₂Se₃ · xSb₂Se₃ // J. Electrochem. Soc. 1972. V. 119. № 7. P. 914–920.
- 18. Виноградова Г.З. Стеклообразование и фазовые равновесия в халькогенидных системах. Двойцые и тройные системы. М.: Наука. 1984. 176 с.
- Школьников Е.В. К кинетике роста кристаллов в стеклах M₂O · 2 SiO₂ (M = Li, Na, K) // Физ. и хим. стекла. 1980. Т. 6. № 2. С. 153–163.
- Странский И.Н., Каишев Р. К теории роста кристаллов и образования кристаллических зародышей // Успехи физ. наук. 1939. Т. 21. Вып. 4. С. 408–465.
- 21. *Smith G.L., Weinberg M.C.* Experimental rtest of surface nucleated crystal growth model in lithium diborate glass // Phys. Chem. Glass. 1994. V. 35. № 1. P. 6–9.
- 22. Budewski E., Bostanoff B., Vitanoff T., Stoinoff Z., Kotzewa A., Kaischew R., Zweidimensionale Keimbildung und Ausbreitung von Monoatomaren Schichten versetzungsfreien (100) Flächen von Silbereinkristallen // Phys. Status Solidi B. 1966. V. 13. № 2. P. 577–588.
- Neiman T.S., Yinnon H., Uhlmann D.R. Crystallization kinetics lead metasilicate // J. Non-Crystalline Solids. 1982. V. 48. № 2–3. P. 393–403.