ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СТЕКОЛ СОСТАВА (Ga₂S₃)_{0.60}(La₂S₃)_{0.35}(Er₂S₃)_{0.05} и (Ga₂S₃)_{0.60}(La₂S₃)_{0.27}(Er₂S₃)_{0.13}

© 2020 г. А. С. Абдуллаева¹, И. Б. Бахтиярлы^{1, *}, Р. Д. Курбанова¹

¹Институт катализа и неорганической химии им. акад. М. Нагиева Национальной АН Азербайджана, пр. Г. Джавида, 113а, Баку, Az1143 Азербайджан *e-mail: ibbakhtiyarli@mail.ru

> Поступила в редакцию 18.07.2019 г. После доработки 18.03.2020 г. Принята к публикации 03.04.2020 г.

Синтезированы стекла состава $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05},$ $(Ga_2S_3)_{0.60}(La_2S_3)_{0.27}(Er_2S_3)_{0.13}$. Установлено, что при термическом разложении стекла состава $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$ на воздухе при 855 К происходит его размягчение. В интервале 945—1210 К наблюдается экзотермический эффект. Характер термических кривых указывает на стадийный механизм разложения стекла. Выявлено, что полосы поглощения стекол, характерные для связей Me–S, по сравнению с таковыми для исходных кристаллических компонентов более интенсивны и частично смещены в сторону высокочастотного спектра, что, по-видимому, связано с увеличением ковалентности связей Ga–S и Ln–S.

Ключевые слова: стекла, термическое разложение, эндоэффекты, экзоэффекты, физико-химические свойства

DOI: 10.31857/S0132665120040022

введение

Халькогенидные стекла — перспективные материалы для инфракрасной оптики и полупроводниковой технике. Они являются идеальными материалами при разработки оптических лазеров и усилителей дистанционных датчиков, быстродействующих переключателей и других устройств, работающих в инфракрасном диапазоне длин волн 1-10 мкм [1-5]. Они применяются также в приборах для регистрации и хранения оптической голографической информации в интегральной оптике в качестве микроинтерферометров, коммутаторах, нелинейных оптических элементах фоторезисторов в микроэлектронике. В настоящее время при создании новых оптических и лазерных материалов со специальными свойствами широко применяются стекла на основе сложных сульфидов лантаноидов со смешанными катионами (Nd⁺³, Ho⁺³, Er⁺³ и др.) [6–9].

Хорошо известно, что для индивидуального соединения Ga_2S_3 не характерно образование стекла. Однако Ga_2S_3 с сульфидами различных металлов [10–14], в том числе Ln_2S_3 , Ln_2O_2S и Ln_2S_3 при определенных условиях закалки образуют стекла в широком интервале соотношений концентрации исходных компонентов [15–24]. В работе [25] и наши исследования показали, что в сравнении с другими лантаноидами La^{3+} наиболее склонны к стеклообразованию. Предыдущие наши исследования показали,

Рис. 1. Область стеклообразования в системе $La_2S_3-Ga_2S_3-Er_2S_3$ [26].

что в квазитройной системе $La_2S_3-Ga_2S_3-Er_2S_3$ наблюдается стеклообразование в ограниченной области со стороны $Ga_2S_3-La_2S_3$ (рис. 1) [26].

В работе [27] были изучены люминесцентные свойства в ближней ИК и видимой областях некоторых составов из области стеклообразования, показанных на рис. 1. Как видно из рис.1 в данных условиях $Er_2S_3 c Ga_2S_3$ непосредственно не образует стекло. Вместе с тем в работе [25] при температуре 1475 К образуется стекло с составом $(Ga_2S_3)_{0.50}(Er_2S_3)_{0.50}$.

Для установления новых областей применения халькогенидных стеклообразных полупроводниковых стекол и получения стекол с новыми функциональными свойствами считаем необходимым продолжить прежние наши исследования в этом направлении.

Цель данной работы — синтез и изучение некоторых физико-химических свойств стекол состава $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$ и $(Ga_2S_3)_{0.60}(La_2S_3)_{0.27}(Er_2S_3)_{0.13}$, которые были выделены из области стеклообразования квазитройной системы Ga_2S_3 — La_2S_3 — Er_2S_3 (рис. 1).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных компонентов использовали β -Ga₂S₃, α -La₂S₃ и δ -Er₂S₃. Синтез β -Ga₂S₃ проводили сплавлением Ga марки Ql-00 и серы особой чистоты (B-6) в эвакуированных кварцевых ампулах при 1425 K в однотемпературной наклонной печи. Полученный β -Ga₂S₃ кристаллизуется в моноклинной сингонии с параметрами: a == 11.140, b = 6.411, c = 7.038 Å, $\beta = 121.22^\circ$, Z = 4, пр. гр. *Cc* (International Centre for Diffraction Data. ICDD-00-016-0500) и плавится конгруэнтно при 1395 K [28, 29]. α -La₂S₃ и δ -Er₂S₃ представляют собой коммерческие реактивы. α -La₂S₃ кристаллизуется в ромбической сингонии с параметрами решетки: a = 7.584, b = 4.144, c = 15.860 Å, Z = 4, пр. гр. *Pnma* (ICDD-00-021-0459) и δ -Er₂S₃ кристаллизуется в моноклинной сингонии с параметрами решетки: a = 17.404, b = 3.978, c = 10.092 Å, $\beta = 98.67^\circ$, Z = 4, пр. гр. *P*2₁/*m* (ICDD-00-021-0324) [30].

Рис. 2. Дериватограмма термического разложения стекла состава $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$.

Синтез образцов, стекол состава $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$ и $(Ga_2S_3)_{0.60}(La_2S_3)_{0.27}(Er_2S_3)_{0.13}$ проводили под давлением паров серы при 1425 К в стеклографитовом тигле, помещенном в кварцевый реактор, в течение 2.5 ч. Наиболее распространенным способом получения стекол является быстрая закалка расплава вещества. Закалку осуществляли при температуре 1425 К, погружая реактор в воду при комнатной температуре [15, 21, 24].

Полученные таким способом образцы (стекла) исследовали методами дериватографического (ДТГ, ДТА), рентгенофазового анализа (РФА) и ИК-спектроскопии.

Дериватографический анализ (ДТГ) проводили в динамическом режиме с использованием дериватографа Q-1500 от комнатной температуры до 1275 К при программированной скорости нагревания — 10 град/мин, навеска — 400 мг, чувствительность весов — 1/5, ДТГ — 1/3, эталон — α -Al₂O₃, воздушная среда.

Рентгенофазовый анализ (РФА) образцов осуществляли на автоматическом дифрактометре D2Phaser (Bruker, Германия, Cu K_{α} -излучение, Ni-фильтр, скорость сканирования 2 град/мин). Для проведения РФА исходные компоненты и промежуточные сплавы перетирали до состояния порошка.

ИК спектры поглощения исходных компонентов и образцов стекол снимали на спектрометре Spekord M80 в области 600–200 см⁻¹ при 300 К. Для записи спектров образцы готовили в виде пасты на вазелиновом масле; применяли окно из полиэтилена и KBr.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Согласно данным дериватографического анализа (рис. 2) при термическом разложении стекла состава $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$ на воздухе при 855 К происходит размягчение, которое сопровождается эндоэффектами. Наблюдаемые при 955–1210 К экзоэффекты и уменьшение массы указывают на стадийный механизм разложения стекла. Потеря массы равна:

$$\Delta m = \frac{m_1 - m_2}{m_1} \times 100\% = \frac{400 - 356}{400} \times 100\% = 11\%.$$

Рис. 3. Дифрактограммы стекол системы $Ga_2S_3-La_2S_3-Er_2S_3$: $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$ (*a*), $(Ga_2S_3)_{0.60}(La_2S_3)_{0.27}(Er_2S_3)_{0.13}$ (*b*).

Экзоэффект, который сопровождает процесс кристаллизации стекла не обнаружен. На рис. 3 и 4 приведены дифрактограммы образцов $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05},$ $(Ga_2S_3)_{0.60}(La_2S_3)_{0.27}(Er_2S_3)_{0.13}$ и исходных компонентов соответственно.

Дифракционные картины образцов составов $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$ и $(Ga_2S_3)_{0.60}(La_2S_3)_{0.27}(Er_2S_3)_{0.13}$ являются практически аморфными. По-видимому, в образце $(Ga_2S_3)_{0.60}(La_2S_3)_{0.27}(Er_2S_3)_{0.13}$ возрастает степень кристалличности. Степень кристалличности по данным прибора равна в данном образце 41.7%.

На рис. 5 и 6 приведены ИК спектры и в табл. 1 значения ИК частот исходных соединений $(Ga_2S_3, La_2S_3, Er_2S_3)$ и стекол состава $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$ и $(Ga_2S_3)_{0.60}(La_2S_3)_{0.27}(Er_2S_3)_{0.13}$.

В ИК данных исходных соединений Ga_2S_3 , La_2S_3 , Er_2S_3 в области 600–240 см⁻¹ (рис. 5) присутствуют характерные для этих соединений интенсивные полосы Ln–S и Ga–S. Для La_2S_3 и Er_2S_3 отмечено наличие слабых полос в области 590–440 см⁻¹ которые, по всей вероятности, также относятся валентным колебаниям связи Ln–S [19, 31, 32].

Анализ ИК данных позволяет заключить, что при взаимодействии La_2S_3 с Ga_2S_3 при определенном соотношении Ga_2S_3/La_2S_3 (моль/моль), т.е. при $Ga_2S_3/La_2S_3 = 17-52$ мол. % La_2S_3 образуются стекла широкого состава [25, 26]. Образование этих стекол сопровождается следующими изменениями в ИК спектрах [19].

Как видно из табл. 1, ИК частоты, характерные для исходных соединений Ga_2S_3 и La_2S_3 , практически не обнаруживаются для стекла. Можно предположить, что атомы

Рис. 4. Дифрактограммы исходных компонентов системы Ga₂S₃-La₂S₃-Er₂S₃: α-La₂S₃ (ICDD-00-021-0459) (*a*), δ-Er₂S₃ (ICDD-00-021-0324) (*b*), β-Ga₂S₃ (ICDD-00-016-0500) (*b*).

Puc. 5. ИК спектры исходных компонентов системы La_2S_3 - Ga_2S_3 - Er_2S_3 ; β- Ga_2S_3 (*a*), δ- Er_2S_3 (*b*), α- La_2S_3 (*b*).

Ga в стекле имеют такое же тетраэдрическое окружение локального поля и координированы также атомами серы, как в кристаллическом аналоге и связь эта более ковалентная, чем в исходных соединениях [10, 11]. Смещение полос в стекле в область высоких частот в сравнении с частотами индивидуальных соединений, скорее всего, обусловлено, как указано выше, усилением связи Ga–S.

Относительно локального окружения ионов La^{3+} в стекле можно отметить следующее. Сравнение ИК частот La–S связи в стекле и в исходном кристаллическом соединении La_2S_3 позволяет утверждать, что в обоих случаях La имеет подобную симметрию локального окружения и такие же координационные числа [12].

Следует указать, что в данном случае в образованных стеклах ионы Er^{3^+} ($\mathrm{Er}_2\mathrm{S}_3$) замещают часть ионов La^{3^+} (ионные радиусы La^{3^+} на Er^{3^+} равны, соответственно, 1.04 Å и 0.85 Å).

Отметим, что стекло $(Ga_2S_3)_{0.60}(La_2S_3)_{0.40}$ является достаточно хорошей матрицей для получения тройных стекол, путем активации их ионами Ln^{3+} . Таким образом, введением ионов Ln^{3+} в двойные стекла состава $(Ga_2S_3)_{0.60}(La_2S_3)_{0.40}$ можно получать эффективные люминесцирующие составы.

ЗАКЛЮЧЕНИЕ

Проведенные исследования показали, что в тройной системе La₂S₃–Ga₂S₃–Er₂S₃ образуются стекла состава (Ga₂S₃)_{0.60}(La₂S₃)_{0.35}(Er₂S₃)_{0.05} и (Ga₂S₃)_{0.60}(La₂S₃)_{0.27}(Er₂S₃)_{0.13}. Стекла охарактеризованы методами рентгеновской дифрактометрии и ИК-спектроскопии. Определена степень кристалличности тройной системы La₂S₃–Ga₂S₃–Er₂S₃ при формировании стекол выше указанных составов. Предполагается что, смещение полос

Рис. 6. ИК спектры стекол системы $La_2S_3-Ga_2S_3-Er_2S_3$: $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$ (*a*), $(Ga_2S_3)_{0.60}(La_2S_3)_{0.27}(Er_2S_3)_{0.13}$ (*b*).

Ga ₂ S ₃	La ₂ S ₃	Er ₂ S ₃	$(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$	$(Ga_2S_3)_{0.60}(La_2S_3)_{0.27}(Er_2S_3)_{0.13}$
	230			
262	268			
298	300	300		
330		328, 330	338	326
342				
	360	360, 376	360, 378	360, 380
402	398		390	410
422	420	422		
		440		
	476	460	458	
494		486		478, 492
		514	502, 520	514
		530, 542	542	534
	560	560		
576	580	578, 590	594	582
618.638				

Таблица 1. Частоты колебаний (см⁻¹) исходных компонентов и стекол

поглощения в ИК-спектрах выделенных стекол относительно ИК-полос исходных соединений связано с изменением ковалентности связей Ме–S. Исследована термическая устойчивость выделенных стекол состава $(Ga_2S_3)_{0.60}(La_2S_3)_{0.35}(Er_2S_3)_{0.05}$ вплоть до 1375 К на воздухе. Показано, что терморазложение этих стекол начинается с размягчения при температуре 855 К с дальнейшим проявлением экзоэффекта при 955–1210 К с убылью массы ~11%.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кертман А.В. Оптическая сульфидная керамика // Соросовский образовательный журн. 2000. Т. 6. № 2. С. 93–98.
- 2. Минаев В.С. Стеклообразные полупроводниковые сплавы. М.: Металлургия, 1991. 407 с.
- 3. Конюхов А.И., Романова Е. А., Ширяев В. С. Халькогенидные стекла как среда для управления параметрами сверхкоротких импульсов в инфракрасном диапазоне длин волн // Оптика и спектроскопия. 2013. Т. 115. № 2. С. 288.
- 4. *Tveryanovich Yu.S.* Concentration quenching of luminescence of rare-earth ions in chalcogenide glasses // Glass Phys. Chem. 2003. V. 29. № 2. P. 166–168.
- 5. Ivanova T.Yu., Man'shina A.A., Kurochkin A.V., Tver'yanovich Yu.S., Smirnov V.B. Non-radiative energy transfers from Er³⁺ ions to the electronic states of the chalcogenide glass matrix // J. Non-Cryst. Solids. 2003. V. 326–327. P. 320–324.
- 6. *Ivanova T.Yu., Man'shing A.A., Kurochkin A.V., Tver'yanovich Yu.S.* Er³⁺ to glass matrix energy transfer in Ga–Ge–S:Er³⁺ system // J. Non-Cryst. Solids. 2002. V. 298. P. 7–14.
- Kadono K., Higuchib H., Takahashib M. Upconversion luminescence of Ga₂S₃-based sulfide glasses containing Er³⁺ ions // J. Non-Cryst. Solids. 1995. V. 184. P. 309–313.
- 8. *Barthou Ch., Benalloul P., Tagiyev B.G.* Energy transfers between Eu²⁺ and Er³⁺ in EuGa₂S₄:Er³⁺ // J. Phys.: Condens. Matter. 2004. V. 16. P. 8075–8084.
- Borisov E.N., Smirnov V.B., Tver'yanovich A.S., Tver'yanovich Yu.S. Deposition of Er³⁺ doped chalcogenide glass films by excimer laser ablation // J. Non-Cryst. Solids. 2003. V. 326–327. P. 316–319.
- Barnier S., Guittard M., Palazzi M., Massot M., Julien C. Raman and infrared studies of the structure of gallium sulphide based glasses // Materials Science and Engineering. 1992. V. B14. P. 413–417.
- Barnier S., Palazzi M., Massot M., Julien C. Vibrational spectra of the vitreous Ga₂S₃-Na₂S system // Solid State Jonics. 1990. V. 44. P. 81–86.
- Jason Saienga, Steve W. Martin. The comparative structure, properties, and ionic conductivity of LiI + Li₂S + GeS₂ glasses doped with Ga₂S₃ and La₂S₃ // J. Non-Cryst. Solids. 2008. V. 354. P. 1475–1486.
- 13. Barnier S., Guittard M., Palazzi M., Massot M., Julien C. Spectroscopic studies of the structure of gallium sulphide based glasses // Extented Abstract of the Intl. Conf. on Advanced Maretials (ICAM), Solid State Jonics, (Strasbourg)-1991, Paper A2-V.P4.
- Haitao Guo, Yanbo Zhai, Haizheng Tao, Yueqiu Gong, Xiujian Zhao. Synthesis and properties of GeS₂-Ga₂S₃-PbJ₂ chalcohalide glasses // Mater. Res. Bull. 2007. V. 42. P. 1111–1118.
- 15. Bakhtiyarli I.B., Kerimov O.Sh. Oxysulphide glasses on the basis of lanthanoides-gallium // J. Chemical Problems. 2003. № 3. P. 27–29.
- Bakhtiyarli I.B., Mamedov A.N., Mustafayeva N.N. Phase equilibrium and thermodynamic analysis in the Nd₂O₃-Ga₂S₃-La₂O₃ system // 6th International Workshop on Subsecond Thermophysics. Programme and Abstracts-Leoben (Austria)-2001. P. 197.
- Bakhtiyarli I.B., Karimli O.Sh., La₂O₃-Ga₂S₃-Sm₂O₃ // Azerbaijan Chemical J. 2009. № 2. P. 67-70.
- Flahaut J., Guittard M., Loireau-Lozac'h A.M., Rare earth sulphide and oxysulphide glasses // Glass Technology. 1983. V. 24. № 3. P. 149–156.
- Lucazeau G., Barnier S., Loireau-Lozac'h A.M. Vibrational spectra, electronic transitions and short structure of rare earth-gallium sulphide glasses // Spectrochimica Acta. 1978. V. 34A. P. 21–29.
- 20. Guittard M., Loireau-Lozac'h A.M., Pardo M.P. Verres formes par les oxysulfures de terres rares Ln₂O₂S // Mat. Res. Bull. 1978. V. 13. № 4. P. 317–322.
- 21. Бахтиярлы И.Б., Абдуллаева А.С., Мирзоева А.М., Керимли О.Ш., Мухтарова З.М., Физикохимические свойства стекол в системе La₂S₃-Ga₂S₃-Nd₂S₃ // Азерб. химический журн. 2012. № 3. С. 82-84.
- 22. Bakhtiyarli I.B., Abdullayeva A.S., Kurbanova R.D., Karimov R.I. The ternary system La₂S₃-Ga₂S₃-EuS and glassformation // Azerbaijan Chemical J. 2016. № 4. P. 85–88.
- 23. Бахтиярлы И.Б., Абдуллаева А.С., Керимли О.Ш., Мирзоева А.А., Фархатова Н.Б., Область стеклообразования в системе Sm₂S₃-Ga₂S₃-EuS // Неорган. материалы. 2019. Т. 55. № 6. С. 666-670.

- 24. Бахтиярлы И.Б., Курбанова Р.Д., Абдуллаева А.С., Алиев А.Б., Мамедова Ф.М., Фазообразование в тройной системе Nd₂S₃-Ga₂S₃-EuS // Журн. неорган. химии. 2019. Т. 64. № 7. С. 736-740.
- 25. Loireau-Lozac'h A.M., Guittard M., Flahaut J., Verres formes par les sulfures L₂S₃ des rares avec le sulfure de gallium Ga₂S₃ // Mat. Res. Bull. 1976. V. 11. P. 1489–1496.
- 26. Бахтиярлы И.Б., Асадлы Л.Ш., Мирзоева А.А., Синтез и физико-химические свойства стекол в системе La₂S₃-Ga₂S₃-Er₂S₃ // Азерб. химический журн. 2008. № 1. С. 131–134.
- Kityk I.V., Halyan V.V., Yukhymchuk V.O., NIR and visible luminescence features of erbium doped Ga₂S₃-La₂S₃ glasses // J. Non-Cryst. Solids. 2018. V. 498. P. 380–385.
- 28. Goodyear I., Steygman G.A. The crystal structure of α-Ga₂S₃ // Acta Crystallogr. 1963. V. 16. № 10. P. 946–949.
- Рустамов П.Г., Бахтияров И.Б. Физико-химическое исследование взаимодействия в системах Ga₂S₃(İn₂S₃)-La₂O₃ // Журн. неорган. химии. 1981. Т. 26. № 12. С. 3341–3346.
- 30. Ярембаш Е.И., Елисеев А.А., Халькогениды редкоземельных элементов (Синтез и кристаллохимия). М.: Наука, 1975. 260 с
- Скорняков Г.П., Константинов В.Л., Инфракрасные спектры халькогенидов РЗ-элементов // Физика и химия РЗ-полупроводников. (Физика и применение) / Под. ред. Скорнякова Г.П. и Самохвалова А.А. УНЦ АН ССР. Свердловск. 1977. С. 20–55.
- Ruseikina A.V., Solovyov L. A., Chernyshev V.A. Synthesis, structure, and properties of EuErCuS₃ // J. Alloys and Compounds. 2019. V. 805. P. 779–788.