ФОТОКАТАЛИТИЧЕСКИЕ СВОЙСТВА КОМПОЗИТОВ НА ОСНОВЕ SrO-Bi₂O₃-Fe₂O₃, ПОЛУЧЕННЫХ РАЗЛИЧНЫМИ МЕТОДАМИ

© 2020 г. Д. С. Ершов^{1, *}, Н. В. Беспрозванных¹, О. Ю. Синельщикова¹

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

*e-mail: ershov.d.s@yandex.ru

Поступила в редакцию 17.12.2019 г. После доработки 24.01.2020 г. Принята к публикации 03.04.2020 г.

В работе рассмотрено влияние методов синтеза на фазовый состав и фотокаталитические свойства композитов, формирующихся в частном разрезе (SrO)_{0.2}(Bi₂O₃)_{0.8}–BiFeO₃, на примере реакции разложения метиленового оранжевого (MO). Исследованные составы имеют степень деградации MO от 30 до 62% ($C_0 = 20$ мг/л, загрузка катализатора 30 ммоль/л) при облучении в течение 3 ч люминесцентной ртутной лампой. Ширина запрещенной зоны, оцененная по функции Кубелки–Мунка, для синтезированных составов имела значение ниже 2.6 эВ. Это указывает на возможность их использования в качестве фотокатализаторов видимого диапазона.

Ключевые слова: висмутаты, твердофазный синтез, цитратно-нитратный синтез, фотокатализ

DOI: 10.31857/S0132665120040058

введение

Применение фотокатализа в процессах очистки воды и воздуха позволяет использовать солнечную энергию для решения экологических проблем. Наиболее изученные в настоящее время фотокатализаторы на основе оксида титана имеют большую величину ширины запрещенной зоны и могут быть активированы только ультрафиолетовым излучением, на которое приходится около 4% спектра солнечного света [1]. Этот факт ограничивает возможности их применения. На данный момент, поиск новых материалов, обладающих меньшей шириной запрещенной зоны и чувствительных к излучению большей длины волны, является актуальной задачей [2]. В [1–4] была отмечена целесообразность использования некоторых соединений на основе оксида висмута в качестве фотокатализаторов видимого света.

В последнее время существенно возрос интерес к композитным фотокатализаторам на основе висмутатов щелочноземельных металлов. В работах [1, 2] было показано, что композиты на основе висмутата кальция способствуют очистке воды от фенола, а также инициируют разложение метиленового синего в воде под действием видимого света. Результаты исследования фотокаталитических свойств некоторых висмутатов стронция представлены в [5–8]. Ромбоэдрический твердый раствор состава Sr_{0.25}Bi_{0.75}O_{1.36} по данным [8] показал высокую эффективность в реакции разложения

метиленового синего. В [6] установлено, что среди Sr₂Bi₂O₅, SrBi₂O₄ и BiVO₄ более высокая фотокаталитическая активность Sr₂Bi₂O₅ объясняется высоким уровнем искажения металло-кислородных полиэдров и меньшей степенью упаковки. Исследования композитов типа $Me_xBi_yO_z$ -Bi₂O₃ (Me = Mg, Ca, Sr, Ba) показали, что их каталитическая активность в реакции разложения различных органических поллютантов в значительной степени зависит от щелочноземельного металла [9, 10].

Перспективное соединение на основе висмута – BiFeO₃ (BFO) также может быть использовано в качестве фотокатализатора видимого света. В работе [11] было установлено, что на структуру BFO, легированного ионами Sr^{2+} , а также на магнитные и фотокаталитические свойства оказывает влияние размер частиц и содержание легирующей примеси. О положительном влиянии стронция на магнитные свойства BiFeO₃ сообщалось авторами в [12–14]. Было отмечено, что химическое замещение трехвалентного иона Bi³⁺ двухвалентным ионом Sr^{2+} вызывает превращение определенной доли Fe³⁺ в Fe⁴⁺ и появление кислородных вакансий, которое в свою очередь способствует сильной фотолюминесцентной активности в ИК-области [13].

Фотокаталитическая активность микро- и наночастиц на основе силленита железа $Bi_{25}FeO_{40}$ изучалась в [14, 15]. Частичное замещение железа на хром позволяет увеличить степень фотодеградации за счет изменения их морфологии [14]. Композиты, имеющие в составе силленит, были исследованы в реакции разложения родамина В при облучении видимым светом [15]. Установлено, что они проявляют лучшую фотокаталитическую активность, чем чистые фазы и титаноксидный катализатор P_{25} .

Во многих перечисленных литературных источниках приведены исследования фотокаталитической активности висмутсодержащих соединений на измельченных образцах, полученных традиционным твердофазным синтезом. С целью увеличения удельной поверхности и улучшения вышеупомянутого показателя зачастую применяют методы "мягкой химии" [3]. Влияние процессов синтеза на структуру и фотокаталитические свойства композитов становится все более важным, в особенности, когда требуется получить нанокерамику с высоким качеством. Цитратно-нитратный синтез — это простой и удобный метод получения разнообразных усовершенствованных керамических материалов, катализаторов и наночастиц [17].

Изучение композитов, основными фазами которых выступают соединения висмута (висмутаты стронция, силленит $Bi_{25}FeO_{40}$, феррит висмута $BiFeO_3$), является актуальной темой исследования. Проведенные ранее работы по изучению электрофизических свойств образцов, полученных в частном разрезе $(SrO)_x(Bi_2O_3)_{1-x}$ — $BiFeO_3$ (при $0.18 \le x \le 0.38$) в области существования ромбоэдрического твердого раствора β -типа, показали, что при увеличении содержания Fe_2O_3 электропроводность керамики увеличивается на несколько порядков. Были сделаны предварительные измерения фотокаталитической активности в модельной реакции разложения метиленового оранжевого (MO) для ряда данных составов и установлено, что по сравнению с чистым твердым раствором $(SrO)_x(Bi_2O_3)_{1-x}$ более высокие значения степени деградации MO имели образцы с содержание Fe_2O_3 25 и 45 мол. %. Разложение метилоранжа составило в среднем 30% [18]. Предполагается, что получение образцов, синтезированных цитратно-нитратным методом, повысит эффективность работы композитов, как фотокатализаторов.

Цель представленной работы — изучение влияния методов синтеза на фазовый состав, фотокаталитические и сорбционные свойства керамики, формирующейся в частном разрезе $(SrO)_{0,2}(Bi_2O_3)_{0,8}$ —BiFeO₃ тройной системы $SrO-Bi_2O_3$ —Fe₂O₃.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы, лежащие в частном разрезе: (SrO)_{0.2}(Bi₂O₃)_{0.8}-BiFeO₃, были получены двумя различными способами: традиционным методом твердофазного синтеза и пиролизом цитратно-нитратных композиций.

Для синтеза образцов твердофазным методом использовали оксид висмута(III) марки "ос. ч", оксид железа(III) и нитрат стронция марки "ч. д. а". Исходные компоненты брали в соотношениях, соответствующих составу синтезируемой композиции и измельчали в планетарной мельнице с добавлением этанола в течение 15 мин при скорости 350 об./мин. Шихту прессовали в таблетки под давлением около 7 МПа и подвергали термообработке в две стадии при 650 и 750–800°С в течение 6 ч при каждой температуре, с промежуточными перетираниями между обжигами для гомогенизации взаимодействующих реагентов.

При синтезе методом пиролиза цитратно-нитратных композиций в качестве реагентов использовали предварительно приготовленные растворы нитратов висмута(III) марки "ос. ч.", железа(III), и стронция марки "ч. д. а.". Смесь нитратов металлов, соответствующую составу будущей композиции добавляли к раствору лимонной кислоты. Количество лимонной кислоты (*n*) соответствовало расчетному условному соотношению окислителя/восстановителя в композиции, требующемуся для полного восстановления азота и определялось по формуле:

$$n = 5\Sigma(NO_3)/m$$

где m – число окисляемых связей в лимонной кислоте (20), $\sum(NO_3)$ – количество нитрат-ионов в синтезируемом составе.

К полученной смеси, при постоянном перемешивании, медленно добавляли сильно разбавленный раствор NH_4OH до pH = 5.5-6, при этом образование цитратных комплексов металлов сопровождалось ее просветлением. Полученные исходные композиции выпаривали в термостате при 80°C до получения ксерогеля, который прокаливали при 650°C в течение 3 ч. Далее полученный образец подвергали дополнительной термообработке при 750 и 800°C для совершенствования кристаллической структуры образующихся фаз.

Состав синтезированных образцов на различных стадиях синтеза исследовали с помощью рентгенофазового анализа (РФА), который выполняли на дифрактометре ДРОН-3М, съемку производили на Cu K_{α} -излучении. Идентификацию фаз осуществляли с помощью базы данных PDF-2.

Микроструктуры полученных образцов исследовали на сканирующем электронном микроскопе Tescan MIRA 3 в режиме отраженных электронов (BSE). Сканирующая электронная микроскопия сопровождалась микрорентгеноспектральным анализом (MPCA).

Методом низкотемпературной сорбции азота (Quantachrome NOVA 1200e, США), изучали пористую структуру. Дегазацию осуществляли при температуре 300°С в течение 3 ч. Удельную поверхность образов рассчитывали по методу Бранауэра–Эммета– Теллера (БЭТ).

Рис. 1. Дифрактограммы образцов состава $(SrO)_{0.2}(Bi_2O_3)_{0.8}$, синтезированных методами: твердофазным при 800°С (*a*); цитратно-нитратным при 750 и 800°С (*б*, *в* соответственно). $1 - Bi_2O_3$ (14-699); $2 - (SrO)_x(Bi_2O_3)_{1-x}$, тв. р-р. (46-417).

Эффективный диаметр и распределение частиц по размерам оценивали в водной суспензии с помощью метода динамического светорассеяния (NanoBrook 90 Plus Zeta), перед измерением порошки диспергировали в воде ультразвуком в течение 40 мин.

Фотокаталитическую активность исследовали в реакции разложения метиленового оранжевого (MO). Условия проведения эксперимента были выбраны исходя из литературных данных [11]. Начальная концентрация MO составляла 20 мг/л при загрузке катализатора 30 ммоль/л. В качестве источника излучения использовали люминесцентную ртутную лампу низкого давления (UVB – 1%; UVA – 3.8 Вт) мощностью 20 Вт. Облучение смеси водного раствора MO и фотокатализатора осуществляли в стеклянных бюксах в течение 3 ч. Каждые 30 мин 5 мл раствора отбирали, центрифугировали, во избежание замутнения пробы, со скоростью 4000 об./мин в течение 5 мин, и приливали в кварцевую кювету спектрофотометра ПФ-5400 толщиной 10 мм для дальнейшей фиксации значения светопропускания.

Исследование параметров зонной структуры, включая ширину запрещенной зоны (*Eg*), полученных составов проводили путем математической обработки спектров диффузного отражения, полученных с использованием УФ-спектрометра с интегрирующей сферой Shimadzu UV2600 в интервале длин волн 220—850 нм. Ширину запрещенной зоны *Eg* определяли экстраполяцией прямолинейных участков функции Кубелки—Мунка F(R) до пересечения с осью энергии кванта света hv, эВ:

$$F(R) = (1-R)^2/2R$$

где *R* – коэффициент диффузного отражения.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 1–3 представлены результаты рентгенофазового анализа образцов в разрезе $(SrO)_{0,2}(Bi_2O_3)_{0,8}$ –BiFeO₃ с содержанием Fe₂O₃ 0, 25 и 45 мол. % соответственно, син-

Рис. 2. Дифрактограммы образцов в разрезе $(SrO)_{0.2}(Bi_2O_3)_{0.8}$ -BiFeO₃ с содержанием Fe₂O₃ 25 мол. %, синтезированных методами: твердофазным (*a*); цитратно-нитратным (*б*). $1 - (SrO)_x(Bi_2O_3)_{1-x}$, тв. р-р. (46-417); $2 - BiFeO_3$, тв. р-р. (14-181); $3 - Bi_{25}FeO_{40}$ (46-416).

Рис. 3. Дифрактограммы образцов в разрезе $(SrO)_{0,2}(Bi_2O_3)_{0,8}$ -BiFeO₃ с содержанием Fe₂O₃ 45 мол. %, синтезированных методами: твердофазным (*a*); цитратно-нитратным (*b*). *1* – BiFeO₃, тв. р-р. (14-181); *2* – Bi₂₅FeO₄₀ (46-416); *3* – Bi₂Fe₄O₉ (20-836).

тезированных различными методами: твердофазным (*a*), и пиролизом цитратно-нитратных композиций (*б*). При содержании Fe₂O₃ 0 мол. % (рис. 1) методом твердофазного синтеза удалось получить однофазный ромбоэдрический твердый раствор (SrO)_x(Bi₂O₃)_{1-x} (по данным порошковой дифракционной картотеки PDF, 46-417), в то время как образец того же состава, но синтезированный пиролизом цитратно-нитратных композиций при той же температуре обжига помимо данной фазы имел в качестве примеси моноклинный Bi₂O₃ (14-699). Однофазная керамика этого состава была синтезирована с дополнительным обжигом при 800°С.

При синтезе твердофазным методом композит с содержанием Fe_2O_3 25 мол. % по результатам РФА состоял из трех фаз: твердого раствора на основе BiFeO₃ (14-181), фазы со структурой силленита $Bi_{25}FeO_{40}$ (46-416) и следов твердого раствора

Рис. 4. Микрофотографии образцов в разрезе $(SrO)_{0.2}(Bi_2O_3)_{0.8}$ -BiFeO₃ с содержанием Fe₂O₃: 0 (*a*, *e*); 25 (*b*, *d*); 45 мол. % (*e*, *e*), синтезированных методами: верхний ряд – твердофазным; нижний – цитратнонитратным.Примечание: *a* и *e* – однофазные образцы состава $(SrO)_x(Bi_2O_3)_{1-x}$; *I* – Bi₂₅FeO₄₀; *2* – BiFeO₃ тв. p-p.; *3* – Bi₂Fe₄O₉.

 $(SrO)_x(Bi_2O_3)_{1-x}$ (рис. 2*a*). Применение пиролиза цитратно-нитратных композиций привело к формированию двухфазной керамики, в которой $(SrO)_x(Bi_2O_3)_{1-x}$ не обнаружен (рис. 2*б*).

Образцы с содержанием Fe₂O₃ 45 мол. % (рис. 3), синтезированные с помощью различных методов имели идентичный фазовый состав, в котором основными фазами были твердый раствор на основе BiFeO₃ и силленит Bi₂₅FeO₄₀. При синтезе методом пиролиза помимо данных двух фаз было установлено наличие примеси Bi₂Fe₄O₉ (20-836).

Характер и распределение фаз в изучаемых материалах был подтвержден результатами сканирующей электронной микроскопии и микрорентгеноспектральным анализом (рис. 4).

Из рис. 5 и табл. 1 видно, что исследованные образцы представляли собой порошки субмикронного и микронного размера. Применение цитратно-нитратного синтеза привело к увеличению удельной поверхности порошков в 2 раза только у двух исследуемых составов. Использование данного метода синтеза для образцов с содержанием железа 45 мол. % приводит к снижению удельной поверхности. По-видимому, это связано с лучшим смешением компонентов и снижением кинетических факторов, сдерживающих формирование и рост зерен BiFeO₃ [19]. Образцы, содержащие железо, проявляют более равномерное распределение частиц по размерам, чем керамика на основе твердого раствора (SrO)_x(Bi₂O₃)_{1 – x}, в порошках которой отчетливо просле-

Рис. 5. Распределение размеров частиц по данным динамического светорассеяния образцов составов: $1 - (SrO)_{0,2}(Bi_2O_3)_{0,8}$; $2 - (SrO)_{0,1}(Bi_2O_3)_{0,65}(Fe_2O_3)_{0,25}$; $3 - (SrO)_{0,02}(Bi_2O_3)_{0,53}(Fe_2O_3)_{0,45}$, полученных твердофазным (сплошная линия) и цитратно-нитратным (пунктирная) методоми.

живается бимодальное распределение частиц по размерам с основной частью образца микронного и большего размера и долей более мелких частиц (500–600 нм).

Для исследования фотокаталитических свойств был проведен эксперимент по фотостимулированному разложению метиленового оранжевого в водном растворе. Результаты исследования представлены на рис. 6. Из рисунка видно, что образцы, полученные твердофазным методом синтеза, имеют низкие значения деградации красителя МО ($\leq 30\%$). Для образцов, синтезированных пиролизом цитратно-нитратных композиций, можно проследить закономерность: чем меньше содержание Fe₂O₃ в образце, тем лучшую фотокаталитическую активность он проявляет. На порошках, не содержащих Fe₂O₃, был установлен минимальный уровень красителя – C/C₀ = 0.35.

На рис. 7 представлена спектральная зависимость функции Кубелки–Мунка от энергии фотона для полученных композитов. Графическим методом были определены края полос поглощения. Данные значения можно принять близкими по величине

Состав образца	Средний эффективный диаметр частиц, нм		Удельная поверхность, м ² /г	
	твердофазный метод синтеза	цитратно-нит- ратный метод синтеза	твердофазный метод синтеза	цитратно-нит- ратный метод синтеза
(SrO) _{0.2} (Bi ₂ O ₃) _{0.8}	1009	970	1.8	3.3
(SrO) _{0.1} (Bi ₂ O ₃) _{0.65} (Fe ₂ O ₃) _{0.25}	873	536	1.3	2.5
(SrO) _{0.02} (Bi ₂ O ₃) _{0.53} (Fe ₂ O ₃) _{0.45}	346	359	1.9	0.9

Таблица 1. Размеры и удельная поверхность синтезированных образцов

к энергии перехода электронов из валентной зоны в зону проводимости, то есть к ширине запрещенной зоны (*Eg*). Для всех образцов, представленных на графиках, *Eg* находится в диапазоне 1.80–2.60 эВ. Край полосы поглощения находится в видимом диапазоне, что указывает на возможность использования рассматриваемых составов в качестве фотокатализаторов, активируемых видимым светом. Введение железа позволяет уменьшить значения края полос поглощения с максимальных 2.60 эВ для состава (SrO)_{0.2}(Bi₂O₃)_{0.8} до 1.80 эВ у образца с содержанием Fe₂O₃ – 45 мол. %. Стоит отме-

Рис. 6. Фотокаталитическая деградация красителя МО под воздействием облучения на образцах с содержанием Fe₂O₃ равным 0 (сплошная), 25 (пунктирная) и 45 мол. % (штрих-пунктирная), синтезированных методами: твердофазным (*a*); цитратно-нитратным (*б*).

Рис. 7. Спектральная зависимость функции Кубелка–Мунка образцов с содержанием Fe₂O₃ равным 0 (*a*), 25 (*б*) и 45 мол. % (*в*), синтезированных методами: твердофазным (сплошная); цитратно-нитратным (пунктирная).

тить, что у образцов без Fe_2O_3 , полученных цитратно-нитратным методом, наблюдается большее значение F(R), которое чаще всего связно с меньшим размером частиц и, как следствие, большей величиной рассеивания падающего на образец излучения.

ЗАКЛЮЧЕНИЕ

Методом твердофазного синтеза и пиролизом цитратно-нитратных композиций получены керамические образцы, формирующиеся в частном разрезе (SrO)_{0.2}(Bi₂O₃)_{0.8}–BiFeO₃ тройной системы SrO–Bi₂O₃–Fe₂O₃, изучен фазовый состав и фотокаталитические свойства, оценена ширина запрещенной зоны.

Полученные составы проявляют фотокаталитическую активность под воздействием видимого и ближнего ультрафиолетового света. Синтезированные твердофазным методом образцы показали примерно равный уровень деградации модельного красителя МО. Для порошков, полученных пиролизом цитратно-нитратных композиций, наблюдалось увеличение фотокаталитической активности при уменьшении содержания Fe_2O_3 . Ширина запрещенной зоны, оцененная на основании спектроскопических исследований, показала перспективность изучаемых композитов с железом в качестве фотокатализаторов, активируемых видимым светом. Минимальное значение *Eg* для состава, не содержащего железа, было 2.43 эВ, с концентрацией Fe_2O_3 45 мол. % – 1.80 эВ.

Работа выполнена в рамках государственного задания ИХС РАН по Программе фундаментальных научных исследований государственных академий наук на 2019–2021 гг. (тема № 0097-2019-0012) и при частичной поддержке гранта РФФИ на 2019–2021 гг. № 19-33-90226 (Аспиранты).

СПИСОК ЛИТЕРАТУРЫ

- Wang Y., He Y., Li T., Cai J., Luo M., Zhao L. Photocatalytic degradation of methylene blue on Ca-Bi₆O₁₀/Bi₂O₃ composites under visible light // Chemical Engineering J. 2012. V. 189–190. P. 473–481.
- 2. Штарев Д.С., Штарева А.В., Зайцев А.В. Исследование токсического воздействия продуктов фотостимулированного разложения фенола при использовании катализатора висмутата кальция – оксида висмута // Вопросы естествознания. 2016. № 2(10). С. 23–28.
- 3. *Кувшинова Т.Б., Егорышева А.В., Гайтко О.М., Руднев П.О., Баранчиков А.Е., Дудкина Т.Д.* Синтез нанокристаллического тройного оксида висмута, железа, сурьмы со структурой пирохлора // Журн. неорганической химии. 2015. Т. 60. № 10. С. 1294–1298.
- 4. *Hameed A., Gombac V., Montini T., Felisari L., Fornasiero P.* Photocatalytic activity of zinc modified Bi₂O₃ // Chemical Physics Letters. 2009. V. 483. P. 254–261.
- Yang Y., Wang X., Qu J. Preparation and photocatalytic degradation of malachite green by photocatalyst SrBi₄O₇ under visible light irradiation // Applied Mechanics and Materials. 2014. V. 522– 524. P. 411–415.
- 6. *Shan Z., Xia Y., Yang Y., Ding H., Huang F.* Preparation and photocatalytic activity of novel efficient photocatalyst Sr₂Bi₂O₅ / Materials Letters. 2009. V. 63. P. 75–77.
- Makarevich K.S., Zaitsev A.V., Kaminsky O.I., Kirichenko E.A., Astapov I.A. Catalytic Activity of a Composition Based on Strontium Bismuthate and Bismuth Carbonate at the Exposure to the Light of the Visible Range // International J. Chemical Engineering. V. 2018. Article ID 4715629. 9 p.
- 8. *Li T., Wang Y., He Y., Cai J., Luo M., Zhao L.* Preparation and photocataytic property of Sr_{0.25}Bi_{0.75}O_{1.36} photocatalyst // Materials Letters. 2012. V. 74. P. 170–172.
- 9. Shtarev D.S., Shtareva A.V., Syuy A.V., Pereginiak M.V. Synthesis and photocatalytic properties of alkaline earth metals bismuthates—bismuth oxide compositions // Optik. 2016. V. 127. P. 1414–1420.
- 10. Штарев Д.С., Штарева А.В., Макаревич К.С., Перегиняк М.В. Пат. РФ № 2595343. // Бюл. 2016. № 24.
- Wang B., Wang S., Gong L., Zhou Z. Structural, magnetic and photocatalytic properties of Sr²⁺doped BiFeO₃ nanoparticles based on an ultrasonic irradiation assisted self-combustion method // Ceramics International. 2012. V. 38. P. 6643–6649.
- 12. *Khomchenko V.A., Kopcewicz M., Lopes A.M.L., Pogorelov Y.G., Araujo J.P., Vieira J.M. and Kholkin A.L.* Intrinsic nature of the magnetization enhancement in heterovalently doped $\text{Bi}_{1-x}A_x\text{FeO}_3$ (A = Ca, Sr, Pb, Ba) multiferroics // J. Physics D: Applied Physics. 2008. V. 41. 102003. 4 p.
- Mandal S.K., Rakshit T., Ray S.K., Mishra S.K., Krishna P.S.R., Chandra A. Nanostructures of Sr²⁺ doped BiFeO₃ multifunctional ceramics with tunable photoluminescence and magnetic properties // J. Physics: Condensed Matter. 2013. V. 25. 055303. 10 p.
- Bhushan B., Basumallick A., Bandopadhyay S.K., Vasanthacharya N.Y., Das D. Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO₃ nanoparticles // J. Physics: Condensed Matter. 2009. V. 42. 065004. 8 p.
- Xiong Z., Cao L. Tailoring morphology, enhancing magnetization and photocatalytic activity via Cr doping in Bi₂₅FeO₄₀ // J. Alloys and Compounds. 2019. V. 773. P. 828–837.

- 16. Lv M., Yang H., Xu Y., Chen Q., Liu X., Wei F. Improving the visible light photocatalytic activities of Bi₂₅FeO₄₀/MIL-101/PTH via polythiophene wrapping // J. Environmental Chemical Engineering. 2015. V. 3. Issue 2. P. 1003–1008.
- 17. *Deganello F, Marci G., Deganello G.* Citrate-nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach // J. European Ceramic Society. 2009. V. 29. P. 439–450.
- Беспрозванных Н.В., Ершов Д.С., Синельщикова О.Ю. Композиты на основе SrO-Bi₂O₃-Fe₂O₃: синтез и электрофизические свойства // Журн. общей химии. 2019. Т. 89. № 12. С. 1955–1960.
- 19. Морозов М.И., Ломанова Н.А., Гусаров В.В. Особенности образования BiFeO₃ в смеси оксидов висмута и железа(III) // Журн. общей химии. 2003. Т. 73. № 11. С. 1772–1776.