КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ. РОЛЬ КЛАСТЕРОВ К5 = 0@5, К9 = 1@8 и К11 = 0@11 В САМОСБОРКЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

© 2020 г. В. Я. Шевченко^{1, *}, Г. Д. Илюшин^{2, 3}, И. В. Медриш³, В. А. Блатов³

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия ²Федеральный научно-исследовательский центр "Кристаллография и фотоника",

- Федеральный научно-исследовательский центр - Кристаллография и фотоника Ленинский пр., 59, Москва, 119333 Россия

³Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 02.03.2020 г. После доработки 01.04.2020 г. Принята к публикации 03.04.2020 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллической структуры Na₉₆Hg₃₆-*h*R132 (пр. группа *R*-3*c*, a = b = 9.228, c = 52.6380 Å, V = 3 881.91 Å³) и Na₁₂Hg₈-*tP*20 (пр. группа *P*4₂/*mnm*, a = b = 8.520, c = 7.800 Å, V = 566.2 Å³). Для интерметаллида Na₉₆Hg₃₆-*h*R132 впервые установлены полиэдрические кластеры-прекурсоры K11 = 0@11(Na₈Hg₃) и K9 = Hg@Na₈, и для интерметаллида Na₁₂Hg₈-*tP*20 – полиэдрические кластеры-прекурсоры K5 = 0@Na₃Hg₂. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры Na₉₆Hg₃₆-*h*R132 из нанокластеров-прекурсоров K11 и K9 и для 3D структуры Na₁₂Hg₈-*tP*20 из кластеров K5 в виде: первичная цепь $S_3^1 \rightarrow$ слой $S_3^2 \rightarrow$ каркас S_3^3 . Проведен анализ структур всех известных интерметаллидов и найдены многочисленные примеры сборки их структур из кластеров K5, K9 и K11.

Ключевые слова: интерметаллид Na₉₆Hg₃₆-*hR*132, самосборка кристаллической структуры, полиэдрические кластеры-прекурсоры K5, K9 и K11

DOI: 10.31857/S0132665120040113

ВВЕДЕНИЕ

В системе Na–Hg установлена кристаллизация 7 Na-интерметаллидов (табл. 1, [1–7]), в системе Ca–Hg образуются 11 Ca-интерметалидов [8–10]. Структурными аналогами являются только наиболее простые по химическому составу и кристаллической структуре интерметаллиды NaHg₂-*hP*3 и CaHg₂-*hP*3 [8].

В системе Na-Hg наиболее кристаллохимически сложными соединениями являются интерметаллиды Na₉₉Hg₄₆₈-*hP*567 [1] и Na₉₆Hg₃₆-*hR*132 [5], а в системе Ca-Hg – интерметаллид Ca₁₁Hg₅₄-*hP*65 [9]. Только в одной системе Na-Ca-Sn установлено образование Na-, Ca-интерметаллидов CaNa₁₀Sn₁₂ [11] и Na₄CaSn₆ [12].

В работе [13] проведено моделирование самосборки кристаллической структуры интерметаллида Na₉₉Hg₄₆₈-*hP*567 и установлены уникальные супракластеры-прекур-

Соединение	Пространственная группа	Класс Пирсона	Параметры ячейки, Å	<i>V</i> , Å ³
Na ₉₉ Hg ₄₆₈ [1]	<i>P</i> -6	hP567	39.703, 39.703, 9.681	13215.9
NaHg ₂ [2]	P6/mmm	hP3	5.029, 5.029, 3.230	70.8
Na ₂ Hg ₂ [3]	Стст	oC16	7.190, 10.790, 5.210	404.2
Na ₁₂ Hg ₈ [4]	P4 ₂ /mnm	<i>tP</i> 20	8.520, 8.520, 7.800	566.2
Na ₉₆ Hg ₃₆ [5]	<i>R</i> -3 <i>c</i>	hR132	9.228, 9.228, 52.638	3881.9
Na ₃ Hg [6]	<i>R</i> -3 <i>m</i>	hR4	5.404, 5.404, 13.420	339.4
Na ₃ Hg [7]	<i>P</i> 6 ₃ / <i>mmc</i>	<i>hP</i> 18	5.438, 5.438, 9.808	251.2

Таблица 1. Кристаллографические данные интерметаллидов, образующихся в системе Na-Hg

соры Na₁₈Hg₁₅₇ в виде трех связанных шестерных колец из Na-полиэдров. При образовании колонн супракластеры-прекурсоры Na₁₈Hg₁₅₇ связаны шестерными кольцами Hg₆ и Na-спейсерами.

Для интерметаллида Ca₁₁Hg₅₄-*hP*65 в [14] определены полиэдрические кластерыпрекурсоры K8 = 0@Ca₂Hg₆, представляющие собой гексагональные бипирамиды, полиэдрические кластеры K11 = 0@Ca₃Hg₈ и полиэдрические кластеры с центральным Hg-атомом K12 = Hg(Ca₃Hg₈). Кластеры-прекурсоры Ca₂Hg₆ являются темплатами, на поверхности которых происходит образование атомных оболочек из 38 атомов.

Интерметаллид Na₉₆Hg₃₆-*h*R132 с пространственной группой *R*-3*c* относится к кристаллохимически сложным соединениям: параметры его тригональной ячейки (в гексагональной установке): a = b = 9.228 Å, c = 52.638 Å. Значения координационных чиссел (KЧ) четырех кристаллографически независимых атомов Na = 11, 13 и 14 и трех атомов Hg = 8, 10 и 12. Кристаллическая структура Na₉₆Hg₃₆-*h*R132 в работе [5] представлена в виде чередующихся гексагональных сеток типа 3⁶ из изолированных атомов Hg ("анионов ртути") находящихся на расстоянии d(Hg–Hg) > 5 Å и топологически образующих плотные упаковки, в которой атомы Na заполняют все октаэдрические пустоты и 5/6 тетраэдрических пустот. К кристаллохимическому семейству Na₉₆Hg₃₆-*h*R132 относятся интерметаллиды Pd₉₆Sb₃₆ [15], Au₉₆Al₃₆ [16], Yb₉₆In₃₆ [17], и Eu₉₆In₃₆ [18].

Интерметаллид Na₁₂Hg₈-*tP*20 с пространственной группой $P4_2/mnm$ [4] не имеет кристаллохимических аналогов (табл. 1). Значения КЧ четырех кристаллографически независимых атомов Na1, Na2, Na3, Hg1 равны соответственно 14, 15, 14, 10. Уникальность кристаллической структуры Na₁₂Hg₈-*t*P20 по данным [4] связана с наличием изолированных кластеров Hg₄ в виде квадрата, разделенных атомами Na.

В настоящей работе с помощью пакета программ ToposPro [19] проведен геометрический и топологический анализ интерметаллида $Na_{96}Hg_{36}-hR132$ и $Na_{12}Hg_8-tP20$. Реконструирован симметрийный и топологический код самосборки 3D кристаллической структуры $Na_{96}Hg_{36}-hR132$ из новых полиэдрических кластеров-прекурсоров K11 = 0@11 (Na_8Hg_3) и K9 = 1Hg@ Na_8 , для $Na_{12}Hg_8-tP20$ из кластеров K5.

Работа продолжает исследования [13, 14, 20–25] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [19], позволяющего проводить многоцелевое исследование кри-

Атом	Локальное окружение	Координационные последовательности					
		N1	N2	N3	N4	N5	
Na1	9 Na + 4 Hg	13	48	111	207	334	
Na2	10 Na +4 Hg	14	51	113	209	339	
Na3	9 Na + 4 Hg	13	50	121	218	356	
Na4	7 Na + 4 Hg	11	43	103	188	305	
Hg1	12 Na	12	48	114	204	330	
Hg2	8 Na	8	42	98	194	302	
Hg3	10 Na	10	44	104	196	328	

Таблица 2. Na₉₆Hg₃₆-*hR*132. Локальное окружение атомов и значения координационных последовательностей

сталлической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома.

Полученные значения координационных последовательностей атомов в 3D-сетках, приведены в табл. 2, в которой жирным шрифтом выделено число соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома. Все атомы характеризуются различными наборами координационных последовательностей $\{N_k\}$, следовательно, все атомы топологически (и функционально) различны.

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на принципах, опубликованных ранее [20, 21] и реализован в комплексе программ ToposPro [19].

Самосборка кристаллической структуры $Na_{96}Hg_{36}-hR132$. В табл. 2 приведено локальное окружение атомов Na, Hg и значения их координационных последовательностей в 3D атомной сетке $Na_{96}Hg_{36}$. Значения координационных чисел атомов Na – 11, 13 (два атома) и 14 и для атомов Hg – 8, 10, и 12.

Нанокластерный анализ с помощью ToposPro дал 9 вариантов кластерного представления 3D атомной сетки с тремя структурными единицами, в качестве которых установлены полиэдрические кластеры-прекурсоры K11 = 0@11 (Na₈Hg₃) и K9 = 1Hg@Na₈ (рис. 1). Центры кластеров K11 и K9 занимают позиции 6*a* и 6*b* с симметрией 32 и – 3. На рис. 1 приведены полиэдрические кластеры K8 = 0@Ca₂Hg₆, K11 = 0@Ca₃Hg₈, K12 = Hg(Ca₃Hg₈), установленные ранее в кристаллической структуре Ca₁₁Hg₅₄-*hP*65 [14]. Отметим топологическое различие кластеров K11 = 0@11 (Na₈Hg₃) и K11 = 0@Ca₃Hg₈. Базовая 2D сетка для кластеров K11 и K9 имеет топологический тип **hxl** (3⁶) с KЧ = 6.

Самосборка первичных цепей. Первичная цепь S_3^1 формируется в результате связывания металлокластеров K11 = 0@11 состава Na₈Hg₃ в направлении [100] (рис. 2). Расстояние между центрами кластеров K11 определяет значение вектора трансляций *a* = 9.228 Å.

Самосборка микрослоя L1. Образование микрослоя S_3^2 происходит при связывании (со сдвигом) первичных цепей в плоскости (001) (рис. 2). Расстояние между центрами кластеров из соседних первичных цепей определяет значения вектора трансляции b = 9.228 Å.

342

Рис. 1. Полиэдрические кластеры-прекурсоры кристаллической структуры $Na_{96}Hg_{36}$ -*hR*132 (*a*) и $Ca_{11}Hg_{54}$ -*hP*65 (*b*). Цифры указывают межатомные расстояния в Å.

Самосборка двухслойного пакета Р. На поверхности микрослоя *L*1 образуется микрослой *L*2 из кластеров К9 и атомов-спейсеров Hg, расположенных между кластерами К9 (рис. 3).

Самосборка каркаса. Микрокаркас структуры S_3^3 формируется при связывании двухслойных пакетов P = L1 + L2 со сдвигом (рис. 4).

Кристаллографические данные Na₁₂Hg₈-*tP*20. В табл. 3 приведено локальное окружение атомов Na, Hg и значения их координационных последовательностей в 3D атомной сетке Na₁₂Hg₈. В локальном окружении атома Na1, Na2, Na3, Hg1 находятся 14, 15, 14, 10 атомов. Всего найдено 5 вариантов кластерного представления 3D атомной сетки. В элементарной ячейке находятся четыре металлокластера-прекурсора K5 = $0@Na_3Hg_2$ в виде треугольной бипирамиды, в состав которой вошли все кристаллографически независимые атомы (рис. 5). Центр металлокластера-прекурсора находится в позиции 16k (0.07, 0.17, 0.27).

Самосборка первичных цепей. Первичная цепь S_3^1 формируется в результате связывания димеров Na₃Hg₂ + Na₃Hg₂ (центр в позиции 2b (0.0, 0.5) и симметрия *mmm*) в направлении [001] (рис. 6) с индексом связанности 6. Расстояние между центрами димеров определяет значение вектора трансляций c = 7.708 Å.

Рис. 2. Na₉₆Hg₃₆-hRl32. Слой L1 из кластеров K11 (а) и слой L2 из кластеров K9 и атомов-спейсеров Hg (б).

Самосборка микрослоя. Образование микрослоя S_3^2 происходит при связывании первичных цепей в плоскости (110) со сдвигом (рис. 6).

Самосборка микрокаркаса. Микрокаркас структуры S_3^3 формируется при связывании микрослоев (рис. 7). Расстояние между первичными цепями из соседних микрослоев определяет значения вектора трансляции a = b = 8.458 Å.

Роль кластеров К5, К9 И К11 в самосборке кристаллических структур других интерметаллидов. Представляло интерес выяснить, насколько часто встречаются найденные

Рис. 3. Na₉₆Hg₃₆-*hR*132. Двухслойный пакет *P* = *L*1 + *L*2.

Рис. 4. Na₉₆Hg₃₆-*hR*132. Каркасная 3D структура, образованная из двухслойных пакетов P = L1 + L2.

Атом	Локальное окружение	Координационные последовательности					
		N1	N2	N3	N4	N5	
Na1	8 Na + 6 Hg	14	50	120	210	334	
Na2	9 Na + 6 Hg	15	50	109	204	327	
Na3	10 Na+4 Hg	14	54	118	214	354	
Hg1	8 Na +2 Hg	10	46	108	198	317	

Таблица 3. Na₁₂Hg₈-*tP*20. Локальное окружение атомов и значения координационных последовательностей

кластеры K5, K9 и K11 в структурах интерметаллидов и какую роль эти кластеры играют в самосборке структур. Ранее нами был проведен анализ 12315 интерметаллических структур из базы данных неорганических кристаллических структур (ICSD, выпуск 2018/2) [26] и обновлена коллекция топологических типов нанокластеров ToposPro (TTN) [27], содержащая информацию о составе, структуре и встречаемости более 2800 топологических типов нанокластеров.

Согласно TTN коллекции, нанокластеры 0@5, 1@8 и 0@11 обнаружены соответственно в 1143, 340 и 150 кристаллических структурах интерметаллидов.

Структуры, построенные из кластеров 1@8. Как было отмечено выше, кластер 1@8 участвует в сборке 340 структур, из которых большая часть — 190 структур (29 бинарных, 159 тернарных, 2 кватернарных) — собраны только из этого кластера. Интересно отметить, что дополнительные атомы-спейсеры обнаружены лишь в четырех структурах, что, по-видимому, связано с формой кластера. Интерметаллиды, построенные из кластеров 1@8, весьма разнообразны по симметрии и относятся ко всем сингониям от моноклинной (пространственные группы C2/m (3 структуры) и $P2_1/c$ (2 структуры)) до кубической (6 пространственных групп: Pm-3, I432, F-43m, Fm-3m, Im-3m, Ia-3d), в которой решены 178 структур. Наиболее представительной группой, включающей 148 структур, являются тернарные соединения состава ABC, из которых 147 кристаллизуются в пространственной группе F-43m. В качестве A, B и C могут выступать атомы

Рис. 5. $Na_{12}Hg_8$ -*tP*20. Полиэдрические кластеры-прекурсоры K5 (*a*) и димеры K5 + K5 (*b*).

Рис. 6. $Na_{12}Hg_8$ -*tP*20. Первичная цепь $S_3^1(a)$ и слой $S_3^2(b)$.

Рис. 7. Na₁₂Hg₈-*tP*20. Проекции в направлении [001] слоев S_3^2 (*a*) и каркас S_3^3 (*б*).

47 элементов, среди которых лидируют Sb и Bi, входящие в состав 72 и 35 структур, соответственно.

Структуры, построенные из кластеров 0@11. Из 149 структур интерметаллидов, в сборке которых участвует кластер 0@11, 112 структур, среди которых 14 бинарных и

98 тернарных соединений, могут быть собраны только из кластеров данного типа (возможно, с участием дополнительных атомов-спейсеров). Все эти структуры относятся к гексагональной сингонии. Наиболее представительной группой, объединяющей 65 структур, являются тернарные соединения состава *ABC* (где в качестве *A*, *B* и *C* могут выступать атомы 35 элементов), кристаллизующиеся в пространственных группах *P*-62*m*, *P*-62*c* и *P*-6*m*2 (соответственно 51, 11 и 3 структуры).

ЗАКЛЮЧЕНИЕ

Осуществлен комбинаторно-топологический анализ и моделирование кластерной самосборки кристаллической структуры интерметаллидов $Na_{96}Hg_{36}$ -hR132 и $Na_{12}Hg_8$ -tP20. Методом разложения 3D атомной сетки на кластерные структуры для $Na_{96}Hg_{36}$ -hR132 установлены полиэдрические кластеры-прекурсоры K11 = 0@11 (Na_8Hg_3) и K9 = 1Hg@Na_8 и атомы-спейсеры Hg. Для $Na_{12}Hg_8$ -tP20 определены кластеры-прекурсоры K5 = Na_3Hg_2 . Реконструирован симметрийный и топологический код процессов самосборки 3D структуры $Na_{96}Hg_{36}$ -hR132 из нанокластеров-прекурсоров K11 и K116

и из кластеров K5 для Na₁₂Hg₈-*tP*20 в виде: первичная цепь $S_3^1 \rightarrow$ слой $S_3^2 \rightarrow$ каркас S_3^3 . Проведен анализ структур всех известных интерметаллидов и найдены многочисленные примеры сборки их структур из кластеров K5, K9 и K11.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (РФФИ № 19-02-00636) и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Hoch C., Simon A.* Na₁₁Hg₅₂: complexity in a polar metal // Angew. Chem. Int. ed. 2012 V. 51. № 13. P. 3262–3265.
- Nielson J.W., Baenziger N.C. The crystal structrues of NaHg₂, NaHg and Na₃Hg₂ // Acta Crystallogr. 1954. V. 7. P. 27–7282.
- Deiseroth H.J., Stupperich A., Pankaluoto R., Christensen N.E. A variant of the cesium chloride structure: structural relations and electronic structure // Z. Anorg. Allg. Chem. 1991. V. 597. P. 41–50.
- Tkachuk A.V., Mar A. Redetermination of Na₃Hg₂ // Acta Crystallogr. Sect. E. Struct. Rep. Online. 2006. V. 62. P. i129–i130
- Deiseroth H.J., Toelstede D. Na₈Hg₃: an Alkali Metal Rich Amalgam with Isolated Mercury Anions? // Z. Anorg. Allg. Chem. 1990 V. 587. P. 103–109.
- 6. *Deiseroth H.J., Rochnia M.* Einkristallstudien zur Temperaturabhaengigkeit der Kristallstrukturvon alpha Na₃Hg // Z. Anorg. Allg. Chem. 1994 V. 620. P. 1736–1740.
- Deiseroth H.J., Rochnia M. β-Na₃Hg: ein Feststoff mit geschmolzener Natriumteilstruktur im Temperaturbereich 36–60°C // Angewandte Chemie (German Edition). 1993. V. 105. P. 1556–1558.
- Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 9. Bruzzone G., Merlo F. The calcium-mercury system // J. Less-Common Met. 1973. V. 32. P. 237-241.
- Tkachuk A.V., Mar A. Alkaline-earth metal mercury intermetallics A_(11 x) Hg_(54 + x) (A = Ca, Sr) // Inorganic Chemistry. 2008. V. 47(4). P. 1313–1318.
- Bobev S., Sevov S.C. Synthesis and Characterization of the largest Isolated Clusters of Tin, (Sn₁₂)⁻¹², in (AE) Na₁₀Sn₁₂ (AE = Ca or Sr) // Inorg. Chem. 2001. V. 40. P. 5361–5364.
- Todorov I., Sevov S.C. In search of benzene-like Sn6(-6): synthesis of Na₄CaSn₆ with interconnected cyclohexane like Sn₆(6-) // Inorg. Chem. 2006. V. 45. P. 4478–4483.
- 13. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Супраполиэдрические кластеры-прекурсоры Na₁₈Hg₁₅₇ для самосборки кристаллической структуры Na₉₉Hg₄₆₈-hP567 // Физ. хим. стекла. 2019, Т. 45. № 6. С. 399-404.
- 14. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем. Новый двухслойный кластер-прекурсор К46 = 0@8(Ca₂Hg₆) @38 (Hg₆ + CaHg₆)₂(Ca₆Hg₆) для самосборки кристаллической структуры Ca₁₁Hg₅₄ -hP65 // Физ. хим. стекла. 2020. Т. 46. № 1. С. 1–9.

- 15. Marsh R.E. The Centrosymmetric-Noncentrosymmetric Ambiguity: Some More Examples // Acta Crystallographica A. 1994. V. 50. P. 450-455.
- 16. Range K.J., Buchler H. Hoch drucksynthese und kristallstructur von Al₃Au₈ // J. Less-Common Metals. 1989 V. 154. P. 251-260.
- 17. Cirafici S., Fornasini M.L. Crystal structures of Yb₂Tl, Yb₈Tl₃ and Yb₈In₃ // J. Less-Common Metals. 1989. V. 154. P. 79-88.
- 18. Gaebler F, Niewa R. Polymorphism of Eu₈In₃ and the solid solution $(Ca_{(x)}Eu_{(1 x)})_8$ In₃ // Z. Anorg. Allg. Chem. 2010. V. 636. P. 1803-1809.
- 19. Blatov V. A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. P. 3576–3585.
- 20. Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
- Ilyushin G.D. Symmetry and Topology Code of the Cluster Self-Assembly of Intermetallic Compounds A^[16]₂B^[12]₄ of the Friauf Families Mg₂Cu₄ and Mg₂Zn₄ // Crystallography Reports. 2018. V. 63. 4. P. 543–552.
- 22. Ilyushin G.D. The Crystal Chemistry of Intermetallic Lithium Compounds. A review // Russian Journal of Inorganic Chemistry. 2018. V. 63. № 14. P. 1786–1799.
- 23. Ilyushin G.D. Modeling of the Self-Organization Processes in Crystal-Forming Systems. Tetrahedral Metal Clusters and the Self-Assembly of Crystal Structures of Intermetallic Compounds // Crystallography Reports. 2017. V. 62. 5. P. 670–683.
- 24. шевченко в.я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новые двухслойные кластеры-прекурсоры 0@(Na₂Cd₆) @(Na₁₂Cd₂₆) и 0@(Na₃Cd₆)@(Na₆Cd₃₅) для самосборки кристаллической структуры Na₂₆Cd₁₄₁-hP168 // Физ. хим. стекла. 2019. Т. 45. С. 303–310.
 25. Илюшин Г. Д. Кластерная самоорганизация интерметаллических систем: 124-атомный кластер 0@ Ga₁₂@ (Li₂₀Ga₁₂)@(Li₄Na₁₆Ga₆₀) и 44-атомный кластер 0@Ga₁₂@ (Li₂Na₁₈Ga₁₂)для самосборки кристаллической структуры Li₄₈Na₈₀ Ga₃₂₂ -oF920 // Кристаллография. 2019. Т. 64. С. 857–861.
 26. Кимерание КУх. Малия и Каракана Сор. Каракана и Кух. 24. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в
- 26. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Structural Chemistry. 2019. V. 30. P. 2015–2027.
- 27. Pankova A.A., Akhmetshina T.G., Blatov V.A., Proserpio D.M. A Collection of Topological Types of Nanoclusters and its application to icosahedron-based intermetallics // Inorg. Chem. 2015. V. 54. P. 6616-6630.