= КРАТКИЕ СООБЩЕНИЯ —

ПРОМЕЖУТОЧНЫЕ СВЕДЕНИЯ О ВОЗМОЖНОСТИ НАБЛЮДЕНИЯ НЕСОРАЗМЕРНО-МОДУЛИРОВАННОЙ ФАЗЫ Li₂B₄O₇

© 2020 г. С. Н. Волков^{1, *}, С. А. Петрова², Л. И. Исаенко³, Р. С. Бубнова¹

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

²Институт металлургии УрО РАН, ул. Амундсена, д. 101, Екатеринбург, 620016 Россия

³Институт геологии и минералогии им В.С. Соболева СО РАН, проспект Академика Коптюга, 3, Новосибирск, 630090 Россия

*e-mail: s.n.volkov@inbox.ru

Поступила в редакцию 12.12.2019 г. После доработки 03.02.2020 г. Принята к публикации 03.04.2020 г.

Выполнены монокристальные исследования бората $Li_2B_4O_7$ в широком интервале температур. Проведенные исследования подтвердили сглаженный характер температурных зависимостей параметра *с* элементарной ячейки и не выявили модулированных модификаций при низких температурах.

Ключевые слова: кристаллическая структура, тепловое расширение, рентгеновская дифракция

DOI: 10.31857/S0132665120040137

ВВЕДЕНИЕ

Li₂B₄O₇ является известным оптическим материалом, который находит применение в качестве поляризаторов Глана-Томпсона для глубокого ультрафиолета, в качестве электрооптических модуляторов и в нелинейной оптике [1, 2]. Сведения о термическом расширении, а также о наличии низкотемпературной несоразмерно-модулированной модификации тетрабората лития $Li_2B_4O_7$ весьма противоречивы. Имеются данные о наличии низкотемпературной несоразмерно-модулированной модификации $Li_2B_4O_7$, которая может быть стабилизирована термоциклированием в интервале температур 100-300 К [3-5]. Имеются сведения о "ступенчатом" термическом расширении этой фазы в интервале 100-300 К, что наблюдалось методом дилатометрии [6], а также монокристальной дифрактометрии [7]. Подобное термическое расширение ранее в других соединениях не наблюдалось. Аномалии на температурной зависимости диэлектрической постоянной наблюдали в [8]. В [9] методом ЯМР спектроскопии авторам не удалось наблюдать каких-либо аномалий термического поведения, что поставило под вопрос факт существования полиморфных переходов в этом борате. Позднее в [10, 11] при исследовании Li₂B₄O₇ методом порошковой нейтронографии в интервалах температур 3.4–268 К и 293–1203 К соответственно, также не удалось наблюдать каких-либо аномалий термического поведения.

До сих пор остается много вопросов относительно характера термического расширения данного бората в области низких температур. Чтобы разрешить их были проведены монокристальные исследования при температурах 100–300 К с шагом в 1 К.

Рис. 1. Сечения (*h0l*) обратного пространства кристалла Li₂B₄O₇, полученные в ходе термоциклирования кристалла (см. текст).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для проведения исследований был взят монокристалл Li₂B₄O₇, размером ~1 × 2 × 0.4 см, выращенный методом Чохральского из расплава. Всего в ходе исследования было изучено три образца кристаллов Li₂B₄O₇. Из кристалла перпендикулярно кристаллографической оси *с* было выпилено две пластины размером $10 \times 4 \times 0.5$ мм, которые были исследованы методом терморентгенографии в температурном интервале 100-300 K с шагом 1 К. Первая пластина была исследована на дифрактометре Bruker D8 ADVANCE (CuK_α), оборудованном термоприставкой Anton Paar TTK450. Измеряли положение рефлекса 0.0.12 в интервале углов $20 123^{\circ}-132^{\circ}$, выдержка перед каждым измерением составляла 10 мин. Вторую пластину исследовали на дифрактометре Rigaku Ultima IV (CoK_α), оборудованном термоприставкой Rigaku R-300. Измеряли положение рефлекса 0.0.8 в интервале углов $20 = 84^{\circ}-92^{\circ}$, выдержка перед каждым измерением отсутствовала. Параметр элементарной ячейки *с* определяли по уравнению Вульфа–Брэгга, коэффициент теплового расширения при каждой температуре определяли как $\alpha_c = (1/c_{T-2})(c_T - c_{T-2})(1/2)$, где c_T – параметр элементарной ячейки при температуре *T*.

Далее от монокристалла было отделено монокристальное зерно размером ~0.1 мм, которое было исследовано методом монокристальной дифракции на дифрактометре Bruker Smart Apex II (излучение – MoK_{α}). Измерения были проведены при 298 K (рис. 1*a*), затем при температурах 100 и 80 K. Охлаждение кристалла проводили с использованием приставки Cobra (Oxford Cryosystem) путем обдувания струей азота. Кристалл подвергли термоциклированию как описано в [3]. Его резко охлаждали с 300 до 100 K, затем за ~24 ч нагревали до 300 K. Эту процедуру проводили 3 раза. После этого были выполнены измерения при 80 K (рис. 1*б*) и 300 K (рис. 1*в*).

Следующие измерения проводили на кристалле $Li_2B_4O_7$, полученном методом спонтанной кристаллизации расплава. Поликристаллический образец термоциклировали путем погружения в жидкий азот на ~40 мин, после чего его извлекали на открытый воздух при комнатной температуре на ~40 мин. Данную процедуру проводили 9 раз. Из образца был выделен монокристалл, пригодный для рентгендифракционных измерений. Этот кристалл был исследован при 300 (рис. 1*г*) и 80 К (рис. 1*д*).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Температурная зависимость параметра *c*, совместно с данными измерений этого параметра другими авторами, приведена на рис. 2. Можно видеть, что температурная зависимость демонстрирует весьма сглаженный характер. По данным, полученным на дифрактометре Rigaku Ultima IV, имеется некоторая аномалия в области 145–154 К. Исследования, проведенные на дифрактометре Bruker D8 ADVANCE не подтвержда-

• Rigaku Ultima IV • Bruker D8 ADVANCE \circ [10] \cdot [7]

Рис. 2. Температурная зависимость параметра элементарной ячейки *c* бората $Li_2B_4O_7$, полученная в результате терморентгенографического исследования монокристальной пластины на дифрактометрах Rigaku Ultima IV и Bruker D8 ADVANCE. Также приведены температурные зависимости параметра *c* согласно [7, 10]. На вставке приведены температурные зависимости коэффициента теплового расширения α_c .

ют наличие этой аномалии. Возможно, наблюдение "аномалий" термического расширения Li₂B₄O₇ в [7] связано с какими-либо неучтенными деталями эксперимента и используемого оборудования. Коэффициент теплового расширения α_c варьируется в области -12×10^{-6} K⁻¹, что близко к данным [12].

Сечения обратного пространства кристалла Li₂B₄O₇ приведены на рис. 1. Дифракционная картина не содержала сателлитов, все рефлексы были проиндицированы в рамках его элементарной ячейки (пространственная группа *I4*₁*cd*, *a* \simeq 9.48, *c* \simeq 10.29 Å). Хорошо видно, что кроме главных брэгговских рефлексов, а также рефлексов, связанных с "эффектом $\lambda/2$ ", никаких сателлитов, которые могли бы указывать на наличие несоразмерно-модулированной структуры, не наблюдается. Дифракционные картины полученные до и после термоциклирования идентичны друг другу. Картины дифракции, полученные от разных кристаллов, также идентичны друг другу и не содержат каких-либо дополнительных рефлексов.

Согласно [12] кристаллы $Li_2B_4O_7$ часто демонстрируют двойники роста с осями двойникования [100] и [010]. Между тем образцы, которые мы изучали, двойниками не являлись. Возможно, что структурная модуляция присутствует только у сдвойникованных образцов.

Авторы [5] использовали при исследовании более крупный монокристалл $Li_2B_4O_7$ и точечный детектор. Возможно, благодаря этому, им удалось наблюдать столь слабые

рефлексы. Причиной того, что нам не удалось наблюдать сателлиты, может быть их малая интенсивность и малый размер используемого нами кристалла.

ЗАКЛЮЧЕНИЕ

В этой работе мы исследовали термическое расширение тетрабората лития методом монокристальной дифракции в интервале температур 100–300 К. Монокристалл был выращен из расплава методом Чохральского. Несоразмерно-модулированную фазу, полиморфных переходов и "ступенчатого" теплового расширения мы не наблюдали. Вопрос существования несоразмерно-модулированной фазы $Li_2B_4O_7$ остается открытым. Дальнейший поиск может быть проведен с применением большей длины волны рентгеновского излучения и синхротронного излучения, а также на разных, возможно сдвойникованных, кристаллах.

Исследования проведены с использованием оборудования ресурсного центра СПбГУ "Рентгендифракционные методы исследования". Исследование выполнено за счет гранта Российского научного фонда (проект № 18-73-00176).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Nikogosyan D.N.* Nonlinear Optical Crystals: A Complete Surve, Springer: New York, N.Y., USA, 1999.
- Bhalla A.S., Cross L.E., Whatmore R.W. Pyroelectric and Piezoelectric Properties of Lithium Tetraborate Single Crystal // Japan. J. Appl. Phys. (Suppl.) 1985. V. 24. P. 727–729.
- 3. Жигадло Н.Д., Зарецкий В.В. Индуцирование несоизмерниого состояние воздействием периодически изменяющегося температурного поля // Письма в ЖЭТФ. 1989. Т. 49. № 9. С. 498–500.
- 4. Зарецкий В.В., Бурак Я.В. Фазовые переходы, стимулированные термоциклированием // Письма в ЖЭТФ. 1989. Т. 49. № 4. С. 198–201.
- 5. *Зарецкий В.В., Бурак Я.В.* Новый несоразмерный кристалл Li₂B₄O₇ // Физика твердого тела. 1989. Т. 31. № 6. С. 80–84.
- 6. Борман Н.Я., Бурак Я.В., Перро И.Т., Куадзиньш М.А., Лысейко И.Т. Получение и физическое свойства монокристаллов тетрабората лития. Актуальные проблемы физики и химии сегнетоэлектриков (статья в сборнике). Рига: Латв. Гос. ун-т им. П. Стучки. 1987. 179 с.
- Зуб Е.М. К вопросу о несоризмеримой фазе в кристалле Li₂B₄O₇ // Физика твердого тела. 1997. Т. 39. № 8. С. 1461–1463.
- Yukikuni Y., Komatsu R. Peculiar Dielectric Behaviors on Li₂B₄O₇ Single Crystals // J. Phys. Soc. Jpn. 2004. V. 73. P. 1341–1346.
- 9. Иванов Ю.Н., Бурак Я.В., Александров К.С. Исследование монокристаллического Li₂B₄O₇ методом ЯМР ⁷ Li и ¹¹В // Физика твердого тела. 1990. Т. 32. № 11. С. 3379–3383.
- Senyshyn A., Schwarz B., Lorenz T., Adamiv V.T., Burak Ya.V., Banys J., Grigalaitis R., Vasylechko L., Ehrenberg H., Fuess H. Low-temperature crystal structure, specific heat, and dielectric properties of lithium tetraborate Li₂B₄O₇ // J. Appl. Phys. 2010. V. 108. P. 093524.
- Senyshyn A., Boysen H., Niewa R., Banys J., Kinka M., Burak Ya., Adamiv V., Izumi F. Chumak I. Fuess H. High-temperature properties of lithium tetraborate Li₂B₄O₇ // J. Phys. D: Appl. Phys. 2012. V. 45. P. 175305.
- Sennova N., Bubnova R., Cordier G. Albert B., Filatov S.K., Isaenko L. Temperature-dependent Changes of the Crystal Structure of Li₂B₄O₇ // Z. Anorg. Allg. Chem. 2008. V. 634. P. 2601–2607.
- Burak Ya. V. The peculiarity of twinning in Li₂B₄O₇ single crystals // J. Cryst. Growth. 1998. V. 186. P. 302–304.