КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: НОВЫЙ ТРЕХСЛОЙНЫЙ КЛАСТЕР К142 ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ К₄₄In₈₀-*hR*366 И ТЕТРАКЛАСТЕР БЕРГМАНА К141 ДЛЯ САМОСБОРКИ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ К₃₄In₈₂-*cF*464

© 2020 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443100 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 17.04.2020 г. После доработки 05.06.2020 г. Принята к публикации 05.06.2020 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры K44In80-hR366, (пр. гр. $R\overline{3}$, a = b = 17.214 Å, c = 44.612 Å) и K₃₄In₈₂-cF464 (пр. гр. $Fd\overline{3}m$, a = 24.241 Å, V= 14244.64 Å³). Методом полного разложения 3D атомной сетки интерметаллида К₄₄In₈₀ на кластерные структуры установлен каркас-образующий 142-атомный икосаэдрический нанокластер К142. Нанокластеры К142 с симметрией 3 являются трехслойными с составом оболочек 0@12In@32(K₂₆In₆)@98(K₂₆In₇₂). Первые две оболочки формируют кластер Бергмана. Третья оболочка из 98 атомов образована 5-, 6- и 7-атомными кольцами (5⁵⁴.6³⁸.7⁶) и содержит 98 вершин, 270 ребер и 174 грани. Нанокластеры К142 образуют плотноупакованные двумерные слои 36, расположенные со сдвигом вдоль [001]. Расстояние между центрами кластеров К142 определяет значение вектора трансляций $a_{hex} = 17.214$ Å. Пустоты в 3D каркасе занимают спейсеры 0@K₆In₂. В интерметаллиде K₃₄In₈₂ формируются супраполиэдрические кластеры К141 с симметрией -43m, состоящие из четырех кластеров Бергмана $0@12In@32(K_{20}In_{12})$, каждый из которых имеет симметрию 3m. Пустоты в 3D каркасе занимают спейсеры In(In₄) в виде тетраэдров с центральным атомом In, имеющие симметрию –43*m*. Для интерметаллидов К₄₄In₈₀ и К₃₄In₈₂ установлен симметрийный и топологический код процессов самосборки 3D структуры из нанокластеровпрекурсоров К142 и К141 в виде: первичная цепь → слой → каркас.

Ключевые слова: самосборка кристаллических структур, структурный тип $K_{78}In_{160}$ -*hP*238, структурный тип $K_{34}In_{82}$ -*cF*464, икосаэдрический трехслойный кластер $K142 = 0@12In@32(K_{26}In_6)@98$ ($K_{26}In_{72}$), кластер Бергмана $K44 = 0@12In@32(K_{20}In_{12})$

DOI: 10.31857/S0132665120050108

введение

В системе K—In установлено образование пяти интерметаллидов [1, 2], из них только интерметаллиды KIn₄-tI10 [3] и K₈In₁₁-hR114 [4] имеют 19 и 6 кристаллохимических аналогов [1, 2]. Уникальной кристаллической структурой обладают интерметаллиды K₇₈In₁₆₀-hP238 [5], K₄₄In₈₀-hR366 [6] и K₃₄In₈₂-cF464 [7].

В [8] осуществлено моделирование самосборки наиболее кристаллохимически сложного K, In-интерметаллида $K_{78}In_{160}$ -*hP*238. Самосборка кристаллической структуры происходит с участием трехслойных кластеров K130 = 0@12(In₁₂)@30(In₁₂K₁₈)@86(K₂₀In₆₆), образующихся на икосаэдрах 0@12(In₁₂) и двухслойных кластеров *K*66 = = K@16(K₄In₁₂)@49(K₁₆In₃₃), образующихся на полиэдрах Фриауфа K(K₄In₁₂). Нанокластеры K130 и K66 участвуют в формировании 2D слоев A и B образующих трехслойный пакет B–A–B. Толщина трехслойного пакета соответствует значению вектора трансляции *c* = 28.888 Å.

Кристаллическая структура K₄₄In₈₀ с пр. гр. $R\bar{3}$ характеризуется большими значениями параметров гексагональной ячейки: a = b = 17.214 Å, c = 44.612 Å, V = 11448 Å³ [6]. Последовательность Вайкоффа для 19 кристаллографически независимых атомов имеет вид $i^4h^{11}c^4$. Для атомов К установлены значения KЧ = 14 (один атом), 16 (6 атомов), 19 (один атом) и для атомов In – 10 (два атома), 11 (6 атомов), 12 (два), 14 (один атом). В [4] в качестве каркас-образующих кластеров выделены два кристаллографически-независимых In₁₂ – икосаэдра и In₁₅-полиэдр.

Кристаллическая структура $K_{34}In_{82}$ -cF464 с пр. гр. $Fd\bar{3}m$ характеризуется большими значениями параметров кубической ячейки: a = 24.241 Å, V = 14244.64 Å³ [7]. Последовательность Вайкоффа для 8 кристаллографически независимых атомов имеет вид g^4e^2ba . В локальном окружении атомов К находятся 16 атомов, атомов In – 11, 12, 14 или 16 атомов. В [7] в качестве каркас-образующих кластеров выделены In_{12} – икосаэдр и In(In₁₅)-полиэдр Фриауфа.

В настоящей работе с помощью пакета программ ToposPro [9] проведен геометрический и топологический анализ кристаллических структур интерметаллидов $K_{44}In_{80}$ и $K_{34}In_{82}$. Установлен симметрийный и топологический код процессов самосборки 3D структур из трехслойных икосаэдрических нанокластеров-прекурсоров K142 и кластеров Бергмана K44 в виде: первичная цепь — слой — каркас.

Работа продолжает исследования [8, 10–16] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [9], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома.

Полученные значения координационных последовательностей атомов в 3D-сетках интерметаллидов $K_{44}In_{80}$ и $K_{34}In_{82}$ приведены в табл. 1, 2, в которых жирным шрифтом выделено число соседних атомов в ближайшем окружении, т.е. в первой координаци-

Атом	Локальное окружение	Координационные последовательности				
		N ₁	<i>N</i> ₂	N ₃	N_4	N_5
K1	6K + 10In	16	54	118	227	373
K2	4K + 12In	16	50	112	206	345
К3	5K + 11In	16	51	112	222	363
K4	4K + 12In	16	53	115	216	356
K5	6K + 8In	14	55	126	221	346
K6	3K + 16In	19	47	116	231	319
K7	4K + 12In	16	49	106	220	350
K8	4K + 12In	16	48	106	218	362
Inl	7K + 5In	12	53	121	210	332
In2	5K + 6In	11	45	109	210	333
In3	5K + 6In	11	46	116	202	321
In4	5K + 6In	11	45	112	205	344
In5	6K + 5In	11	50	117	205	327
In6	5K + 6In	11	45	110	205	330
In7	6K + 4In	10	48	117	208	330
In8	5K + 6In	11	46	117	205	332
In9	7K + 5In	12	51	116	209	346
In10	6K + 5In	10	48	117	206	329
In11	7K + 7In	14	61	136	227	346

Таблица 1. K_{44} In₈₀-*hR*366. Локальное окружение атомов K, In и значения координационных последовательностей

онной сфере атома. Все атомы характеризуются различными наборами координационных последовательностей $\{N_k\}$.

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах: структура образуется в результате самосборки из кластеров-прекурсоров. При этом кластеры-прекурсоры образуют каркас, пустоты в котором заполняются кластерами-спейсерами (состоящими из небольшого числа атомов). Кластеры-прекурсоры занимают высокосимметричные позиции. Набор нанокластеров-прекурсоров и кластеров-спейсеров включает в себя все атомы структуры.

Самосборка кристаллических структур $K_{78}In_{160}$ и $K_{34}In_{82}$. Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [10, 11]. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — механизм самосборки из цепи слоя (2-ой уровень) и затем из слоя — трехмерного каркаса структуры (3-й уровень).

Нанокластерный анализ структуры $K_{44}In_{80}$ -hR366. Пространственная группа $R\bar{3}m$ характеризуется позициями с точечной симметрией: $\bar{3}m$ (3*a*, 3*b*), 3*m* (6*c*), 2/*m* (9*d*, 9*e*), 2 (18*f*, 18*g*), *m* (18*h*). В табл. 1 приведено локальное окружение 8 кристаллографически независимых атомов K и 11 атомов In в 3D атомной сетке. Для атомов K установлено KЧ = 14, 16 (6 атомов), 19 и для атомов In – 10 (два атома), 11 (6 атомов), 12 (два атома), 14.

Атом	Локальное окружение	Координационные последовательности				
		N_1	<i>N</i> ₂	N ₃	N_4	N_5
K1	4K + 12In	16	53	115	225	373
K2	4K + 12In	16	49	109	214	359
К3	4K + 12In	16	48	100	218	356
In1	5K + 6In	11	46	112	198	322
In2	5K + 6In	11	45	110	206	336
In3	6K + 8In	14	58	130	224	346
In4	16In	16	44	116	222	316
In5	5K + 7In7	12	52	123	217	341

Таблица 2. $K_{34}In_{82}$ -*cF*464. Локальное окружение атомов K, In и значения координационных последовательностей

Общее число вариантов разложения на кластерные подструктуры с числом выделенных кластеров, равным 2, 3, 4, 5 и 6, составило 2, 16, 37, 59 и 11 соответственно. Варианты разложения на кластерные подструктуры с числом выделенных кластеров 2, 3 и 6 приведены табл. 3.

В кристаллической структуре икосаэдрические кластеры $0@In_{12}$ занимают позиции 3b с симметрией $\overline{3}m$ и позиции 9e с симметрией 2/m. Кластеры-спейсеры в виде гексагональной бипирамиды $0@K_6In_2$ занимают позиции 3a с симметрией $\overline{3}m$ (рис.1).

Икосаэдры 0@In₁₂ с центром в позициях За являются темплатами, на которых происходит образование трехслойных кластеров K142 с диаметром 17 Å (рис. 2, 3, табл. 4). Кластер K142 имеет химический состав оболочек 0@12In@32(K₂₆In₆)@98(K₂₆In₇₂). Вторая 32-атомная оболочка K₂₆In₆ соответствует внешней оболочке кластера Бергмана. Третья оболочка K₂₆In₇₂ из 98 атомов образована 5-, 6- и 7-атомными кольцами (5⁵⁴.6³⁸.7⁶) и содержит 98 вершин, 270 ребер и 174 грани.

Икосаэдры $0@In_{12}$ с центром в позиции 9*e* характеризуют механизм связывания кластеров K142 друг с другом с объединением 5-членных колец (со связанностью $P_c = 10$).

Рис. 1. $K_{44}In_{80}$ -*hR*366. Кластер 0@In₁₂ (слева) и кластер @In₂K₆ (справа). Числа указывают длины связей атомов в Å.

Таблица 3. Варианты кластерного представления кристаллической структуры K₄₄In₈₀-hR366. Указан центральный атом полиэдрического кластера, число его оболочек (в первой скобке) и количество атомов в каждой оболочке (во второй скобке). Кристаллографические позиции, соответствующие центрам пустот полиэдрических кластеров, обозначены ZA1, ZA2

Две структурные единицы

K6(1)(1@19) K8(2)(1@16@48)

ZA2(3b)(3)(0@12@32@98) ZA1(3a)(1)(0@8)

Три структурные единицы

K6(1)(1@19) K7(1)(1@16) K3(1)(1@16) K6(1)(1@19) K2(1)(1@16) K3(1)(1@16) K6(1)(1@19) K3(1)(1@16) In8(1)(1@11) ZA1(3a)(1)(0@8) K6(1)(1@19) K8(2)(1@16@48) ZA1(3a)(1)(0@8) K8(2)(1@16@48) In7(1)(1@10) ZA1(3a)(1)(0@8) K8(2)(1@16@48) In10(1)(1@10) ZA2(3b)(1)(0@12) ZA1(3a)(1)(0@8) K7(2)(1@16@49) ZA2(3b)(2)(0@12@32) K6(1)(1@19) K2(1)(1@16)

Шесть структурных единиц

$$\begin{split} & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K6}(1)(1@19) \ \mathsf{K7}(1)(1@16) \ \mathsf{K3}(1)(1@16) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K6}(1)(1@19) \ \mathsf{K8}(1)(1@16) \ \mathsf{K2}(1)(1@16) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K6}(0)(1) \ \mathsf{K2}(1)(1@16) \ \mathsf{K3}(1)(1@16) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K6}(1)(1@19) \ \mathsf{K2}(1)(1@16) \ \mathsf{K3}(1)(1@16) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K7}(1)(1@16) \ \mathsf{K3}(0)(1) \ \mathsf{In7}(1)(1@10) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K7}(1)(1@16) \ \mathsf{K3}(1)(1@16) \ \mathsf{In1}(1)(1@10) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K7}(1)(1@16) \ \mathsf{K3}(1)(1@16) \ \mathsf{In1}(1)(1@10) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K7}(1)(1@16) \ \mathsf{K3}(1)(1@16) \ \mathsf{In1}(1)(1@10) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K8}(1)(1@16) \ \mathsf{K3}(1)(1@16) \ \mathsf{K5}(1)(1@14) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K8}(0)(1) \ \mathsf{K2}(1)(1@16) \ \mathsf{K5}(1)(1@14) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K8}(0)(1) \ \mathsf{K2}(1)(1@16) \ \mathsf{K5}(1)(1@14) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K8}(0)(1) \ \mathsf{K2}(1)(1@16) \ \mathsf{K5}(1)(1@14) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K8}(0)(1) \ \mathsf{K2}(1)(1@16) \ \mathsf{K5}(1)(1@14) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K8}(0)(1) \ \mathsf{K2}(1)(1@16) \ \mathsf{K5}(1)(1@14) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K8}(1)(1@16) \ \mathsf{K5}(1)(1@14) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K8}(1)(1@16) \ \mathsf{K5}(1)(1@14) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K8}(1)(1@16) \ \mathsf{K5}(1)(1@14) \\ & \mathsf{ZA3}(9e)(1)(0@12) \ \mathsf{ZA2}(3b)(1)(0@12) \ \mathsf{ZA1}(3a)(1)(0@8) \ \mathsf{K8}(1)(1@16) \ \mathsf{K5}(1)(1@14) \\ & \mathsf$$

Нанокластер 0@12@32@98				
ZA2	6 In6	12 In1		
6 In4	12 K1	12 In10		
6 In5	6 K3	12 In2		
	6 K5	12 In3		
	2 K8	12 In7		
		6 In8		
		6 In9		
		12 K2		
		6 K4		
		6 K6		
		2 K7		
	Всего 142 атома			

Таблица 4. Атомы, формирующие икосаэдрический кластер 1@12, а также 32- и 98-атомные оболочки

Рис. 2. К₄₄In₈₀-*hR*366. Двухслойный кластер 0@12In@32(К₂₈In₆).

Рис. 3. К₄₄In₈₀-*hR*366. Трехслойный кластер 0@12In@32(К₂₈In₆)@98(К₂₆In₇₂).

Полиэдрические кластеры $0@In_{15}$ с центром в позиции 6*c*, указанные в [6] в качестве каркас-образующих полиэдров, характеризуют локальную область в виде тройных и шестерных колец (связанных тремя парами атомов), в больших окнах которых расположены атомы K.

Самосборка кристаллической структуры К44In80-hR366. Первичная цепь. Самосборка

первичных цепей S_3^l из кластеров K142 происходит в направлении [100] (рис. 4). Расстояние между центрами кластеров K142 определяет значение вектора трансляций a = 17.214 Å.

Рис. 4. К₄₄In₈₀-*hR*366. Механизм связывания кластеров К142 при образовании первичной цепи (*a*). Механизм связывания кластеров К142 из соседних слоев при образовании каркаса (*б*).

Самосборка слоя. Образование базисного слоя S_3^2 происходит при связывании первичных цепей из кластеров K142, расположенных со сдвигом (рис. 5). Расстояние между центрами кластеров K142 в первичной цепи и в слое определяет длину векторов трансляций a = b = 17.214 Å. Базовая 2D сетка имеет топологический тип 3⁶. На этой стадии самосборки происходит локализация атомов In в пустотах слоя.

Самосборка каркаса. Каркас структуры S_3^3 формируется при связывании двух базисных слоев со сдвигом. Расстояние между слоями в направлении [001] определяет значения вектора трансляции c/3 = 44.612 Å/3.

Пространственная группа $Fd\overline{3}m$ характеризуется позициями с точечной симметрией: -43m (8*a*, 8*b*), $\overline{3}m$ (16*c*, 16*d*), 3m (32*e*) и др. В табл. 2 приведено локальное окружение атомов K, In и значения их координационных последовательностей в 3D атомной сетке. В локальном окружении все атомов K находятся 16 атомов, атомов In – 11 (два атома), 12, 14, 16. Общее число вариантов разложения на кластерные подструктуры с

Рис. 5. $K_{44}In_{80}$ -*hR*366. Слой S_3^2 из двух первичных цепей.

числом выделенных кластеров, равным 2, 3, и 4 составило 2, 5, и 3 соответственно (табл. 5).

Как и для интерметаллида $K_{44} In_{80},$ в кристаллической структуре $K_{34} In_{82}$ установлены искосаэдры 0@In₁₂ с симметрией $\overline{3}m$ и с центром в позиции 16*d*. Икосаэдры 0@In₁₂

гаолица 5. Бар	манты кластерного представления кристаллической структуры κ_{34} m_{82} - <i>сг</i> 464
	Две структурные единицы
	K1(2)(1@16@48) In1(1)(1@16)
	In1(1)(1@16) K2(1)(1@16)
	Три структурные единицы
	ZA1(16c)(1)(0@8) K1(2)(1@16@48) In1(0)(1)
	ZA1(16c)(1)(0@8) K1(2)(1@16@48) In1(1)(1@16)
	ZA1(16c)(1)(0@8) In1(0)(1) K2(1)(1@16)
	ZA1(16c)(1)(0@8) In1(1)(1@16) K2(1)(1@16)
	ZA2(16d)(1)(0@12) In1(1)(1@16) K2(1)(1@16)
	Четыре структурные единицы
	ZA2(16d)(1)(0@12) ZA1(16c)(1)(0@8) K1(1)(1@16) In1(1)(1@16)
	ZA2(16d)(1)(0@12) ZA1(16c)(1)(0@8) In1(0)(1) K2(1)(1@16)
	ZA2(16d)(1)(0@12) ZA1(16c)(1)(0@8) In1(1)(1@16) K2(1)(1@16)

Рис. 6. К₃₄In₈₂-*cF*464. Кластеры 0@In₁₂ и In(In₄) (*a*). Кластеры К44 и К141 (*б*). Слой из кластеров К141 (*в*).

также являются темплатами, на которых происходит образование 32-атомной оболочки $K_{20}In_{12}$, соответствующей кластеру Бергмана 0@12(In_{12})@32($K_{20}In_{12}$) (рис. 6). Четыре кластера Бергмана формируют супраполиэдрический кластер K141, имеющий симметрию -43m с центром в позиции 8b. В структуре имеются спейсеры In(In_4) в виде тетраэдра с центральным атомом In, также имеющие симметрию -43m с центром в позиции 8a (рис. 6).

Самосборка кристаллической структуры K₃₄In₈₂-*cF*464. *Первичная цепь*. Самосборка первичных цепей происходит в направлении [110] (рис. 6). Расстояние между центрами супракластеров К141 соответствует половине значения диагонали.

Самосборка слоя. Образование микрослоя S_3^2 происходит при связывании параллельно расположенных первичных цепей в плоскости (001) (рис. 6). На этой стадии происходит локализация спейсера In(In₄). Расстояние между центрами супракластеров K141 из соседних цепей в направлениях [100] и [010] соответствует значениям векторов a = b = 24.241 Å.

Самосборка каркаса. Самосборка микрокаркаса. Микрокаркас структуры S_3^3 формируется при связывании (со сдвигом) двух микрослоев в направлении [001]. Расстояние между микрослоями определяет половину значения вектора трансляции *c* = 24.241 Å.

ЗАКЛЮЧЕНИЕ

Методом полного разложения 3D атомной сетки на кластерные структуры для интерметаллида $K_{44}In_{80}$ -hR366 установлен каркас-образующий 142-атомный икосаэдрический нанокластер диаметром 17 Å. Нанокластеры K142 являются трехслойными 0@12In@32($K_{26}In_6$)@98($K_{26}In_{72}$) с симметрией $\overline{3}$. Для интерметаллида $K_{34}In_{82}$ -cF464 установлен супраполиэдрический кластер K141 из четырех кластеров Бергмана, имеющий симметрию –43*m*. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры $K_{44}In_{80}$ из кластеров-прекурсоров K142 и 3D структуры $K_{34}In_{82}$ из

кластеров-прекурсоров K141 в виде: первичная цепь $S_3^1 \rightarrow$ слой (пакет) $S_3^2 \rightarrow$ каркас S_3^3 .

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН и Российского научного фонда (РНФ № 20-13-00054).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 2. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST).
- Brussone G. The D13 structure type in intermetallic compounds // Acta Crystallographica B: 1969. V. 25. P. 1206–1207.
- Blase W., Cordier G. Crystal structure of potassium indium (8/11), K₈In₁₁ // Z. Kristallogr. 1991. V. 194. P. 150–151.
- Lin B., Corbett J.D. Synthesis and characterization of the new cluster phase K₃₉In₈₀. Three K-In compounds with remarkably specific and transferable cation dispositions // Inorg. Chem. 2003. V. 42. P. 8768–8772.
- 6. Cordier G., Mueller V. Crystal structure of potassium indium (22 x/39 + x) (x = 0.67), K_{21.33}In_{39.67} // Z. Kristallogr. 1992. V. 198. P. 302–303.
- Cordier G., Mueller V. Crystal structure of potassium indium (17/41), K₁₇In₄₁ // Z. Kristallogr. 1993. V. 205. P. 353–354.
- Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: кластеры К66 и К130 для самосборки кристаллической структуры К₇₈In₁₆₀hP238 и кластеры К17 для самосборки кристаллической структуры К₈In₁₁-hR114 // Физика и химия стекла. 2020. В печати.

- 9. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. P. 3576–3585.
- Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- Ilyushin G.D. Modeling of the Self-Organization Processes in Crystal-Forming Systems. Tetrahedral Metal Clusters and the Self-Assembly of Crystal Structures of Intermetallic Compounds // Crystallography Reports. 2017. V. 62. 5. P. 670–683.
- Blatov V.A., Ilyushin G.D., Proserpio D.M. New Types of Multishell Nanoclusters with a Frank-Kasper Polyhedral Core in Intermetallics // Inorg. Chem. 2011. V. 50. P. 5714–5724.
- Ilyushin G.D. Symmetry and Topology Code of the Cluster Self-Assembly of Intermetallic Compounds A₂^[16]B₄^[12] of the Friauf Families Mg₂Cu₄ and Mg₂Zn₄ // Crystallography Reports. 2018. V. 63. 4. P. 543–552.
- 15. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новые двухслойные кластеры-прекурсоры 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) и 0@(Na₃Cd₆)@(Na₆Cd₃₅) для самосборки кристаллической структуры Na₂₆Cd₁₄₁ hP168 // Физика и химия стекла. 2019. Т. 45. № 5. С. 403–411.
- 16. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics //Struct. Chem. 2019. V. 30. № 6. P. 2015–2027.