КЛАСТЕРЫ-ПРЕКУРСОРЫ И САМОСБОРКА КРИСТАЛЛИЧЕСКИХ СТРУКТУР Li₃₆Ca₄Sn₂₄-*oS*64 И LiMgEu₂Sn₃-*oS*28

© 2020 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Международный научно-исследовательский центр по теоретическому материаловедению, Самарский государственный технический университет,

ул. Молодогвардейская, 244, Самара, 443100 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 18.05.2020 г. После доработки 23.07.2020 г. Принята к публикации 06.08.2020 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллической структуры Li₃₆Ca₄Sn₂₄-oS64 (пр. гр. *Стст*, a = 4.640, b = 27.112, c = 11.491 Å, V == 1445.5 Å³) и LiMgEu₂Sn₃-*oS*28 (пр. гр. *Стст*, a = 4.782, b = 20.717, c = 7.743 Å, V == 767.1 Å³). Для интерметаллида Li₃₆Ca₄Sn₂₄ установлен новый тип 11-атомного кластера К11, образованного из сдвоенных пентагональных колец: К11 = $= 0@11(Li_5)Ca(Sn_5)$. Максимальная симметрия кластера K11 и первичной цепи из трансляционно-связанных кластеров К11 соответствует некристаллографической симметрии 5*m*. Первичные цепи из связанных кластеров K11, сохраняющие только симметрию *m*, расположены в направлении [100] и расстояние между центрами кластеров определяет длину вектора a = 4.640 Å. Образование слоя происходит при связывании расположенных антипараллельно первичных цепей. Между первичными цепями располагаются тетраэдрические кластеры $K4 = 0@4(Li_3Sn)$, образующие цепи в направлении [100]. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры интерметаллида LiMgEu₂Sn₃-oS28 из кластеров K4 = 0@4(LiMgEuSn) и $K3 = 0@3(Sn_2Eu)$. Образование слоя происходит при связывании расположенных параллельно цепей из К4 + К3.

Ключевые слова: интерметаллид Li₃₆Ca₄Sn₂₄-oS64, интерметаллид LiMgEu₂Sn₃-oS28, самосборка кристаллической структуры, кластеры-прекурсоры K3 = 0@3(Sn₂Eu), K4 = 0@4 и K11 = 0@11

DOI: 10.31857/S0132665120060207

введение

В тройных системах $A_n B_m C_k$ с участием атомов щелочных металлов А число кристаллохимически различных интерметалидов в ряду Li \rightarrow Na \rightarrow K, Rb \rightarrow Cs \rightarrow последовательно уменьшается: 511 \rightarrow 176 \rightarrow 135 \rightarrow 66 \rightarrow 53 [1, 2]. Если в образовании двойных Li-интерметаллидов принимают участие только 22 химических элемента, то в образовании тройных Li-интерметаллидов принимают участие уже 51 химический элемент. Многочисленные интерметаллиды Li образуются с участием атомов Ge, Sn,

Интерметаллид	Группа симметрии	Параметры ячейки, Å	<i>V</i> , Å ³	Индекс Пирсона
Li ₂ Sm ₂ Ge ₃	Стст	4.372, 18.494, 6.840	553.1	oS28
$Li_2Nd_2Ge_3$	Cmcm	4.422, 18.658, 6.891	568.5	<i>oS</i> 28
Li ₂ Pr ₂ Ge ₃	Cmcm	4.443, 18.723, 6.911	575.0	<i>oS</i> 28
Li ₂ Ce ₂ Ge ₃	Cmcm	4.472, 18.825, 6.942	584.5	<i>oS</i> 28
Li ₂ La ₂ Ge ₃	Cmcm	4.531, 19.001, 7.008	603.4	<i>oS</i> 28
LiMgSr ₂ Ge ₃	Cmcm	4.636, 19.703, 7.324	669.0	<i>oS</i> 28
LiMgEu ₂ Sn ₃	Cmcm	4.782, 20.717, 7.743	767.1	<i>oS</i> 28
LiMgSr ₂ Sn ₃	Cmcm	4.843, 20.923, 7.805	790.9	<i>oS</i> 28
Li ₉ CaSn ₆	Cmcm	4.640, 27.112, 11.491	1445.5	<i>oS</i> 68
Li ₉ EuSn ₆	Cmcm	4.723, 27.125, 11.436	1465.1	<i>oS</i> 68
LiCa ₂ Ge ₃	Pnnm	11.380, 10.730, 4.430	540.9	oP24
LiEu ₂ Ge ₃	Pnnm	10.968, 11.687, 4.548	583.0	oP24

Таблица 1. Кристаллографические данные интерметаллидов, образующихся в тройных и четверных системах

Al, Ga, In, Ca, Mg, Zn. Наибольшее число кристаллических структур Li-интерметаллидов характеризуются пр. группами *Fm*-3*m* (108 соединений), *F*-43*m* (65), *Cmcm* (31), *Pnma* (31) и *Fd*-3*m* (27).

В системах Li–Ca–M и Li–Eu–M установлено образование 25 и 11 кристаллохимически различных интерметалидов [1, 2]. Из них только интерметаллиды Li₉EuSn₆-oS68 [3] и Li₉CaSn₆-oS68 [3] с пр. группой *Стст* и LiEu₂Ge₃-oP24 [4] и LiCa₂Ge₃-oP24 [5] с пр. группой *Рппт* являются кристаллохимическими аналогами (табл. 1).

Тройные интерметаллиды семейства $Li_2Ln_2Ge_3-oS28$ (с пр. группой *Стст* и Ln = = La, Ce, Pr, Nd, Sm [6]) имеют кристаллохимические аналоги среди четверных интерметаллидов LiMgSr₂Ge₃-oS28 [7], LiMgEu₂Sn₃-oS28 [3], LiMgSr₂Sn₃-oS28 [3] (табл. 1).

В настоящей работе с помощью пакета программ ToposPro [8] проведен геометрический и топологический анализ кристаллических структур интерметаллидов $Li_{36}Ca_4Sn_{24}$ -oS64 и $LiMgEu_2Sn_3$ -oS28. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры $Li_{36}Ca_4Sn_{24}$ -oS64 из кластеров-прекурсоров K4 = 0@Li_3Sn и K11 = 0@11(Li5)Ca(Sn5) и LiMgEu_Sn_3-oS28 из кластеров K4 = 0@4(LiMgEuSn) и K3 = $0@3(Sn_2Eu)$ в виде: первичная цепь \rightarrow слой \rightarrow каркас. Работа продолжает исследования [9–17] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [8], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома.

Атом	Локальное окружение	Координационные последовательности					
		<i>N</i> 1	N2	N3	<i>N</i> 4	N5	
Lil	8Li + 6Sn	14	47	105	190	290	
Li2	8Li + 4Sn	12	41	96	176	294	
Li3	5Li + 1Ca + 6Sn	12	47	106	187	299	
Li4	6Li + 1Ca + 5Sn	12	42	94	186	302	
Li5	8Li + 4 Sn4	12	42	98	174	306	
Li6	6Li + 1Ca + 5Sn	12	45	100	186	295	
Cal	5Li +10Sn	15	44	108	183	304	
Sn1	8Li + 2Ca + 2Sn	12	49	111	192	300	
Sn2	6Li + 2Ca + 2Sn	10	44	101	183	283	
Sn3	8Li + 2Ca + 2Sn	12	45	96	191	301	
Sn4	9Li9	9	38	92	169	284	

Таблица 2. Координационные последовательности и локальное окружение атомов в структуре $Li_{36}Ca_4Sn_{24}$

Таблица 3. Координационные последовательности и локальное окружение атомов в структуре $LiMgEu_2Sn_3$

Атом	Локальное окружение	Координационные последовательности					
		<i>N</i> 1	N2	N3	<i>N</i> 4	N5	
Mg1	3Mg + 4Sn + 5Eu	12	44	98	178	262	
Sn1	Mg + 2Sn + 6Eu	9	45	90	168	281	
Sn2	6Mg +3 Eu3	9	41	96	165	269	
Eu1	4Mg + 9Sn + 1Eu	14	42	98	184	270	
Eu2	6Mg + 6Sn + 1Eu	13	41	102	161	287	

Полученные значения координационных последовательностей атомов в 3D-сетках, приведены в табл. 2 и 3, в которых жирным шрифтом выделено число соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома. Все атомы характеризуются различными наборами координационных последовательностей $\{N_k\}$, следовательно, все атомы топологически (и функционально) различны.

Алгоритм разложения в автоматическом режиме структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы реализован в комплексе программ ToposPro [8].

САМОСБОРКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Li₃₆Ca₄Sn₂₄-oS64 И LiMgEu₂Sn₃-oS28

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [9—11]. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — ме-

Рис. 1. Li₃₆Ca₄Sn₂₄-*oS*64. Кластеры-прекурсоры K11 и K4.

ханизм самосборки из цепи слоя (2-ой уровень) и затем из слоя – трехмерного каркаса (3-й уровень).

Кристаллографические данные Li36Ca4Sn24-0S64

В элементарной ячейке все атомы находятся в частных позициях пространственной группы *Стем* (по. 63) в двух плоскостях (100) на высоте 0 и 0.5. Из них в позиции 4*b* (2/m) – атом Li1, в позиции 4*c* (m2m) – Li1, Li4, Ca1, Sn1, Sn4, в позиции 8f (m) – Li2, Li3, Li6, Sn2, Sn3.

В табл. 1 приведено локальное окружение атомов Ca, Li, Sn и значения их координационных последовательностей в 3D атомной сетке. Атомы Ca характеризуются KY = 15, атомы Li – 12 (пять атомов) и 14, атомы Sn – 9, 10 и 12 (два атома).

Супраполиэдрический кластер-прекурсор К11. Полиэдрический кластер-прекурсор K11 = $0@11(\text{Li}_5\text{CaSn}_5)$ с симметрией *m* и центром в позиции 8g (1/4, 0.86, 1/4) представляет собой пентагональную пирамиду CaSn₅, на каждой грани которой располо-

Рис. 2. $Li_{36}Ca_4Sn_{24}$ -*оS*64. Первичная цепь S_3^1 (слева) и слой S_3^2 (справа).

жены атомы Li, связанные в 5-ные кольца, лежащие в одной плоскости с атомами Ca (рис. 1*a*). Максимальная симметрия кластера K11 соответствует некристаллографической симметрии 5*m*.

Полиэдриический кластер-прекусор К4. Кластер K4 = $0@4(Li_3Sn)$ с симметрией *m* представляет собой тетраэдр (рис. 1). Центр кластера K4 находится в позиции 8g (3/8, 0.58, 1/4).

Самосборка кристаллической структуры $\text{Li}_{36}\text{Ca}_4\text{Sn}_{24}$ -*oS*64. Самосборка первичных цепей S¹₃ из кластеров K11 происходит в направлении [100] (рис. 2). Расстояние между центрами кластеров K11 определяет длину наименьшей трансляции *a* = 4.640 Å.

Образование слоя S_3^2 происходит при связывании расположенных антипараллельно первичных цепей $S_3^1 + S_3^1$ (g = -1, позиция 8*d* (1/4, 3/4, 1/2) (рис. 2). Между первичными цепями располагаются тетраэдрические кластеры Li₃Sn, образующие цепи в на-

правлении [100]. Каркасная структура S_3^3 формируется при связывании слоев в направлении [001] (рис. 3). Расстояние между эквивалентными 2D слоями определяет длину вектора *c* = 11.490 Å.

Кристаллографические данные LiMgEu₂Sn₃-oS28

В элементарной ячейке атомы находятся в частных позициях пространственной группы *Стем* в двух плоскостях (100) на высоте 0 и 0.5. Из них в позиции 4c - Eu1, Eu2, Sn2; в позиции 8f - (Li + Mg), Sn1. В табл. 3 приведено локальное окружение атомов Mg, Eu, Sn и значения их координационных последовательностей в 3D атомной сетке. Атомы Eu характеризуются KU = 13 и 14, атом Mg (Li) – KU = 12, атомы Sn – KU = 9.

Кластеры-прекурсоры К4 и К3. Полиэдрический кластер-прекусор К4 = 0@4(LiMgEuSn) с симметрией *m* представляет тетраэдр (рис. 4). Центр кластера К4

Рис. 3. $Li_{36}Ca_4Sn_{24}$ -*oS*64. Самосборка каркаса $S_3^3 = S_3^2 + S_3^2$ при связывании S_3^2 в направлении [010] (сверху) и [001] (снизу).

находится в позиции 8g (3/8, 0.76, 1/4). Кластер-прекурсор K3 = $0@3(Sn_2Eu)$ имеет форму треугольника и также занимает позиции 8g (3/8, 0.76, 1/4) и (1/6, 0.52, 1/4).

Самосборка кристаллической структуры LiMgEu₂Sn₃-oS28. Самосборка первичной цепи S_3^l -A из кластеров K4 + K4 со связанностью $P_c = 7$ происходит в направлении [001] (рис. 5). Вторичная цепь S_3^l -B из кластеров K3 + K3 формируется при их связывании с тетраэдрами первичной цепи (с $P_c = 8$) (рис. 5).

Образование каркаса S_3^3 происходит при связывании слоев S_3^2 в направлении [100] (рис. 5) и затем в направлении [010] (рис. 6).

Рис. 4. LiMgEu₂Sn₃-*oS*28. Кластеры-прекурсоры К4 (слева) и К3 (справа).

Рис. 5. LiMgEu₂Sn₃-oS28. Слой S_3^2 (слева) и каркас S_3^3 (справа).

Рис. 6. LiMgEu₂Sn₃-oS28. Сборка каркаса S_3^3 в направлении [010].

ЗАКЛЮЧЕНИЕ

Осуществлен комбинаторно-топологический анализ и моделирование кластерной самосборки кристаллической структуры $Li_{36}Ca_4Sn_{24}$ -oS64 из полиэдрических кластеров-прекурсоров K11 = 0@11(CaSn₅Li₅) с симметрией *m*, образованного из сдвоенных пентагональных колец. Максимальная симметрия кластера K11 и первичной цепи из трансляционно связанных кластеров K11 соответствует некристаллографической симметрии 5*m*. Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из кластеров-прекурсоров K11 и K4 в виде: первичная цепь S¹₃ \rightarrow микрослой S²₃ \rightarrow микрокаркас S³₃. Реконструирован симметрийный и топологический код процессов сакоборки 3D структуры из Структуры из структуры интерметаллида LiMgEu₂Sn₃-oS28 из кластеров K4 = 0@4(LiMgEuSn) и K3 = 0@3(Sn₂Eu). Образование слоя происходит при связывании расположенных параллельно цепей из K4 + K3.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (РФФИ № 19-02-00636) и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data–Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 3. *Todorov I., Sevov S.C.* Heavy-metal aromatic and conjugated species: rings, oligomers, andchains of tin in Li_(9 x)EuSn_(6 + x), Li_(9 x)CaSn_(6 + x), Li₅Ca₇Sn₁₁, Li₆Eu₅Sn₉, LiMgEu₂Sn₃, and LiMgSr₂Sn₃ // Inorg. Chem. 2005 V. 44. P. 5361–5369.
- Xie Q.-X., Nesper R. Crystal structure of dieuropium monolithium trigermanide, Eu₂LiGe₃ // Z. Kristallogr. – New Cryst. Struct. 2004 V. 219. P. 79–80.
- 5. *Mueller W., Schaefer H., Weiss A.* Die Struktur der Phasen Ca₂LiSi₃ und Ca₂LiGe₃ // Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie. 1971. V. 26. P. 5–7.
- 6. *Guo Shengping, You Taesoo, Bobev S.* Closely related rare–earth metal germanides RE₂ Li₂ Ge₃ and RE₃Li₄Ge₄ (RE = La Nd, Sm): synthesis, crystal chemistry, and magnetic properties // Inorganic Chemistry. 2012. V. 51. P. 3119–3129.
- 7. *Xie Q.-X.*, *Nesper R.* Crystal structure of dieuropium and distrontium di(lithium, magnesium) trigermanide, M2 Li(x) Mg(2 x) Ge3 (M = Eu, x = 1.16; M = Sr, x = 0.94) // Z. Kristallogr. New Cryst. Struct. 2004. V. 219. P. 83–84.
- 8. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.
- Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Cluster Self–Organization of Intermetallic Systems: New Two–Layer Cluster–Precursor K46 = 0 @8(Ca₂Hg₆)@38(Hg₆ + CaHg₆)2(Ca₆Hg₆) for Self– Assembly of the Crystal Structure of Ca₁₁Hg₅₄–hP65 // Glass Physics and Chemistry. 2020. V. 46. P. 1–5.
- Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Cluster Self–Organization of Intermetallic Systems: New Precursor Cluster 0@8(Sr2Au6) for Self–Assembly of the Crystal Structure of (Sr₂Au₆)(Ga₃)-hR66 // Glass Physics and Chemistry. 2020. V. 46. P. 6–12.
- 11. Илюшин Г.Д. Интерметаллиды LikMn (M Ag, Au, Pt, Pd, Ir, Rh): геометрический и топологический анализ, тетраэдрические кластерные прекурсоры и самосборка кристаллических структур // Кристаллография. 2020. Т. 65. Вып. 2. С. 202–210.
- 12. Илюшин Г.Д. Интерметаллиды Na_kM_n (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb)): геометрический и топологический анализ, тетраэдрические кластерные прекурсоры и самосборка кристаллических структур // Кристаллография. 2020. Т. 65. С. 428–434.
- Ковальчук М.В., Алексеева О.А., Благов А.Е., Илюшин Г.Д. Исследование структуры кристаллообразующих растворов дигидрофосфата калия К(H₂PO₄) (тип KDP) на основе модели-

рования кластеров прекурсоров и по данным малоуглового рассеяния // Кристаллография. 2019. Т. 64. Вып. 1. С. 10–14.

- 14. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Symmetrical and Topological Self–Assembly Code of the Crystalline Structure of a New Aluminosilicate Zeolite ISC–1 from Templated t–plg Suprapolyhedral Precursors // Glass Physics and Chemistry. 2019. V. 45. № 2. P. 85–90.
- Ilyushin G.D. Crystal Chemistry of Lithium Intermetallic Compounds: A Survey. Russian // J. Inorganic Chemistry. 2018. V. 63. Iss. 14. P. 1786–1799.
- Ilyushin G.D. Modeling of the Self–Organization ProSesses in Crystal–Forming Systems. Tetrahedral Metal Clusters and the Self–Assembly of Crystal Structures of Intermetallic Compounds // Crystallography Reports. 2017. V. 62. 5. P. 670–683.
- 17. Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: 124 атомный кластер 0@ Ga₁₂@ (Li₂0Ga₁₂)@(Li₄Na₁₆ Ga₆₀) и 44-атомный кластер 0@Ga₁₂@ (Li₂Na₁₈Ga₁₂) для самосборки кристаллической структуры Li₄₈Na₈₀ Ga₃₃₂ oF920 // Кристаллография. 2019. Т. 64. № 6. С. 857–861.