КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: НОВЫЕ ДВУХСЛОЙНЫЕ НАНОКЛАСТЕРЫ-ПРЕКУРСОРЫ К64 = 0@8(Sn₄Ba₄)@56(Na₄Sn₅₂) И К47 = Na@Sn₁₆@Na₃₀ В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ Na₅₂Ba₄Sn₈₀-cF540

© 2020 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Межвузовский научно-исследовательский центр по теоретическому материаловедению, Самарский технический университет, ул. Молодогвардейская, 244, Самара, 443011 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 11.06.2020 г. После доработки 20.07.2020 г. Принята к публикации 06.08.2020 г.

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида Na₅₂Ba₄Sn₈₀-*cF*540 (*a* = 25.053 Å, *V* = 16 010.82 Å³, пр. группа *F*-43*m*). Установлены два новых нанокластера-прекурсора с симметрией -43*m*: двухслойный нанокластер K47 состава Na@16Sn@30Na с внутренним полиэдром Фриауфа NaSn₁₆ и с 30 атомами Na в оболочке и двухслойный нанокластер K64 состава 0@8(Sn₄Ba₄)@56(Na₄Sn₅₂) с внутренним полиэдром Sn₄Ba₄ и с 56 атомами (4Na + 52Sn) в оболочке. Реконструирован симметрийный и топологический коды процессов самосборки 3D структур из нанокластеров-прекурсоров K64 и K47 в виде: первичная цепь — микрослой — микрокаркас. В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров K64 и K47, установлены кластеры Na₄ и Sn₈ с симметрией -43*m* и атомы Na.

Ключевые слова: интерметаллид Na₅₂Ba₄Sn₈₀-*cF*540, самосборка кристаллической структуры, нанокластеры-прекурсоры K64 = $0@8(Sn_4Ba_4)@56(Na_4Sn_{52})$ и K47 = = Na@16Sn@30Na

DOI: 10.31857/S0132665120060219

введение

В 103 тройных системах Na-M1-M2 установлено образование 176 кристаллохимически различных Na-интерметалидов [1, 2]. В образовании двойных Na-интерметалидов Na_nM_m принимали участие 22 химических элемента M, в образовании тройных Na-интерметаллидов – уже 32 химических элемента M1 или M2. Многочисленные тройные интерметаллиды Na образуются в системах с участием атомов Sn (33 структурных типа), Sb (18 структурных типов), и Ga (16 структурных типов). В системах Na-Sn-M установлено образование 46 интерметаллидов с участием 30 атомов M, относящихся к 33 кристаллохимическим семействам [1, 2]. Наибольшее число тройных интерметаллидов (табл. 1) образуется с атомами Zn (семь) [3–6], по три – с атомами

Интерметаллид	Группа симметрии	Параметры элементарной ячейки, Å и градусы, °	<i>V</i> , Å ³	Индекс Пирсона
Na_6Sn_2Zn [3]	<i>C</i> 2/ <i>m</i> (12)	10.077, 5.473, 9.316 90.00, 98.07, 90.00	508.7	<i>mS</i> 18
$Na_{20}Sn_{11}Zn_8$ [3]	<i>C</i> 2/ <i>c</i> (15)	16.150, 9.276, 27.594 90.00, 102.97, 90.00	4028.6	mS156
$Na_{29}Sn_{32}Zn_{24}$ [4]	P-62m (189)	15.712, 15.712, 9.462	2023.0	hP85
$Na_{22}Sn_{19}Zn_{20}$ [5]	Pnma (62)	16.403, 15.597, 22.655	5796.1	oP244
Na ₁₆ Sn _{13.5} Zn _{13.5} [5]	<i>Ibam</i> (72)	27.401, 16.100, 18.431	8131.2	oI344
Na ₃₄ Sn ₃₈ Zn ₆₆ [5]	<i>R</i> -3 <i>m</i> (166)	16.956, 16.956, 36.861	9177.6	hR139
$Na_5Sn_{10}Zn_2$ [6]	<i>P</i> 6 ₁ 22 (178)	6.451, 6.45, 16.237	224.78	<i>hP</i> 8
NaAuSn [7]	$Pna2_{1}(33)$	7.476, 8.088, 4.530	273.9	oP12
Na_2AuSn_3 [8]	<i>P</i> 6 ₃ / <i>mmc</i> (194)	9.585, 9.585, 7.516	598.0	<i>hP</i> 24
Na ₆₀ Au ₇₈ Sn ₂₄ [9]	Im-3 (204)	14.989, 14.989, 14.989	3367.6	<i>cI</i> 162
NaGaSn ₅ [10]	<i>P</i> 3 ₁ 12 (151)	6.328, 6.328, 6.170	214.0	hP9
Na ₃ Ga ₈ Sn ₃ [11]	<i>C</i> 2/ <i>m</i> (12)	15.327, 8.907, 12.249 90.00, 129.60, 90.00	1288.5	<i>mS</i> 56
Na ₁₀ Ga ₆ Sn ₃ [12]	$P4_2/mnm$ (136)	14.576, 14.576, 8.976	1907.0	<i>tP</i> 96
Na ₈ EuSn ₆ [13]	$P2_1/m$ (11)	12.912, 5.220, 15.721, 90.00, 108.09, 90.00	1007.2	mP32
Na ₈ BaSn ₆ [13]	$P2_1/m$ (11)	12.897, 5.362, 15.826, 90.00, 108.19, 90.00	1039.7	mP32
Ba ₁₆ Na ₂₀₄ Sn ₃₂₂ [14]	F-43m (216)	25.053, 25.053, 25.053	15725.3	<i>cF</i> 540
Ba ₁₆ Na ₂₀₄ Sn ₃₀₉ [14]	<i>F</i> -43 <i>m</i> (216)	25.203, 25.203, 25.203	16008.5	<i>cF</i> 556

Таблица 1. Кристаллохимические данные тройных Na-интерметаллидов

Au [7–9] и Ga [10–12], по два – с атомами Ca, Sr, Ba [13, 14], Cu, Sb, по одному – с пятнадцатью атомами, в их числе – Li, K, Rb, Cs.

Наиболее кристаллохимически сложным (и не имеющим аналогов) является интерметаллид Na₅₂Ba₄Sn₈₀-*cF*540 с параметрами кубической ячейки: *a* = 25.053 Å, *V* = = 16010.82 Å³, пр. группа *F*-43*m* [14]. Последовательность Вайкоффа для 19 кристаллографически независимых атомов имеет вид *i*⁴*h*¹¹*c*⁴. Значения КЧ (координационных чисел) атомов Na – 12, 14, 15, 16 атомов, атома Ba – 19, атомов Sn – 9, 10.

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры интерметаллида Na₅₂Ba₄Sn₈₀-*cF*540 (пакет программ ToposPro) [15]. Установлен симметрийный и топологический код процессов кластерной самосборки

кристаллической структуры в виде: первичная цепь $S_3^1 \to$ микрослой $S_3^2 \to$ микрокаркас S_3^3 .

Работа продолжает исследования [16–25] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов (пакет программ ToposPro).

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [15], позволяющего проводить многоцелевое исследование кри-

Δτογ	Локальное	Координационные последовательности				
Alom	окружение	N_1	<i>N</i> ₂	N ₃	N ₄	N ₅
Na1	16Sn	16	30	104	204	284
Na2	6Na + 6Sn	12	49	122	211	327
Na3	3Na + 11Sn	14	42	112	200	309
Na4	6Na +10Sn	16	49	124	213	321
Na5	5Na +10Sn	15	46	117	222	311
Na6	7Na + 8Sn	15	46	119	202	339
Na7	8Na + 6Sn	14	54	117	205	322
Na8	7Na + 7Sn	14	53	120	202	343
Ba1	19Sn	19	40	118	218	331
Sn1	1Na + 6Sn + 3Ba	10	50	85	189	346
Sn2	6Na + 3Sn3 + 1Ba	10	48	116	221	329
Sn3	3Na + 4Sn + 2Ba	9	50	100	201	343
Sn4	6Na + 3Sn + 1Ba	10	52	111	213	335
Sn5	6Na + 3Sn + 1Ba	10	52	109	204	342
Sn6	4Na + 6Sn	10	40	102	194	310
Sn7	5Na + 5Sn	10	41	89	180	294
Sn8	7Na + 3Sn	10	43	109	211	305
Sn9	6Na + 3Sn	9	45	104	203	301

Таблица 2. $Na_{52}Ba_4Sn_{80}$. Координационные последовательности атомов

сталлической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число узлов в k-ой координационной сфере атома.

Полученные значения координационных последовательностей атомов в 3D-сетках, приведены в табл. 2, в которой жирным шрифтом выделено число соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома. Все атомы характеризуются различными наборами координационных последовательностей $\{N_k\}$, следовательно, все атомы топологически (и функционально) различны.

При идентификации типа нанокластера-прекурсора кристаллической структуры интерметаллида использовали алгоритм разложения структуры на простейшие нанокластеры на основе следующих принципов: структура образуется самосборкой из нанокластеров-прекурсоров, нанокластеры-прекурсоры занимают высокосимметричные позиции, нанокластеры-прекурсоры образуют упаковку, т.е. не имеют общих атомов, в каркасных структурах, отдельные атомы или небольшие атомные группировки играют роль спейсеров — заполнителей пространства между нанокластерами-прекурсорми. Набор нанокластеров-прекурсоров и спейсеров включает в себя все атомы структуры.

САМОСБОРКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Na₅₂Ba₄Sn₈₀-cF540

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [16, 17]. На первом уровне самоорганизации системы определя-

Нанокластер 0@8@56				
Кластер К8	Оболочка			
4 Ba1	4 Na3			
4 Sn1	4 Sn2			
	12 Sn3			
	12 Sn4			
	24 Sn5			
Всего 64 атома				

Таблица 3.	Нанокластер К64.	Атомы, фор	мирующие	внутренний	тетраэдрически	ий кластер	K8 =
= 0@8 и 56-	атомную оболочку	v					

ется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — механизм самосборки из цепи микрослоя (2-ой уровень) и затем из микрослоя — трехмерного микрокаркаса структуры (3-й уровень).

Кристаллографические данные Na₅₂Ba₄Sn₈₀-cF540

Пространственная группа *F*-43*m* (по. 216) характеризуется позициями с точечной симметрией: -43m (4*a*, 4*b*, 4*c*, 4*d*), 3*m* (16*e*) и др.

В табл. 2 приведено локальное окружение атомов Na, Ba, Sn и значения их координационных последовательностей в 3D атомной сетке. Для атомов Na значения координационных чисел KU = 12 (один атом), 14 (три), 15(два), 16 (два), атома Ba – 19, атомов Sn – 9 (два), 10 (семь).

Метод полного разложения 3D фактор-графа структуры на кластерные подструктуры был использован для определения каркас-образующих нанокластеров кристаллической структуры. Число вариантов разложения на кластерные подструктуры с числом выделенных кластеров, равным 2, 3, 4, 5, 6, и 7 составило 4, 38, 65, 187, 210 и 87 соответственно. В результате установлены каркас-образующие нанокластеры K47 = Na@16Sn@30Na и K64 = 0@8(Sn₄Ba₄)@56(Na₄Sn₅₂) (табл. 3, 4). Двухслойный нанокластер K47 с внутренним полиэдром Фриауфа NaSn₁₆ и с 30 атомами Na в оболочке находится в позиции 4b с симметрией -43m. Двухслойный нанокластер K64 с внутренним полиэдром Sn₄Ba₄ и с 56 атомами (4Na + 52Sn) в оболочке находится в позиции 4*a* также с симметрией -43m. В пустотах каркаса расположены Na₄-тетраэдры с симметрией -43m в позиции 4*c* и Sn₈-кубы, также имеющие симметрию -43m с центром в позиции 4*d* (рис. 1). В качестве спейсеров установлены атомы Na5 и Na6.

Таблица 4. оболочку	Нанокластер К47. Атомы, формирующие кластер Фриауфа К17 = 1@16 и 30-атомную
	H 1@1(@20

Нанокластер 1@16@30				
Кластер Фриауфа	Оболочка			
Nal	6 Na4			
4 Sn6	12 Na7			
12 Sn7	12 Na8			
Всего 47 атомов				

Рис. 1. Na₅₂Ba₄Sn₈₀. Нанокластерные структуры.

Самосборка кристаллической структуры Na₅₂Ba₄Sn₈₀

Первичная цепь. Самосборка первичных цепей происходит при связывании нанокластеров К47 с К64 в направлении [100] (рис. 2). Расстояние между центрами образо-

Рис. 2. Na₅₂Ba₄Sn₈₀. Механизм комплементарного связывания нанокластеров K64 и K47 при образовании первичной цепи.

Рис. 3. $Na_{52}Ba_4Sn_{80}$. Микрослой, образованный из нанокластеров K64 и K47. Показано расположение кластеров-спейсеров Sn₈ и Na₄ и атомов Na6.

Рис. 4. Na₅₂Ba₄Sn₈₀. Микрокаркас из двух микрослоев, состоящих из связанных нанокластеров К64 и К47.

вавшихся супракластеров K141 соответствует половине длины вектора трансляции a/2 = 25.053 Å/2.

Самосборка слоя. Образование микрослоя S_3^2 происходит при связывании параллельно расположенных первичных цепей в плоскости (001) (рис. 3). На этой стадии в пустотах микрослоя происходит локализация Na₄-тетраэдров, Sn₈-кубов и атомов Na5 и Na6. Расстояние между центрами супракластеров из соседних цепей в направлениях [100] и [010] соответствует длинам векторов a/2 = b/2 = 25.053 Å/2.

Самосборка каркаса. Микрокаркас структуры S_3^3 формируется при связывании двух микрослоев в направлении [001]. Расстояние между микрослоями определяет длину вектора трансляции c/2 = 25.053 Å/2 (рис. 4).

ЗАКЛЮЧЕНИЕ

Самосборка каркасной структуры интерметаллида $Na_{52}Ba_4Sn_{80}$ осуществляется с участием новых двухслойных нанокластеров-прекурсоров K47 = Na@16Sn@30Na и K64 = 0@8(Sn_4Ba_4)@56(Na_4Sn_{52}). Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров K64 и K47 в виде: первичная цепь \rightarrow микрослой \rightarrow микрокаркас. В качестве спейсеров, занимаю-

щих пустоты в 3D каркасе из нанокластеров K64 и K47, установлены кластеры Na₄ и Sn₈ с симметрией -43m, а также атомы Na.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (РФФИ № 19-02-00636) и Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 3. *Kim Sung Jin, Kraus F., Faessler T.F.* Na₆ZnSn₂, (Na_{4.24}K_{1.76})ZnSn₂, and Na₂₀Zn₈Sn₁₁: Three intermetallic structures containing the linear {Sn-Zn-Sn}6- unit // J. American Chemical Society. 2009. V. 131. № 4. P. 1469–1478.
- 4. Kim Sung Jin, Hoffman S.D., Faessler T.F. Na₂₉Zn₂₄Sn₃₂: A Zintl Phase Containing a Novel Type of {Sn₁₄} Enneahedra and Heteroatomic {Zn₈Sn₄} Icosahedra // Angewandte Chemie. International Edition . 2007. V. 46. P. 3144–3148.
- 5. Kim Sung Jin, Faessler T.F. Networks of icosahedra in the sodium-zinc-stannides $Na_{16}Zn_{13.54}Sn_{13.46(5)}$, $Na_{22}Zn_{20}Sn_{19(1)}$, and $Na_{34}Zn_{66}Sn_{38(1)}$ // J. Solid State Chemistry. 2009. V. 182. Nº 4. P. 778–789.
- 6. *Ponou S., Kim S.J., Fässler T.F.* Synthesis and characterization of $Na_5M_{2+x}Sn_{10-x}$ ($x \approx 0.5$, M = = Zn, Hg) A doped tetrahedral framework structure // J. Am. Chem. Soc. 2009. V. 131. P. 10246–10252.
- Wrobel G., Schuster H.U. Die Kristallstrukturen der Phasen Na₂AuGe und NaAuSn // Zeitschrift fuer Anorganische und Allgemeine Chemie. 1977. V. 432. P. 95–100.
- Zachwieja U. (Sn3/3)-Roehren und AuSn₃-Baugruppen: Darstellung und Struktur von Na₂AuSn₃ // Zeitschrift fuer Anorganische und Allgemeine Chemie. 2001. V. 627. P. 353–356.
- Lin Qisheng, Smetana Volodymyr, Miller Gordon J., Corbett John D. Conventional and stuffed Bergman-type phases in the Na-Au-T (T = Ga, Ge, Sn) systems: syntheses, structures, coloring of cluster centers, and Fermi sphere-Brillouin zone interactions // Inorganic Chemistry. 2012. V. 51(16). P. 8882–8889.
- Blasé W., Cordier G. NaGaSn₅, eine neue Zintl-Phase mit Ga-Sn-Schrauben // Zeitschrift fuer Naturforschung, B: Chemical Sciences. 1988. V. 43. P. 1017–1019.
- Blasé W., Cordier G. Na₁₀Ga₆Sn₃, eine Verbindung an der Zintl-Grenze // Zeitschrift fuer Naturforschung, B: Chemical Sciences. 1989. V. 44, P.1479–1482.
- Blasé W., Cordier G. Darstellung und Kristallsruktur von Na₃Ga₈Sn₃ und die Interpretation der Bindungsverhaeltnisse auf der Basis der Wadeschen Regeln und Zintl-Konzepte // Zeitschrift fuer Naturforschung, B: Chemical Sciences. 1989. V. 44. P. 1011–1014.
- 13. *Yamada Takahiro, Yamane Hisanori, Nagai Hideaki*. A thermoelectric Zintl phase Na_{2+x}Ga_{2+x}Sn_{4-x} with disordered Na atoms in helical tunnels // Advanced Materials. 2015. V. 27. № 32. P. 4708–4713.
- 14. Todorov I., Sevov S.C. Heavy-metal aromatic rings: cyclopentadienyl anion analogues Sn₅^{b-} and Pb₅⁶⁻ in the Zintl phases Na₈BaSn₆, Na₈BaSn₆, and Na₈EuSn₆ // Inorganic Chemistry. 2004. V. 43. № 20. P. 6490–6494.
- Bobev S., Sevov S.C. Naked Clusters of 56 Tin Atoms in the Solid State // J. American Chemical Society. 2002. V. 124. P. 3359–3365.
- 16. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585. https://topospro.com/
- Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
- Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- 19. Pankova A.A., Blatov V.A., Ilyushin G.D., Proserpio D.M. γ-Brass Polyhedral Core in Intermetallics: The Nanocluster Model // Inorg. Chem. 2013. V. 52. № 22. P. 13094–13107.
- 20. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: 108-атомный трехслойный икосаэдрический кластер 0@12(Ga₁₂)@24(Na₁₂Ga₁₂)@72(Rb₄Na₈Ga₆₀) и 44-атомный двухслойный икосаэдрический

кластер @12(Ga₁₂)@32(Na₂₀Ga₁₂) для самосборки кристаллической структуры Rb₂₄Na₂₀₀Ga₆₉₆-оF920 // Физика и химия стекла. 2019. Т. 45. № 3. С. 203–214.

- Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем. Новый кластер-прекурсор (InNa₅)(AuAu₅) и первичная цепь с симметрией 5т для самосборки кристаллической структуры Na₃₂Au₄₄In₂₄-oP100 // Физика и химия стекла. 2019. Т. 45. № 4. С. 303–310.
- 22. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новые двухслойные кластеры-прекурсоры 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) и 0@(Na₃Cd₆)@(Na₆Cd₃₅) для самосборки кристаллической структуры Na₂₆Cd₁₄₁-hP168 // Физика и химия стекла. 2019. Т. 45. № 5. С. 403–411.
- 23. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem. 2019. V. 30. № 6. P. 2015–2027.
- 24. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Кластеры-прекурсоры для самосборки кристаллической структуры Na₉₉Hg₄₆₈-hP56 // Физика и химия стекла. 2019. Т. 45. № 6. С. 503–509.
- структуры Na₉₉Hg₄₆₈-*hP56* // Физика и химия стекла. 2019. Т. 45. № 6. С. 503–509. 25. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новый двухслойный кластер–прекурсор K44 = $0@8(Na_2In_6)@36(In_6Cd_6K_6)_2$ для самосборки кристаллической структуры $K_{23}Na_8Cd_{12}In_{48}-hP91$ // Физика и химия стекла. 2019. Т. 45. № 6. С. 510–518.