КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: НОВЫЙ ТРЕХСЛОЙНЫЙ КЛАСТЕР-ПРЕКУРСОР К136 = 0@Zn₁₂@32(Mg₂₀Zn₁₂)@92(Zr₁₂Zn₈₀) И НОВЫЙ ДВУХСЛОЙНЫЫЙ КЛАСТЕР-ПРЕКУРСОР K30 = 0@Zn₆@Zn₂₄ В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ Zr₆Mg₂₀Zn₁₂₈-*cP*154

© 2020 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия ²Межвузовский научно-исследовательский иентр по теоретическому материаловедению.

Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара, 443011 Россия ³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия *e-mail: shevchenko@isc.nw.ru

> Поступила в редакцию 10.07.2020 г. После доработки 30.07.2020 г. Принята к публикации 06.08.2020 г.

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $Zr_6Mg_{20}Zn_{128}$ -*cP*154 с параметрами кубической ячейки: *a* = 13.709 Å, V= 2576.42 Å³, и пр. группой *Pm*-3. Установлены два новых нанокластера-прекурсора с симметрией -43*m*: трехслойный нанокластер K136 состава 0@Zn₁₂@32(Mg₂₀Zn₁₂@92(Zr₁₂Zn₈₀) с внутренним икосаэдром 0@Zn₁₂ и с 12 атомами Zr и 20 атомами Zn в 60 – атомной Zn-оболочке и двухслойный нанокластер K30 состава 0@Zn₆@Zn₂₄ с внутренним Zn₆-октаэдром и с 24 атомами Zn во внешней оболочке. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров K136 и K30 в виде: первичная цепь — микрослой — микрокаркас. В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров *K*136 и K30, установлены димеры Zn₂.

Ключевые слова: интерметаллид $Zr_6Mg_{20}Zn_{128}$ -*сP*154, самосборка кристаллической структуры, новые нанокластеры-прекурсоры K136 = $0@Zn_{12}@32(Mg_{20}Zn_{12})@92(Zr_{12}Zn_{80})$ и *K*30 = $0@Zn_6@Zn_{24+}$ DOI: 10.31857/S0132665120060220

ВВЕДЕНИЕ

В 357 тройных системах A-B-Zn с участием 59 химических элементов установлено образование около 900 интерметаллических соединений [1, 2]. В двадцати тройных системах A-Mg-Zn получены около 100 интерметаллических соединений. Наибольшее число тройных интерметаллидов образуется в системе A-Mg-Zn с атомами Y (восемь соединений), Ag (семь соединений) и Al (пять соединений). По одному тройному соединению получено в системах с атомами Ti, Zr, Hf, и Er (табл. 1) [3–12].

Новое кристаллохимические семейство тройных интерметаллидов $A_6Mg_{20}Zn_{128}$ -*cP*154 (A = Ti, Zr, Hf) было открыто в 2008 г [4]. Кристаллические структуры $A_6Mg_{20}Zn_{128}$ как

Интерметаллид	Группа симметрии	Параметры элементарной ячейки, Å и градусы, °	<i>V</i> , Å ³	Индекс Пирсона
Ho ₂₆ Mg ₁₇ Zn ₉₉ [3]	<i>P</i> 6 ₃ / <i>mmc</i> (194)	14.259, 14.259, 14.007	2466.3	<i>hP</i> 162
$Ti_6Mg_{20}Zn_{128}$ [4]	<i>Pm</i> -3 (200)	13.554, 13.554, 13.554	2490.1	<i>cP</i> 168
$Hf_{6}Mg_{20}Zn_{128}$ [4]	<i>Pm</i> -3 (200)	13.674, 13.674, 13.674	2556.7	<i>cP</i> 168
$Zr_6Mg_{20}Zn_{128}$ [4]	<i>Pm</i> -3 (200)	13.709, 13.709, 13.709	2576.4	<i>cP</i> 168
Sc ₃ (Mg _{0.18} Zn _{17.73}) [5]	Im-3 (204)	13.863, 13.863, 13.863	2664.2	<i>cI</i> 184
Mg ₁₉ Zn ₁₅ Al ₄ [6]	<i>Cmcm</i> (63)	14.095, 10.255, 18.986	2744.3	oS152
Ho ₁₁ Mg ₁₅ Zn ₇₄ [7]	Im-3 (204)	14.092, 14.092, 14.092	2798.7	<i>cI</i> 162
$Mg_{11}Al_6Zn_{11}$ [8]	Im-3 (204)	14.160, 14.160, 14.160	2839.2	<i>cI</i> 162
Mg ₃₂ Al ₁₂ Zn ₃₆ [9]	Im-3 (204)	14.184, 14.184, 14.184	2853.9	<i>cI</i> 160
Mg ₄ Al _{1.69} Zn _{2.31} [8]	<i>Pbcm</i> (57)	8.882, 16.774, 19.479	2902.2	oP152
Mg ₄ Al _{2.1} Zn _{1.9} [8]	<i>Pbcm</i> (57)	8.937, 16.812, 19.586	2942.9	oP152
$Y_{16}Mg_{116}Zn_{12}$ [10]	<i>C</i> 2/ <i>m</i> (12)	11.116, 19.256, 16.064, 90.00, 76.66, 90.00	3345.9	<i>mS</i> 144
Er ₁₆ Mg ₁₄₀ Zn ₁₂ [10]	<i>P</i> 6 ₃ / <i>mcm</i> (193)	11.110, 11.110, 36.470	3898.5	<i>hP</i> 168
Y ₂ Mg ₁₃ Zn [11]	<i>P</i> 6 ₃ 22 (182)	11.170, 11.170, 36.370	3929.9	<i>hP</i> 168
Sm _{6.5} Zn _{40.5} Mg ₁₅ [12]	<i>P</i> 6 ₃ / <i>mmc</i> (194)	23.500, 23.500, 8.600	4113.1	<i>hP</i> 248

Таблица 1. Кристаллохимические данные тройных интерметаллидов

и описанные ранее кристаллические структуры тройных интерметаллидов $Mg_{0.18}Sc_3Zn_{17.73}$ [5], $Ho_{11}Mg_{15}Zn_{74}$ [7], $Mg_{32}(Al,Zn)_{49}$ [8], $Mg_{32}Al_{12}Zn_{37}$ [9], рассматривались как 1/1 квазикристаллические аппроксиманты, а $Sc_{11.18}Mg_{2.52}Zn_{73.61}$ -*cP*704 как 2/1 квазикристаллический аппроксимант [5].

Интерметаллид $Zr_6Mg_{20}Zn_{128}$ -cP154 характеризуется параметрами кубической ячейки: a = 13.709 Å, V = 2576.42 Å³, и пр. группой Pm-3 [4]. Уникальная последовательность Вайкоффа для 14 кристаллографически независимых атомов имеет вид $l^2k^2j^3i^2hg^2f^2$. Значения KЧ (координационных чисел) атомов Mg – 16 (два атома), Zr – 15 (один атом), атомов Zn – 8 (один атом), 11 (два атома), 12 (три атома), 13 (три атома) и 14 (два атома).

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры интерметаллида $Zr_6Mg_{20}Zn_{128}$ -*cP*154 (пакет программ ToposPro [13]). Установлен симметрийный и топологический код процессов кластерной самосборки кристаллической структуры в виде: первичная цепь $S_3^1 \rightarrow$ микрослой $S_3^2 \rightarrow$ микрокар-кас S_3^3 .

Работа продолжает исследования [14–22] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

Атом	Локальное окружение	Координационные последовательности				
		N_1	<i>N</i> ₂	N ₃	N_4	N_5
Mg1	3Mg + 13Zn	16	53	110	214	347
Mg2	3Mg + 13Zn	16	48	111	205	322
Zn1	5Mg + 6Zn	11	46	106	186	310
Zn2	2Mg + 9Zn + 1Zr	12	46	111	197	314
Zn3	4Mg + 9Zn + 1Zr	14	53	117	218	356
Zn4	2Mg + 9Zn + 1Zr	12	47	111	199	320
Zn5	11Zn	11	46	105	209	332
Zn6	12Zn + Zr	13	49	110	210	330
Zn7	2Mg + 11Zn	13	48	102	195	334
Zn8	5Mg + 6Zn + Zr	12	50	111	203	337
Zn9	12Zn + 2Zr	14	49	117	218	334
Zn10	1Mg + 12Zn	13	48	111	198	341
Znll	8Zn	8	37	96	185	296
Zrl	15Zn	15	44	104	203	316

Таблица 2. Zr₆Mg₂₀Zn₁₂₈. Координационные последовательности атомов

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [13], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число узлов в k-ой координационной сфере атома.

Полученные значения координационных последовательностей атомов в 3D-сетках, приведены в табл. 2, в которой жирным шрифтом выделено число соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома. Все атомы характеризуются различными наборами координационных последовательностей $\{N_k\}$, следовательно, все атомы топологически (и функционально) различны.

При идентификации типа нанокластера-прекурсора кристаллической структуры интерметаллида использовали алгоритм разложения структуры на простейшие нанокластеры на основе следующих принципов: структура образуется самосборкой из нанокластеров-прекурсоров, нанокластеры-прекурсоры занимают высокосимметричные позиции, нанокластеры-прекурсоры образуют упаковку, т.е. не имеют общих атомов, в каркасных структурах, отдельные атомы или небольшие атомные группировки играют роль спейсеров — заполнителей пространства между нанокластерами-прекурсорми. Набор нанокластеров-прекурсоров и спейсеров включает в себя все атомы структуры.

$(1 - 1)^{2} - (1 - 2)^{2} - (1 - 2)^{2} - (1 - 1)^{2} - $						
Кластер К12	Вторая оболочка	Третья оболочка				
12 Zn1	12 Mg1	8 Zn10				
	8 Mg2	24 Zn2				
	12 Zn8	12 Zn3				
		24 Zn4				
		12 Zn7				
		12 Zr1				
Всего 136 атомов						

Таблица 3. Нанокластер K136. Атомы, формирующие внутренний икосаэдрический кластер K12 = $0@Zn_{12}$, 32- и 92-атомную оболочку K136 = $(0@Zn_{12}@32(Mg_{20}Zn_{12})@92(Zr_{12}Zn_{20}))$

САМОСБОРКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ $\mathrm{Zr}_{6}\mathrm{Mg}_{20}\mathrm{Zn}_{128}\text{-}cP$ 154

Использованный метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [14, 15]. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нано кластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — механизм самосборки из цепи микрослоя (2-ой уровень) и затем из микрослоя — трехмерного микрокаркаса структуры (3-й уровень).

Кристаллографические данные Zr₆Mg₂₀Zn₁₂₈-cP154

Пространственная группа *Pm*-3 (по. 200) характеризуется позициями с точечной симметрией: *m*-3 (1*a*, 1*b*), *mmm* (3*c*, 3*d*) и др. Метод полного разложения 3D факторграфа структуры на кластерные подструктуры был использован для определения каркас-образующих нанокластеров кристаллической структуры. Число вариантов разложения на кластерные подструктуры с числом выделенных кластеров, равным 2, 3, 4, 5 и 6, составило 6, 31, 53, 77 и 27 соответственно. В результате установлены два новых нанокластера-прекурсора с симметрией -43*m* (рис. 1–3): трехслойный нанокластер K136 = $0@Zn_{12}@32(Mg_{20}Zn_{12})@92(Zr_{12}Zn_{80})$ с внутренним икосаэдром $0@Zn_{12}$, второй оболочкой с 12 атомами Zn и 20 атомами Mg, и третьей оболочкой с 12 атомами Zr и 20 атомами Zn, занимающими все позиции над 5- и 6-атомными кольцами 60-атомного Zn-полиэдра топологического типа фуллерена C₆₀, двухслойный нанокластер K30 = $0@Zn_6@Zn_{24}$ с внутренним Zn₆-октаэдром и с 24 атомами Zn во внешней оболочке. В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров K136 и K30, установлены димеры Zn₂.

Самосборка кристаллической структуры Zr₆Mg₂₀Zn₁₂₈

Первичная цепь. Самосборка первичных цепей S_3^1 происходит при связывании нанокластеров К136 в направлении [100] (рис. 4). Расстояние между центрами кластеров К136 соответствует длине вектора трансляции *a* = 13.709 Å.

Рис. 1. $Zr_6Mg_{20}Zn_{128}$, Zn_6 -октаэдр (*a*), двухслойный кластер $K30 = 0@Zn_6@Zn_{24}$ (*б*). Указаны длины связей в Å.

Рис. 2. $Zr_6Mg_{20}Zn_{128}$. Кластер-темплат Zn_{12} -икосаэдр (*a*), двухслойный нанокластер K44 = $= 0@Zn_{12}@32(Mg_{20}Zn_{12})$ (*b*).

Самосборка слоя. Образование микрослоя S_3^2 происходит при связывании параллельно расположенных первичных цепей S_3^1 в плоскости (001) (рис. 5). Расстояние между центрами супракластеров из соседних цепей в направлениях [100] и [010] соответствует длинам векторов a = b = 13.709 Å. На этой стадии в пустотах микрослоя происходит локализация кластеров K30 и связывание димеров Zn₂ с атомами Zr.

Самосборка каркаса. Микрокаркас структуры S_3^3 формируется при связывании двух микрослоев в направлении [001]. Расстояние между микрослоями определяет длину вектора трансляции c = 13.709 Å.

Рис. 3. $Zr_6Mg_{20}Zn_{128}$. Третья оболочка из 60 атомов Zn (типа фуллерена C_{60}) и атомы Zn7 и Zn11, занимающие позиции над 6-атомными кольцами в оболочке (*a*), атомы Zr, занимающие позиции над 5- атомными кольцами в оболочке (*б*).

Рис. 4. $Zr_6Mg_{20}Zn_{128}$. Механизм комплементарного связывания нанокластеров K136 с участием атомов Zn10 при образовании первичной цепи.

Рис. 5. $Zr_6Mg_{20}Zn_{128}$. Микрослой, образованный из нанокластеров K136. Показано расположение кластеров K30 и димеров Zn_2 (белые атомы).

ЗАКЛЮЧЕНИЕ

Самосборка каркасной структуры интерметаллида $Zr_6Mg_{20}Zn_{128}$ осуществляется с участием трехслойного нанокластера K136 = $0@Zn_{12}@32(Mg_{20}Zn_{12}@92(Zr_{12}Zn_{80}))$ и двухслойного нанокластера K30 = $0@Zn_6@Zn_{24}$ с внутренним Zn_6 -октаэдром и с 24 атомами Zn в оболочке. В качестве спейсеров, занимающих пустоты в 3D каркасе, установлены димеры Zn_2 . Реконструирован симметрийный и топологический код процессов самосборки 3D структур из нанокластеров-прекурсоров K136 и K30 в виде: первичная цепь — микрослой — микрокаркас.

Нанокластерный анализ выполнен при поддержке Российского научного фонда (РНФ № 20-13-00054), анализ самосборки кристаллической структуры выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, топологический анализ выполнен при финансовой поддержке Минобрнауки РФ в рамках государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

^{1.} Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.

- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 3. *Li M.-R., Deng D.-W., Kuo K.-H.* Crystal structure of the hexagonal (Zn, Mg)₄ Ho and (Zn, Mg)₄ // Er. J. Alloys Compd. 2006. V. 414. P. 66–72.
- Gomez C.P., Ohhashi S., Yamamoto A., Tsai A.P. Disordered structures of the TM-Mg-Zn 1/1 quasicrystal approximants(TM = Hf, Zr, or Ti) and chemical intergrowth // Inorg. Chem. 2008. V. 47. P. 8258-8266.
- Lin Qisheng, Corbett J.D. The 1/1 and 2/1 approximants in the Sc-Mg-Zn quasicrystal system: Tricontahedral clusters as fundamental building blocks // J. Am. Chem. Soc. 2006. V. 128. P. 13268–273.
- 6. *Berthold Rico, Kreiner Guido, Burkhardt Ulrich et al.* Crystal structure and phase stability of the phi phase in the Al–Mg–Zn system // Intermetallics. 2013. V. 32. P. 259–273.
- Bruehne S., Uhrig E., Gross C., Assmus W. Local 3D real space atomic structure of the simple icosahedral Ho₁₁Mg₁₅Zn₇₄ quasicrystal from PDF data // Cryst. Res. Technol. 2003. V. 38. P. 1023–1036.
- Bergman G., Waugh J.L.T., Pauling L. The crystal structure of the metallic phase Mg₃₂ (Al, Zn)₄₉ Al–Zn–Mg alloys // Acta Crystallographica. 1957. V. 10. P. 254–259.
- Montagne Pierre, Tillard Monique. On the adaptability of 1/1 cubic approximant structure in the Mg–Al–Zn system with the particular example of Mg₃₂ Al₁₂ Zn₃₇ // J. Alloys Compd. 2016. V. 656. P. 159–165.
- 10. Egusa D., Abe E. The structure of long period stacking/order Mg–Zn–RE phases with extended non-stoichiometry ranges // Acta Mater. 2012. V. 60. P. 166–178.
- Kishida Kyosuke, Nagai Kaito, Matsumoto Akihide. Crystal structures of highly-ordered long-period stacking-ordered phases with18R, 14H and 10H-type stacking sequences in the Mg–Zn–Y system // Acta Mater. 2015. V. 99. P. 228–239.
- Abe E., Takakura H., Singh A., Tsai A.P. Hexagonal superstructures in the Zn-Mg-rare-earth alloys // J. Alloys Compd. 1999. V. 283. P. 169–172.
- 13. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585. https://topospro.com/
- Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. М.: Едиториал УРСС. 2003. 376 с.
- Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- 16. *Pankova A.A., Blatov V.A., Ilyushin G.D., Proserpio D.M.* γ-Brass Polyhedral Core in Intermetallics: The Nanocluster Model // Inorg. Chem. 2013. V. 52. № 22. P. 13094–13107.
- 17. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: 108-атомный трехслойный икосаэдрический кластер 0@12(Ga₁₂)@24(Na₁₂Ga₁₂)@72(Rb₄Na₈Ga₆₀) и 44-атомный двухслойный икосаэдрический кластер @12(Ga₁₂)@32(Na₂₀Ga₁₂) для самосборки кристаллической структуры Rb₂₄Na₂₀₀₋ Ga₆₉₆-оF920 //Физика и химия стекла. 2019. Т. 45. № 3. С. 203–214.
- 18. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем. Новый кластер-прекурсор (InNa₅)(AuAu₅) и первичная цепь с симметрией 5т для самосборки кристаллической структуры Na₃₂Au₄₄In₂₄-oP100 // Физика и химия стекла. 2019. Т. 45. № 4. С. 303–310.
- 19. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новые двухслойные кластеры-прекурсоры 0@(Na₂Cd₆)@(Na₁₂Cd₂₆) и 0@(Na₃Cd₆)@(Na₆Cd₃₅) для самосборки кристаллической структуры Na₂₆Cd₁₄₁-hP168 // Физика и химия стекла. 2019. Т. 45. № 5. С. 403-411.
- 20. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem. 2019. V. 30. № 6. P. 2015–2027.
- 21. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Кластеры-прекурсоры для самосборки кристаллической структуры Na₉₉Hg₄₆₈-*hP*56 // Физика и химия стекла. 2019. Т. 45. № 6. С. 503–509.
- 22. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Моделирование процессов самоорганизации в кристаллообразующих системах. Новый двухслойный кластер-прекурсор К44 = 0@8(Na₂In₆)@36(In₆Cd₆K₆)₂ для самосборки кристаллической структуры K₂₃Na₈Cd₁₂In₄₈-hP91 // Физика и химия стекла. 2019. Т. 45. № 6. С. 510-518.