БОРОСИЛИКАТНЫЕ СТЕКЛА РАДИОЗАЩИТНОГО НАЗНАЧЕНИЯ

© 2021 г. М. В. Дяденко^{1, *}, Е. Е. Трусова¹, А. Г. Сидоревич¹

¹Белорусский государственный технологический университет, ул. Свердлова, 13а, г. Минск, 220006 Республика Беларусь *e-mail: dyadenko-mihail@mail.ru

> Поступила в редакцию 18.03.2020 г. После доработки 24.08.2020 г. Принята к публикации 08.10.2020 г.

Приведены результаты исследований электрофизических и теплофизических характеристик боросиликатных стекол, предназначенных для ослабления электромагнитного излучения СВЧ-диапазона. Определены составы стекол, характеризующиеся минимальной склонностью к кристаллизации. Установлено влияние химического состава стекол на их теплофизические (ТКЛР, теплоемкость) и электрофизические (показатель ослабления, коэффициент стоячей волны, тангенс угла диэлектрических потерь) свойства. Предлагаемые составы стекол могут быть рекомендованы для изготовления изделий, используемых в качестве радиозащитных.

Ключевые слова: радиозащитное стекло, сверхвысокочастотное электромагнитное излучение, показатель ослабления, коэффициент стоячей волны, теплоемкость, температурный коэффициент линейного расширения, структура стекла

DOI: 10.31857/S0132665121010042

ВВЕДЕНИЕ

В настоящее время вопросы экологии и защиты окружающей среды являются определяющими среди глобальных приоритетов мирового сообщества. Значительная часть промышленных производств сопровождается различного рода излучениями. Их природа обусловлена процессами, происходящими в веществе: движущимися электрическими зарядами (электромагнитные волны), изменением во времени дипольного электрического момента электрической системы (электрическое дипольное излучение), переходом тепловой энергии вещества в энергию излучения, изменением возбужденного состояния ядер вещества (жесткое электромагнитное гамма-излучение) и т.д. [1].

Всемирной организацией здравоохранения электромагнитное излучение отнесено к одному из видов энергетического загрязнения окружающей среды, а электромагнитный смог определен одним из основных составляющих загрязнения окружающей среды. Биологическая активность электромагнитных полей возрастает с уменьшением длины электромагнитной волны и достигает максимального уровня в сверхвысокочастотной (СВЧ) области [2].

Одной из основных мер защиты от излучений является экранирование — отражение, поглощение и многократное его отражение. При достаточном удалении от источника излучения его интенсивность ослабевает вследствие взаимодействия излучения с атмосферным воздухом до величины, безопасной для человека. Ограничение времени пребывания в зоне облучения, а также использование защитных экранов позволяет обеспечить безопасность человека. В зависимости от характера излучения осуществляется расчет безопасного расстояния, времени пребывания в зоне облучения и защитного экранирования [3].

Широко применяемые на практике в настоящее время инженерно-технические методы и средства защиты от СВЧ-излучений, основанные на реализации принципа отражения электромагнитных волн с использованием металлических экранов, сеток и фольги, не позволяют решить весь комплекс проблем защиты от СВЧ-излучений [4].

В связи с этим приобретает актуальность проблема разработки качественно новых эффективных методов и средств защиты от СВЧ-излучений, в частности интерес представляют стекла с особым комплексом электрофизических характеристик, предназначенные для высокоэффективного поглощения либо отражения электромагнитных излучений и называемые радиозащитными [5].

Взаимодействие стекол с электромагнитным полем предопределяет комплекс особых требований к ним: требуемое значение диэлектрической проницаемости, тангенса угла диэлектрических потерь, определенная величина поглощения или отражения электромагнитного излучения радиочастотного диапазона и наличие электропроводности.

Цель данного исследования — разработка составов радиозащитных стекол, обеспечивающих ослабление электромагнитного излучения в диапазоне 1–3 ГГц, изучение влияния их химического состава на комплекс тепло- и электрофизических характеристик.

ПОДГОТОВКА МАТЕРИАЛОВ И МЕТОДЫ ИССЛЕДОВАНИЯ

Составы стекол приведены в таблице 1, мол. % $(17.5-27.5)R_2O-(10.0-20.0)B_2O_3-(62.5-72.5)SiO_2$ (где R_2O – сумма K_2O , Na_2O и Li_2O). Высокое содержание щелочных ионов обусловлено их подвижностью, однако верхняя граница использования оксидов щелочных металлов ограничена содержанием в 30 мас. % вследствие того, что они вызывают резкое снижение химической устойчивости стекол.

В качестве сырьевых материалов использованы SiO₂, H₃BO₃ и карбонаты Li₂CO₃, Na₂CO₃, K₂CO₃ с содержанием основного вещества не менее 99.9%. Стекла синтезированы в газовой печи при 1500 ± 20°C с изотермической выдержкой 2 ч и последующим отжигом при 580 ± 5°C.

Оценку кристаллизационной способности синтезируемых стекол осуществляли методом градиентной термообработки в интервале температур 400–1100°С и изотермической выдержке 1 ч в градиентной печи SP30/13 LAC.

Термический анализ проводили методом дифференциальной сканирующей калориметрии (ДСК) на калориметре STA 449 F1 JUPITER, Netzsch в температурном интервале 50–1000°С в атмосфере аргона со скоростью продувки 20 мл/мин, при скорости нагревания 10°С/мин. Анализ спектров ДСК и разделение пиков выполняли с помощью пакета программ NETZSCH Proteus.

Для определения удельной теплоемкости в интервале температур 50–1000°С использовали калориметр DSC 404 F3 Pegasus, Netzsch. Скорость нагревания составляла 10°С/мин. Обработку результатов измерения осуществляли с использованием программного обеспечения NETZSCH Proteus.

Определение температурного коэффициента линейного расширения (ТКЛР) стекол осуществляли на электронном дилатометре DIL 402 PC, Netzsch в интервале температур $20-300^{\circ}$ С, скорость нагревания 5° С/мин.

Плотность стекол определяли методом гидростатического взвешивания при комнатной температуре в соответствии с ГОСТ 9553.

Термостойкость исследуемых стекол определяли методом, описанным в ГОСТ 25535. В качестве образцов для испытания применяли бездефектные отожженные образцы стекла в виде пластинок.

Номер состава	Содержание оксида, мол.%				
	SiO ₂	B ₂ O ₃	R ₂ O		
			Na ₂ O	K ₂ O	Li ₂ O
1	72.5	10.0	16.5	0.5	0.5
2	70.0	10.0	19.0	0.5	0.5
3	70.0	12.5	16.5	0.5	0.5
4	67.5	10.0	21.5	0.5	0.5
5	67.5	12.5	19.0	0.5	0.5
6	67.5	15.0	16.5	0.5	0.5
7	65.0	10.0	24.0	0.5	0.5
8	65.0	12.5	21.5	0.5	0.5
9	65.0	15.0	19.0	0.5	0.5
10	65.0	17.5	16.5	0.5	0.5
11	62.5	10.0	26.5	0.5	0.5
12	62.5	12.5	24.0	0.5	0.5
13	62.5	15.0	21.5	0.5	0.5
14	62.5	17.5	19.0	0.5	0.5
15	62.5	20.0	16.5	0.5	0.5

Таблица 1. Составы исследуемых стекол

Показатель ослабления электромагнитных волн СВЧ-диапазона образцами опытных стекол определен волноводным методом измерения на векторном анализаторе цепей Agilent E5061B с подключением к измерительному стенду высокостабильного источника внешнего опорного сигнала генератора рубидиевого опорного LPFRS-01. При измерении использовали волноводные камеры, представляющие собой отрезки стандартных волноводов с сечением заданного частотного диапазона. Входное и выходное сечения измерительной волноводной камеры закрывали плоскими слоями фторопласта толщиной 0.1 мм. Выбор фторопласта в качестве материала обусловлен его малыми потерями (коэффициент ослабления составлял 0.1–0.2 дБ).

Волноводный метод позволяет измерить коэффициент стоячей волны (КСВ) и показатель ослабления, характеризующие исследуемые стекла с точки зрения их практического использования в СВЧ-диапазоне. Погрешность определения составляла ±0.5% [6].

Расчет тангенса угла диэлектрических потерь производили с использованием следующих формул на основании экспериментально полученных данных КСВ и показателя ослабления:

$$tg\delta = \frac{\varepsilon^{//}}{\varepsilon^{/}},\tag{1}$$

где tg δ — тангенс угла диэлектрических потерь; ϵ' — действительная часть диэлектрической проницаемости; ϵ'' — мнимая часть диэлектрической проницаемости.

$$\varepsilon' = (\text{KCB})^2, \tag{2}$$

где КСВ – коэффициент стоячей волны.

$$\varepsilon^{//} = \frac{\Delta N \lambda_f \sqrt{\varepsilon'}}{8.7 \pi d},\tag{3}$$

где ΔN — показатель ослабления, дБ; λ_f — длина волны на резонансной частоте, нм; d — толщина пластины образца, мм.

ИК-спектры поглощения стекол в области 250-1500 см⁻¹ получены на спектрофотометре Specord-IR-75.

Рамановские спектры зарегистрированы с использованием 3D сканирующего лазерного микроскопа Confotec MR350, SOL Instruments Ltd. и лазера длиной волны 532 нм при одинаковых условиях и комнатной температуре.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Оценка кристаллизационной способности исследуемых стекол методом градиентной кристаллизации показала, что составы, включающие 65.0-67.5 мол. % SiO₂ и 17.5– 20.0 мол. % R₂O, в интервале температур 930–1110°С характеризуются наличием кристаллической корки, в то время как для стекол с содержанием 67.5-70.0 мол. % SiO₂ и 10.0-12.5 мол. % B₂O₃, а также для области составов стекол, включающих 10.0 мол. % B₂O₃, наличие кристаллизации не выявлено. Для отдельных составов стекол указанных областей приведено подтверждение полученных результатов данными ДСК (рис. 1*a*, δ), где четко прослеживается отсутствие экзоэффектов, обусловленных кристаллизацией стекол. Эндоэффекты на кривых ДСК при 522–600°С отнесены к началу процесса размягчения стекол [7].

Знание температуры начала размягчения является достаточно важным показателем, так как ее величина определяет рабочий диапазон использования стекла на практике в различных сферах народного хозяйства. С ростом содержания R_2O в составах опытных стекол наблюдается закономерное снижение данного показателя, что вызвано деполимеризацией борокремнекислородного каркаса [8]. Увеличение доли B_2O_3 приводит к росту температуры начала размягчения. По-видимому, это вызвано тем, что при содержании R_2O в количестве 27.5 мол. % (количество оксида B_2O_3 при этом остается постоянным) часть катионов щелочных металлов участвует в формировании структурных групп [BO_4]R, а избыток этих катионов выполняет функцию деполимеризации (появление концевых связей -Si-O-R). С ростом содержания B_2O_3 в составе стекол доля щелочных катионов, участвующих в деполимеризации, уменьшается, что и вызывает повышение данного показателя [9].

Энергия электромагнитного поля перемещается вместе с самим полем в пространстве и может превращаться в другие виды энергии — тепловую, механическую и т.д. Особенностью электромагнитного поля является его способность воздействовать на электрически заряженные частицы вещества [10]. При распространении энергии электромагнитной волны в веществе она преобразуется в другие виды энергии, в частности, в электрическую и тепловую [11], поэтому радиозащитный материал должен быть термостойким. В связи с этим изучение теплофизических свойств стекол (ТКЛР, теплоемкость, термостойкость) является актуальным.

Термостойкость характеризует способность опытных стекол выдерживать резкие перепады температур без разрушения и зависит, в первую очередь, от температурного коэффициента линейного расширения. Установлено, что ТКЛР исследуемых стекол изменяется в интервале (42.0–73.0) × 10^{-7} K⁻¹. При этом эквимолярная замена SiO₂ на B₂O₃ при постоянном содержании R₂O в опытных составах стекол ведет к значительному снижению данного показателя. Термическая стойкость опытных стекол изменяется от 120 до 130°С, что позволяет сделать вывод об их устойчивости к разрушению в случае частичного преобразования энергии электромагнитного поля в тепловую.

Рис. 1. Кривые ДСК стекол: R₂O (мол. %): 17.5 (1); 22.5 (4); 27.5 (11) (*a*), B₂O₃ (мол. %): 10.0 (11); 15.0 (13); 20.0 (15) (*б*). В скобках приведены номера составов стекол в соответствии с таблицей.

Теплоемкость отражает способность материалов поглощать тепло с ростом температуры и определяет их тепловую инерцию. Для стекол, используемых в качестве радиозащитных, величина теплоемкости характеризует скорость выравнивания температуры по толщине изделия и, как следствие, определяет термостойкость готового изделия.

Теплоемкость стекол в зависимости от их химического состава при температуре 50°С изменяется в пределах 0.49–0.85 кДж/кг·К (рис. 2, 3).

С увеличением количества R_2O от 17.5 до 27.5 мол. % при постоянном содержании B_2O_3 теплоемкость стекол экспоненциально повышается от 0.74 до 0.85 кДж/кг · К (рис. 2). Это связано со снижением степени полимеризации борокремнекислородного каркаса стекла за счет увеличения доли оксида-модификатора. Теплоемкость твердых стеклообразных полимеров обычно представляют аддитивной функцией двух составляющих, обусловленных решеточными колебаниями основного стеклообразующего каркаса и характеристическими колебаниями концевых связей и связей типа Si–O–Me (где Me – ионы R⁺). Решеточные колебания являются низкочастотными, акустическими, вносят основной вклад в теплоемкость твердых тел и зависят, главным образом, от массы стеклообразующего каркаса. Характеристические колебания концевых связей

Рис. 2. Влияние R₂O на теплоемкость опытных стекол с постоянным содержанием оксида B₂O₃.

Рис. 3. Влияние B_2O_3 на теплоемкость опытных стекол при постоянном содержании SiO₂.

Si-O-Me проявляются в области более высоких частот и, следовательно, более высоких температур и определяются соотношением масс атомов основного стеклообразующего каркаса и катионов-модификаторов [12].

Увеличение количества B_2O_3 от 10.0 до 20.0 мол. % (рис. 3) при постоянном содержании SiO₂ обуславливает уменьшение теплоемкости стекол от 0.85 до 0.49 кДж/кг · К и, как следствие, повышение степени связности борокремнекислородного каркаса стекла.

Изучение теплоемкости дает возможность оценить степень полимеризации кремнекислородного каркаса, степень развитости структуры. Переход к более развитой трехмерной структуре сопровождается уменьшением теплоемкости стекол. Оптимальной по теплофизическим свойствам с точки зрения получения радиозащитных стекол является область составов, включающая 25.0–27.5 мол. % R₂O; 10.0–15.0 мол. % B₂O₃.

Рис. 4. Зависимость КСВ опытных стекол от содержания $R_2O(a)$ и $B_2O_3(b)$.

Электрофизические свойства стекол (КСВ, показатель ослабления, тангенс угла диэлектрических потерь) позволяют оценить исследуемый материал с точки зрения его практического использования в СВЧ-диапазоне. КСВ характеризует отражательную способность электромагнитной волны: чем выше его значение, тем интенсивнее стекло отражает электромагнитное излучение СВЧ-диапазона. Установлено, что КСВ стекол изменяется в пределах 3.21-7.85 (рис. $4a, \delta$).

Из рисунков видно, что максимальная величина КСВ наблюдается при частоте 1.84 ГГц. При этом изменение содержания R_2O , вводимого вместо SiO₂, от 17.5 до 27.5 мол. % вызывает в целом рост исследуемого показателя от 3.51 до 7.65 дБ (рис. 4*a*). При содержании R_2O порядка 20.0 мол. %, на представленных зависимостях наблюдается минимум данного показателя.

Изменение содержания B_2O_3 , вводимого взамен R_2O , от 10.0 до 20.0 мол. % (рис. 4б) вызывает рост КСВ от 3.35 до 7.29 дБ. При содержании B_2O_3 , составляющем 15 мол. %, для всех представленных частот наблюдается минимум данного показателя.

Полученные данные определенным образом согласуются с результатами изучения плотности опытных стекол, что позволяет косвенно судить о взаимосвязи между зна-

чениями плотности стекла и коэффициента стоячей волны. Чем больше величина плотности стекла, тем выше значение КСВ. Знание плотности стекол, с одной стороны, позволяет оценить массу готового изделия, а с другой — степень постоянства плотности и химического состава стекол характеризует однородность стекла. Экспериментально установлено, что плотность стекол изменяется в пределах от 2442 до 2577 кг/м³. Определяющее влияние на данную величину оказывает содержание оксидов R₂O и B₂O₃. Как известно [9], с ростом доли оксидов щелочных металлов, плотность стекол увеличивается. Это связано с повышением плотности упаковки структурных элементов. С другой стороны, повышение количества оксида бора в составе стекол от 10.0 до 15.0 мол. % при постоянном содержании R₂O равном 17.5 мол. %, обуславливает изменение доли трех- и четырехкоординированного бора, которое определяется величиной отношения R₂O/B₂O₃. При R₂O/B₂O₃ равном 1.16, наблюдается максимум величины плотности. Отношение доли группировок [BO₃] и [BO₄] при указанном количестве оксидов щелочных металлов и бора составляет 1:1. Увеличение содержания В2О3 от 15.0 до 20.0 мол. % вызывает обратное явление – уменьшение плотности стекол за счет повышения в их структуре доли группировок [ВО₃], которые, в противоположность тетраэдрам [ВО₄], занимают больший мольный объем [9]. С ростом содержания B_2O_3 от 10.0 до 20.0 мол. % при постоянном количестве R_2O_3 , равном 17.5 мол. %, проявляется максимальное значение плотности, равное 2577 кг/м³.

Для исследуемых составов стекол показатель ослабления электромагнитной волны СВЧ-диапазона изменяется от 0.69 до 3.21 дБ/мм. При этом, максимальная величина показателя ослабления наблюдается при частоте 2.50 ГГц (рис. 5a, δ). Увеличение содержания R₂O, вводимого взамен SiO₂, от 17.5 до 27.5 мол. % вызывает изменение исследуемого показателя в пределах от 0.84 до 2.84 дБ/мм (рис. 5а). Показатель ослабления электромагнитного излучения стеклом в СВЧ-области зависит от величины диэлектрических потерь (потерь проводимости, релаксационных и деформационных) [13], которые определяются главным образом химическим составом стекла и его структурой. Влияние химического состава стекла на величину диэлектрических потерь подобно его влиянию на электропроводность: компоненты, увеличивающие электропроводность, повышают и диэлектрические потери в стекле. Поэтому стекла, содержащие оксиды щелочных металлов, характеризуются повышенными диэлектрическими потерями. Диэлектрические потери связаны в основном с процессами установления поляризации, которая возникает в диэлектрике при воздействии электрического поля. Интенсивно протекающие процессы поляризации вызывают поглощение энергии электрического поля, когда частоты собственных колебаний ионов и электронов совпадают с частотой электрического поля. Различные виды поляризации, связанные с тепловым движением ионов и электронов, устанавливаются гораздо медленнее и являются в большинстве случаев основным источником диэлектрических потерь в широкой области радиотехнических частот [14, 15].

При содержании $R_2O 20.0-22.5$ мол. % (рис. 5*a*), на представленных зависимостях наблюдается максимум величины исследуемого показателя, а при 25.0–27.5 мол. % – минимум. Это связано с тем, что одним из источников релаксационных потерь в неорганических полупроводниках являются слабо связанные ионы щелочных металлов. Приложение электрического поля к исследуемому материалу вызывает асимметрию в распределении зарядов, в результате чего возникает электрический момент, что влияет на рост показателя ослабления.

Как видно из рис. 56, при изменении содержания B_2O_3 , вводимого взамен R_2O , от 10.0 до 20.0 мол. % наблюдается рост исследуемого показателя с 0.74 до 2.84 дБ/мм. При содержании B_2O_3 , несколько превышающем 17.5 мол. %, проявляется минимум

Рис. 5. Зависимость показателя ослабления опытных стекол от содержания $R_2O(a)$ и $B_2O_3(b)$.

на представленных зависимостях, что согласуется с изменениями диэлектрических потерь стекол (рис. 6*б*).

Тангенс угла диэлектрических потерь опытных стекол изменяется от 0.1718 до 0.744. На рис. 6*a*, δ представлены зависимости тангенса угла диэлектрических потерь от изменения содержания R_2O и B_2O_3 при различных частотах.

При изменении содержания R_2O от 17.5 до 22.5 мол. % (рис. 6*a*) тангенс угла диэлектрических потерь возрастает от 0.156 до 0.679, проходя через максимум при содержании R_2O порядка 20.0—22.5 мол. %. Максимальные значения данного показателя наблюдаются при частоте 2.50 ГГц. Стоит отметить, что с повышением частоты прилагаемого поля экстремумы на приведенных зависимостях становятся более выраженными.

С ростом содержания B_2O_3 от 10.0 до 20.0 мол. % (рис. 66) тангенс угла диэлектрических потерь изменяется от 0.181 до 0.744. В случае повышения частоты электромагнитного поля от 1.84 до 2.50 ГГц наблюдается рост tg δ . Дальнейшее увеличение частоты до 2.96 ГГц вызывает уменьшение исследуемого показателя. С ростом содержания B_2O_3 от 10.0 до 15.0 мол. % отмечено увеличение tg δ , а изменение содержания данного оксида от 15.0 до 17.5 мол. % приводит к его уменьшению. Последующее повышение

количества оксида бора до 20.0 мол. % вызывает рост данного показателя. Как и на ранее приведенной зависимости, повышение частоты прилагаемого поля делает экстремумы на данных зависимостях более выраженными.

Величина электрофизических характеристик стекол определяется не только химическим составом стекла, но и частотой прилагаемого электромагнитного поля. Частота прилагаемого электромагнитного поля оказывает противоположное влияние на показатель ослабления и КСВ опытных стекол. Так, максимальные значения показателя ослабления достигаются при частоте электромагнитного поля 2.50 ГГц, в то время как значение КСВ для аналогичной величины частоты минимально.

Результаты исследования показателя ослабления электромагнитного излучения опытными стеклами находят подтверждение в разрезе изучения их структуры методами инфракрасной (рис. 7) и рамановской спектроскопии (рис. 8).

Широкие интенсивные полосы поглощения на ИК спектрах (рис. 7) в области 900– 1100 см^{-1} обусловлены валентными колебаниями тетраэдров [SiO₄] и [BO₄], которые

Рис. 7. ИК-спектры стекол при содержании B₂O₃ (мол. %): 10.0 (11); 15.0 (13); 20.0 (15). В скобках приведены номера составов стекол в соответствии с таблицей.

могут накладываться друг на друга [8, 16]. Положение максимумов полосы поглощения зависит от степени полимеризации указанных тетраэдров. Чем больше степень их связности друг с другом, тем в более высокочастотной области будет расположен основной максимум поглощения. Увеличение количества модификаторов в составе опытных стекол определяет долю немостиковых связей типа Si–O, что приводит к деполимеризации структурной сетки стекла.

Полосу поглощения в области 740–800 см⁻¹ связывают с образованием кольцевых структур из тетраэдров [SiO₄] в решетке стекла [8, 17]. Полоса в области 400–500 см⁻¹ принадлежит деформационным колебаниям тетраэдров [SiO₄], а появление полосы поглощения в области 1400 см⁻¹ указывает на появление трехкоординированного бора, что является закономерным.

В случае рамановской спектроскопии (рис. 8a-e), полосы рассеяния в высокочастотной области (1000–1200 см⁻¹) отражают степень связности кремнекислородной составляющей структурного каркаса опытных стекол. Структура щелочных боросиликатных стекол представлена кремнекислородной и щелочноборатной составляющими.

Полоса при 1123 см⁻¹ характеризует наличие кремнекислородных тетраэдров с 4 мостиковыми атомами кислорода (Q4), а в области 1060–1080 см⁻¹ – тетраэдров [SiO₄], в котором присутствует 3 мостиковых атома кислорода (Q3). Это свидетельствует о том, что кремнекислородная составляющая характеризуется незначительным числом структурных разрывов, вызванных наличием в составе стекол оксидов щелочных металлов [18, 19].

На всех представленных зависимостях (рис. 8a-e) в области 790 см⁻¹ присутствует полоса, отражающая наличие в структуре стекол мостиков типа В^{IV}–O–B^{III}, незначительная интенсивность которой характеризует малую их долю.

По-видимому, присутствие полосы в области 630 см⁻¹ свидетельствует о наличии данбуритоподобных кольцевых структур, состоящих из двух силикатов Q4 и двух борокислородных тетраэдрических единиц $[BO_{4/2}]R^+$ [19]. Полоса при 480 см⁻¹ отвечает

Рис. 8. Спектры комбинационного рассеяния стекол: SiO₂ (мол. %): 62.5 (1), 67.5 (6), 72.5 (15) (*a*); B₂O₃ (мол. %): 10.0 (11), 15.0 (13), 20.0 (15) (*b*); R₂O (мол. %): 17.5 (1), 22.5 (4), 27.5 (11) (*b*). В скобках приведены номера составов стекол в соответствии с таблицей.

колебаниям мостиков В–О–В в плоскости, перпендикулярной к плоскости бороксольного кольца [20].

Изучение рамановских спектров щелочных боратных стекол показало, что наиболее значимые изменения в спектрах наблюдаются в области низких (460–530 см⁻¹) и высоких частот (1000–1200 см⁻¹), что свидетельствует об изменении координационного состояния бора в структуре стекол и степени связности тетраэдров [SiO₄] [20].

ЗАКЛЮЧЕНИЕ

На основании проведенных исследований в качестве стекол, значительно ослабляющих электромагнитное излучение и максимально отвечающих предъявляемым к ним требованиям, могут быть использованы такие, которые в своем составе содержат (мол. %) R_2O 20.0–22.5, B_2O_3 10.0–12.5. Проведенные исследования физико-химических и электрофизических свойств стекол системы $R_2O-B_2O_3-SiO_2$ позволили определить область составов стекол, которые могут быть использованы как радиозащитные.

СПИСОК ЛИТЕРАТУРЫ

- 1. Мариуль В.Н., Капориков В.П., Головач А.М. Экология и контроль состояния окружающей среды. Минск: БГТУ, 2009. 95 с.
- 2. *Слукин В.М.* Техногенные электромагнитные излучения как фактор экологии населенных пространств // Академический вестник УралНИИпроект РААСН. 2010. № 4. С. 120–124.
- 3. Резчиков Е.А., Ткаченко Ю.Л., Рязанцева А.В. Безопасность жизнедеятельности. М.: МГИУ, 2006. 465 с.
- Рябоконь И.Ю. Разработка элементов системы защиты от СВЧ излучений персонала радиотехнического комплекса с использованием радиопоглощающих материалов. Автореф. дисс. ... канд. тех. наук. Севастополь, 1990. 24 с.
- 5. Дяденко М.В., Любецкий Н.В., Карпович В.А., Петуховская А.Г. Стекловидные материалы с различным комплексом электрофизических характеристик // Электронная техника. Серия 1, СВЧ-техника. 2018. Вып. 1(536). С. 52–59.
- 6. Елизаров А.С. Электрорадиоизмерения. Минск. Вышэйшая школа. 1986. 320 с.
- 7. Папко Л.Ф., Кравчук А.П. Физико-химические методы исследования неорганических веществ и материалов. Минск. БГТУ. 2019. 100 с.
- 8. Бобкова Н.М., Папко Л.Ф. Химическая технология стекла и ситаллов. Минск. БГТУ. 2005. 196 с.
- 9. Аппен А.А. Химия стекла. М.: Химия, 1974. 360 с.
- 10. Кабардин О.Ф. Физика: справочные материалы. М.: Просвещение, 1991. 367 с.
- 11. *Машкович В.П.* Защита от ионизирующих излучений. Минск: Энергоатомиздат., 1995. 440 с.
- 12. Тугов И.И., Кострыкина Г.И. Химия и физика полимеров. М. Химия. 1989. 432 с.
- 13. Стевелс Дж. Электрические свойства стекла. М.: Изд-во иностранной лит-ры, 1961. 89 с.
- 14. Томилин В.И., Томилина Н.П., Бахтина В.А. Физическое материаловедение: в 2 ч. Красноярск: Сиб. федер. ун-т, 2012. Ч. 1: Пассивные диэлектрики. 280 с.
- 15. Негоденко О.Н., Мирошниченко С.П. Материалы электронной техники. Таганрог: Изд-во ТРТУ, 2006. Ч. 1. 66 с.
- 16. *El-Egil K*. Infrared studies of Na₂O–B₂O₃–SiO₂ and Al₂O₃–Na₂O–B₂O₃–SiO₂ glasses // Physica B. 2003. V. 325. P. 340–348.
- Balachandera L., Ramadevudub G.; Shareefuddina Md., Sayannac R., Venudharc Y.C. IR analysis of borate glasses containing three alkali oxides // ScienceAsia. 2013. V. 39. P. 278–283.
- 18. *Konijnendijk W. L.* The structure of borosilicate glasses. Eindhoven. University of technology. 1975. 251 p.
- 19. *Manara D., Grandjean A., Neuville D.R.* Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study // American Mineralogist. 2009. V. 94. P. 777–784.
- 20. Осипов А.А., Осипова Л.М., Быков В.Н. Спектроскопия и структура щелочноборатных стекол и расплавов. Екатеринбург-Миасс: Уро РАН, 2009. 174 с.