МЕССБАУЭРОВСКИЕ ИССЛЕДОВАНИЯ ЛОКАЛЬНОГО ОКРУЖЕНИЯ АТОМОВ В АМОРФНЫХ И КРИСТАЛЛИЧЕСКИХ ПЛЕНКАХ Ge₂Sb₂Te₅

© 2021 г. Г. А. Бордовский¹, А. В. Марченко¹, Ф. С. Насрединов², Ю. А. Петрушин¹, П. П. Серегин^{1, *}

¹Российский государственный педагогический университет им. А.И. Герцена, наб. реки Мойки, 48, Санкт-Петербург, 191186 Россия ²Санкт-Петербургский политехнический университет Петра Великого, ул. Политехничская, 29, Санкт-Петербург, 195251 Россия *e-mail: ppseregin@mail.ru

> Поступила в редакцию 09.10.2020 г. После доработки 02.12.2020 г. Принята к публикации 04.12.2020 г.

Методом абсорбционной мессбауэровской спектроскопии на изотопах ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te показано, что локальная структура атомов германия меняется в процессе кристаллизации аморфных пленок Ge₂Sb₂Te₅ (тетраэдрическая симметрия меняется на октаэдрическую). Окружение атомов сурьмы и теллура не меняется, причем для атомов сурьмы оно близко к таковому в соединении Sb₂Te₃. Методом эмиссионной мессбауэровской спектроскопии на примесных центрах ¹¹⁹Sn, образующихся после радиоактивного распада материнских атомов ¹¹⁹Sb и ^{119m}Te, идентифицированы антиструктурные дефекты олова в узлах сурьмы и теллура кристаллических пленок Ge₂Sb₂Te₅.

Ключевые слова: структурные и антиструктурные дефекты, мессбауэровская спектроскопия, $Ge_2Sb_2Te_5$ DOI: 10.31857/S0132665121020037

ВВЕДЕНИЕ

Современный этап исследований фазовой памяти (ФП) на основе халькогенидных полупроводников связан с использованием инконгруэнтно плавящихся сплавов в системе Ge-Sb-Te, лежащих на линии квазибинарного разреза GeTe-Sb₂Te₃, причем наибольший интерес вызывает состав Ge₂Sb₂Te₅. Хотя не удается синтезировать соединение $Ge_2Sb_2Te_5$ в виде объемного стекла, но его возможно получить в виде аморфной пленки методом магнетронного распыления мишени соответствующего состава. Важным свойством пленок Ge₂Sb₂Te₅ является их способность к быстрым и обратимым переходам между кристаллическим и аморфным состояниями при низкоэнергетических воздействиях. Одна из задач по совершенствованию технологии ФП связана с исследованиями процесса кристаллизации аморфных пленок Ge₂Sb₂Te₅. При этом, важным является получение информации о локальной структуре аморфной пленки, поскольку невозможно описать механизм ФП без знания структурных трансформаций при обратимых фазовых переходах между аморфным и кристаллическим состояниями. В частности, исследования пленок Ge₂Sb₂Te₅ структурно-чувствительным методом XANES (околопороговая тонкая структура рентгеновского спектра поглощения) позволили авторам [1] дать одно из возможных объяснений быстрого обратимого

Рис. 1. Схема распада материнских изотопов ^{119*mm*}Sn, ¹¹⁹Sb и ^{119*m*}Te.

перехода из кристаллического в аморфное состояние для указанных пленок (модель "umbrella flip").

Переход из аморфной фазы в кубическую Ge₂Sb₂Te₅ используется чаще всего, однако аморфная фаза обладает низкой термической устойчивостью и низкой плотностью. По этой причине энергонезависимая ФП в настоящее время ограничена применениями в области температур $\leq 120^{\circ}$ C. В работе [2] предлагается заменить переход аморфная—кубическая фаза на переход из кубической в гексагональную фазу в тех же пленках. Это обеспечивает комбинацию высокого оптического контраста, термостабильности и малого изменения плотности, увеличивает максимальную рабочую температуру оптики до 240°C. Авторы [2] связывают высокий оптический контраст с увеличением разницы в структурном беспорядке при переходе от кубической к гексагональной фазе.

Эффективным методом исследования структурных перестроений в твердых телах является мессбауэровская спектроскопия [3]. Важным требованием к мессбауэровскому зонду, используемому для таких исследований, является априорная локализация его в конкретном узле кристаллической решетки или структурной сетки аморфного материала. Это требование может быть выполнено при исследовании локальной структуры кристаллических и аморфных пленок Ge₂Sb₂Te₅ методом абсорбционной мессбауэровской спектроскопии на изотопах 125 Te, 121 Sb и 119 Sn. Зонды 125 Te и 121 Sb занимают узлы теллура и сурьмы, а изовалентное замещение атомов германия примесными атомами олова в структуре стеклообразных и кристаллических теллуридов германия доказано в [4-6]. Для этих целей может быть использована эмиссионная мессбауэровская спектроскопия на изотопе 119m Sn с материнскими ядрами 119 Sb и 119m Te, что позволяет надежно вводить мессбауэровский зонд ^{119m}Sn в узлы сурьмы и теллура соединения $Ge_2Sb_2Te_5$. Как видно из схемы распада изотопов ¹¹⁹Sb и ^{119m}Te, приведенной на рис. 1, в зависимости от химической природы материнского изотопа дочерние атомы олова могут стабилизироваться либо в узлах сурьмы (если используется изотоп ¹¹⁹Sb), либо в узлах теллура (если используется изотоп ^{119m}Te), образуя антиструктурные дефекты олова.

В настоящей работе для исследования структурных перестроений в пленках Ge₂Sb₂Te₅ используются описанные выше абсорбционные и эмиссионные методики. Они позволили получить информацию как о структурных перестроениях в локальном окружении атомов германия, сурьмы и теллура в процесс кристаллизации аморфных

пленок, так и о природе дефектов олова в структуре кристаллических пленок. Для сравнения были проведены аналогичные исследования кристаллических соединений Sb_2Te_3 и GeTe, а также кристаллических и стеклообразных пленок состава $Ge_{1.5}Te_{8.5}$ и $Ge_{1.5}As_{0.4}Te_{8.1}$.

МЕТОДИКА ЭКСПЕРИМЕНТА

Соединения $Ge_2Sb_2Te_5$, $Ge_{1.95}Sn_{0.05}Sb_2Te_5$, Sb_2Te_3 и GeTe и сплавы $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Te_{8.5}$, $Ge_{1.5}As_{0.4}Te_{8.1}$ и $Ge_{1.45}Sn_{0.05}As_{0.4}Te_{8.1}$ синтезировались из элементарных веществ в вакуумированных до 10^{-3} мм рт. ст. кварцевых ампулах при 1050°С.

Рентгеноаморфные пленки $Ge_2Sb_2Te_5$, $Ge_{1.95}Sn_{0.05}Sb_2Te_5$, GeTe, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Te_{8.5}$, $Ge_{1.5}As_{0.4}Te_{8.1}$ и $Ge_{1.45}Sn_{0.05}As_{0.4}Te_{8.1}$ были получены методом магнетронного распыления поликристаллических мишеней аналогичного состава на постоянном токе в атмосфере азота на кремниевой подложке. Для получения пленок $Ge_{1.95}Sn_{0.05}Sb_2Te_5$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$ и $Ge_{1.45}Sn_{0.05}As_{0.4}Te_{8.1}$ использовали изотоп ¹¹⁹Sn с обогащением 92%. Кристаллизацию аморфных пленок $Ge_2Sb_2Te_5$ и $Ge_{1.95}Sn_{0.05}Sb_2Te_5$ проводили при температурах 150°C (с образованием *fcc*-фазы) и 310°C (с образованием *hcp*-фазы) [5, 7–10]. Кристаллизация аморфных пленок $Ge_{1.5}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}As_{0.4}Te_{8.1}$ и $Ge_{1.45}Sn_{0.05}As_{0.4}Te_{8.1}$ и $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Sn_{0.05}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$ и $Ge_{1.5}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$ и $Ge_{1.5}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.45}Sn_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.45}Sh_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.45}Sh_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.05}Te_{8.5}$, $Ge_{1.5}Sh_{0.$

Мессбауэровские источники ^{119m}Sn на основе кристаллических пленок $Ge_2Sb_2Te_5$ (*hcp*-фаза) готовили путем диффузии безносительных изотопов ¹¹⁹Sb или ^{119m}Te в аморфную пленку при температуре 310°C в течение 10 ч. Мессбауэровские источники ^{119m}Sn на основе Sb₂Te₃ и GeTe готовили сплавлением соответствующего соединения с безносительными изотопами ¹¹⁹Sb или ^{119m}Te.

Изотопы ¹¹⁹Sb и ^{119m}Te были получены по реакциям ¹¹⁹Sn(p, n)¹¹⁹Sb и ¹¹⁷Sn(α , 2n)^{119m}Te с последующим хроматографическим выделением безносительных препаратов ¹¹⁹Sb и ^{119m}Te.

Эмиссионные ¹¹⁹mSn и абсорбционные ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te мессбауэровские спектры измеряли на спектрометре CM 4201 TerLab при 80 К. При измерении эмиссионных спектров использовали поглотитель CaSnO₃ (поверхностная плотность по олову 5 mg/cm²). Для источников, приготовленных с использованием ^{119m}Te, спектры снимали после установления динамического радиоактивного равновесия между изотопами ¹¹⁹Sb и ^{119m}Te. При измерении абсорбционных спектров ^{119m}Te, спектры снимали после установления динамического радиоактивного равновесия между изотопами ¹¹⁹Sb и ^{119m}Te. При измерении абсорбционных спектров ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te использовали источники Ca^{119mm}SnO₃, Ca¹²¹SnO₃ и Zn^{125m}Te, соответственно. Аппаратурные ширины спектральных линий (G_{app}) для спектров ^{119m}Sn, ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te составляли соответственно 0.80(2), 0.79(2), 2.35(6) и 6.20(6) mm/s. Изомерные сдвиги (*IS*) спектров ^{119m}Sn, ¹¹⁹Sn, ¹²¹Sb и ¹²⁵Te приводятся относительно спектров поглотителей CaSnO₃, InSb и ZnTe соответственно.

Состав аморфных и кристаллических пленок $Ge_xSb_yTe_{1-x-y}$, а также состав мишеней, контролировали методом рентенофлуоресцентного анализа (РФА). Из элементарных веществ были синтезированы поликристаллические сплавы $Ge_xSb_yTe_{1-x-y}$ ($Ge_{22}Sb_{22}Te_{56}$, $Ge_{14}Sb_{29}Te_{57}$, $Ge_8Sb_{34}Te_{58}$, $Sb_{40}Te_{60}$ и $Ge_{50}Te_{50}$). Значения x и y приведены с погрешностью ± 0.5 исходя из состава исходной шихты. Рентгенофлуоресцентные спектры измеряли на спектрометре X—Art M при значении анодного напряжения 35 kV. Типичные рентгенфлуоресцентные спектры аморфной пленки и мишени состава $Ge_{22}Sb_{22}Te_{56}$ приведены на рис. 2.

Сначала определялись площади под K_{α} -линиями германия S_{Ge} , сурьмы S_{Sb} и теллура S_{Te} , а затем с помощью соотношений типа $x_{\text{RFA}} = S_{\text{Ge}}/(S_{\text{Ge}} + S_{\text{Sb}} + S_{\text{Te}})$ вычисляли

Рис. 2. Рентгенфлуоресцентные спектры пленки и мишени состава Ge₂₂Sb₂₂Te₅₆.

относительные площади спектральных линий германия, сурьмы и теллура. Индекс "RFA" означает, что значения *x* и *y* определены из данных рентгенофлуоресцентного анализа. Экспериментальные значения среднеквадратичных отклонений x_{RFA} и y_{RFA} не превышали ±0.02. На рис. 3 представлены зависимости $x = f(x_{\text{RFA}})$ и $y = f(y_{\text{RFA}})$ для поликристаллических сплавов и пленок (аморфных и кристаллических) различной толщины. Эти зависимости для поликристаллических сплавов удовлетворительно аппроксимируются полиномами $x = 0.6187 x_{\text{RFA}}^3 - 0.0922 x_{\text{RFA}}^2 + 0.2531 x_{\text{RFA}}$ (R = 0.998) и $y = -0.3227 y_{\text{RFA}}^3 - 1.1385 y_{\text{RFA}}^2 + 1.4487 y_{\text{RFA}}$ (R = 0.999), где R – коэффициент достоверности аппроксимации.

Для пленок экспериментальные данные РФА существенно отклоняются от зависимостей $x = f(x_{RFA})$ и $y = f(y_{RFA})$, полученных для поликристаллических сплавов. Кроме того, данные РФА для пленок зависят от их толщины. Объясняется это тем, что соотношения площадей под спектральными линиями германия, сурьмы и теллура зависят от толщины пленки (см., например, экспериментальные точки 3 и 4 на рис. 3).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Данные абсорбционной мессбауэровской спектроскопии. Типичные спектры примесных атомов ¹¹⁹Sn в аморфных и поликристаллических пленках, приведенные на рис. 4 и 5, представляют собой одиночные уширенные линии ($G \sim 1.15 - 1.35$ mm/s).

Спектры ¹¹⁹Sn в аморфных пленках Ge₂Sb₂Te₅, Ge_{1.5}Te_{8.5} и Ge_{1.5}As_{0.4}Te_{8.1} имеют изомерные сдвиги ($IS \sim 2.03-2.08$ mm/s), типичные для изомерных сдвигов спектров ¹¹⁹Sn соединений четырехвалентного олова Sn-IV с тетраэдрической системой химических связей [3–6]. Исходя из величин изомерных сдвигов спектров ¹¹⁹Sn, можно сделать вывод, что атомы олова и замещаемые ими атомы германия в структурной сетке этих

Рис. 3. Зависимости $x = f(x_{RFA})$ и $y = f(y_{RFA})$ для массивных поликристаллических сплавов (1) и пленок толщины 40 нм аморфной (2) и поликристаллической (3) и 60 нм аморфной (4).

Рис. 4. Абсорбционные мессбауэровские спектры примесных атомов ¹¹⁹Sn в пленках $\text{Ge}_2\text{Sb}_2\text{Te}_5$: аморфной пленке (*a*) и поликристаллических пленках со структурами *fcc* (*b*) и *hcp* (*c*). Показано положение спектральных линий, отвечающих центрам Sn-IV и Sn²⁺.

материалов образуют тетраэдрическую систему sp^3 химических связей. Поскольку в структурной сетке аморфного Ge_{1.5}Te_{8.5} атомы германия могут иметь в своем локальном окружении только атомы теллура, то близость изомерных сдвигов всех исследованных аморфных пленок свидетельствует о том, что и в структурной сетке аморфной пленки Ge₂Sb₂Te₅ атомы германия связаны только с атомами теллура. Уширение спектров ¹¹⁹Sn всех исследованных аморфных пленок объясняется отсутствием в них дальнего порядка в расположении атомов, и является характерным свойством мессбауэровских спектров неупорядоченных структур [3].

Близость изомерных сдвигов спектров ¹¹⁹Sn в поликристаллических пленках $Ge_2Sb_2Te_5$ и $Ge_{1.5}Te_{8.5}$ к изомерному сдвигу соединения SnTe объясняется тем, что кристаллизация пленок не приводит к изменению химической природы атомов в локальном окружении атомов германия (олова). Ширина спектров поликристаллических образцов существенно больше аппаратурной ширины спектральной линии ¹¹⁹Sn. Это свидетельствует о том, что в составе поликристаллических фаз олово образует не соединение SnTe (кристаллическая решетка типа NaCl), а входит в состав твердых растворов $Ge_{1-x}Sn_xTe$ (в пленках $Ge_{1.5}Te_{8.5}$) или в состав *fcc-* и *hcp-*фаз (в пленках $Ge_2Sb_2Te_5$), для которых мессбауэровские спектры уширяются за счет неразрешенного квадрупольного расщепления. Этот вывод подтверждается данными рентгеноструктурного анализа, согласно которым твердые растворы $Ge_{1-x}Sn_xTe$ и *fcc-*фаза $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, а в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически акаженную решетку типа NaCl, а в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически акаженную решетку типа NaCl, а в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, а в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, а в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют ромбоэдрически искаженную решетку типа NaCl, в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют решетку типа NaCl, в *hcp-*фазе $Ge_2Sb_2Te_5$ имеют решетку типа NaCl, в *hcp-*фазе

Параметры мессбауэровских спектров поликристаллических пленок $Ge_2Sb_2Te_5$ со структурами *fcc* и *hcp* совпали в пределах погрешности их измерений (для *fcc*-фазы *IS* = 3.53(2) mm/s, *G* = 1.32(4) mm/s и для *hcp*-фазы *IS* = 3.49(2) mm/s, *G* = 1.34(4) mm/s). Это, очевидно, свидетельствует о близости локальной структуры атомов германия в указанных фазах, а установленная в [2] разница в структурном беспорядке между кубической и гексагональной фазами, по-видимому, не связана с подрешетками германия.

Таким образом, экспериментально подтвержден вывод авторов [1] о том, что фазовый переход аморфное состояние—кристалл в пленках $Ge_2Sb_2Te_5$ сопровождается изменением координационного состояния атомов германия. Следует также иметь в виду, что этот переход сопровождается изменением валентного состояния германия.

Отметим, что аналогичное перестроение локального окружения атомов германия наблюдается при кристаллизации стекол родственного состава $Ge_{1.5}Te_{8.5}$ и $Ge_{1.5}As_{0.4}Te_{8.1}$, что было впервые отмечено авторами [4]. Поликристаллические сплавы $Ge_{1.5}As_{0.4}Te_{8.1}$ и $Ge_{1.5}Te_{8.5}$ различается лишь содержанием мышьяка. Однако изомерный сдвиг для зонда ¹¹⁹Sn в $Ge_{1.5}As_{0.4}Te_{8.1}$ (~2.85(2) mm/s) существенно меньше изомерного сдвига для того же зонда в $Ge_{1.5}Te_{8.5}$ (см. рис. 5) и близок к изомерному сдвигу интерметалличенского соединения олова Sn^0 с мышьяком SnAs [3].

Спектры ¹²¹Sb кристаллической и аморфной пленок Ge₂Sb₂Te₅, а также спектр поликристаллического соединения Sb₂Te₃ (рис. 6) представляют собой одиночные несколько уширенные линии (максимальное уширение наблюдается для аморфной пленки $G \sim 5.1$ mm/s), изомерные сдвиги которых ($IS \sim 5.1-5.4$ mm/s) типичны для спектров ¹²¹Sb трехвалентных соединений сурьмы. Поскольку кристаллизация аморфной пленки не приводит к существенному изменению параметров спектров ¹²¹Sb, а также учитывая, что эти параметры близки к параметрам спектра соединения Sb₂Te₃,

Рис. 5. Абсорбционные мессбауэровские спектры примесных атомов ¹¹⁹Sn в Ge_{1.5}As_{0.4}Te_{8.1} (a, b) и Ge_{1.5}Te_{8.5} (c, d) аморфных (a, c) и поликристаллических (b, d) пленках. Показано положение спектральных линий, отвечающих центрам Sn-IV, Sn⁰ и Sn²⁺.

следует сделать вывод о близости локальной структуры атомов сурьмы во всех исследованных материалах.

Спектры ¹²⁵Те аморфных пленок Ge₂Sb₂Te₅ и Ge_{1.5}Te_{8.5} представляют собой квадрупольные дублеты (рис. 7) (квадрупольное расщепление QS = 4.42(8) и 8.41(8) mm/s соответственно), изомерные сдвиги которых ($IS \sim 0.35(6)$ mm/s) типичны для мессбауэровских спектров соединений двухвалентного теллура. Кристаллизация аморфной пленки Ge_{1.5}Te_{8.5} приводит к образованию двухфазной смеси элементарного теллура и теллурида германия, что отражается на структуре спектра, который представляет собой суперпозицию двух компонент, которые относится к указанным выше фазам (см. рис. 7). Спектр кристаллической пленки Ge₂Sb₂Te₅ может быть описан единственным плохо разрешенным квадрупольным дублетом (см. рис. 7) с параметрами IS = 0.30(6) mm/s,

Рис. 6. Мессбауэровские спектры ¹²¹Sb аморфной (*a*) и поликристаллической (*b*) пленок и соединения $Sb_{7}Te_{3}(c)$.

QS = 4.30(8) mm/s и G = 6.52(8) mm/s, отвечающими двухвалентному теллуру. В отличие от Ge_{1.5}Te_{8.5}, кристаллизация аморфной пленки Ge₂Sb₂Te₅ не приводит к ее разделению на несколько фаз. При этом ближайшее окружение атомов теллура в аморфной и кристаллических пленках остается неизменным.

Данные эмиссионной мессбауэровской спектроскопии. В процессе диффузионного легирования аморфных пленок $Ge_2Sb_2Te_5$ радиоактивными атомами ¹¹⁹Sb и ^{119m}Te при температуре 310°C происходит кристаллизация пленок с образованиеми *hcp*-фазы [5, 7–10]. Типичные спектры примесных атомов ^{119m}Sn, образовавшихся после радио-активного распада атомов ¹¹⁹Sb в узлах сурьмы и атомов ^{119m}Te в узлах теллура кристаллической пленки, приведены на рис. 8.

В случае материнских атомов ¹¹⁹Sb спектр представляет собой одиночную уширенную линию (G = 1.32(2) mm/s), изомерный сдвиг которой (IS = 3.47(2) mm/s) отвечает двухвалентному олову Sn²⁺. Аналогичные параметры имеет спектр примесных атомов ^{119m}Sn, образующихся после радиоактивного распада атомов ¹¹⁹Sb в узлах сурьмы кристаллической решетки Sb₂Te₃ (см. рис. 9). Отсюда можно сделать вывод, что в обоих случаях в локальном окружении атомов ^{119m}Sn²⁺ находятся атомы теллура. Это согласуется с *hcp*-структурой Ge₂Sb₂Te₅ [7].

Рис. 7. Мессбауэровские спектры ¹²⁵Те пленок $\text{Ge}_2\text{Sb}_2\text{Te}_5(a, b)$ и $\text{Ge}_{1.5}\text{Te}_{8.5}(c, d)$ аморфных (a, c) и поликристаллических (b, d). Показано разложение спектра (d) на одиночную линию (отвечающую фазе GeTe) и квадрупольный дублет (отвечающий фазе теллура).

Рис. 8. Эмиссионные мессбауэровские спектры примесных атомов 119m Sn, образовавшихся после радиоактивного распада атомов 119 Sb в узлах сурьмы и атомов 119m Te в узлах теллура поликристаллической (*hcp*-фаза) пленки Ge₂Sb₂Te₅. Показано положение спектральных линий, отвечающих центрам Sn²⁺ и Sn⁰.

Рис. 9. Эмиссионные мессбауэровские спектры примесных атомов ^{119m}Sn, образовавшихся после радиоактивного распада атомов ¹¹⁹Sb в узлах сурьмы и атомов ^{119m}Te в узлах теллура соединений Sb₂Te₃ и GeTe. Показано положение спектральных линий, отвечающих центрам Sn²⁺ и Sn⁰.

В случае материнских атомов ^{119m}Te в Ge₂Sb₂Te₅ спектр представляет собой наложение двух уширенных линий (G = 1.41 - 1.46 mm/s) (см. рис. 8). Более интенсивная линия с изомерным сдвигом (IS = 2.42(2) mm/s), лежащим в области изомерных сдвигов спектров интерметаллических соединения олова, отвечает центрам ^{119m}Sn⁰, образовавшихся после распада материнских атомов ^{119m}Te в узлах теллура. В слоистой решетке hcp Ge₂Sb₂Te₅ есть три типа слоев теллура с окружением Sb–Te–Sb, Sb–Te–Ge и Ge– Те-Те и, соответственно, три типа узлов теллура [7]. Это приводит к неоднородному изомерному сдвигу на дочернем ядре ^{119m}Sn и уширению спектра. Центры ^{119m}Sn⁰ в подрешетке Те можно рассматривать как антиструктурный дефект, т.к. электронный аналог атома одной подрешетки оказывается в узле другой подрешетки. Менее интенсивная линия (IS = 3.51(2) mm/s) отвечает центрам ^{119m}Sn²⁺, образовавшихся в цепочке распадов ^{119m}Te-¹¹⁹Sb-^{119m}Sn и сместившихся из узлов Те в узлы Sb или Ge за счет энергии отдачи, сопровождающей первый из этих распадов. Рассмотренные выше данные абсорбционной спектроскопии на ¹¹⁹Sn и эмиссионной спектроскопии на ¹¹⁹Sb показывают, что спектры олова в обеих подрешетках *hcp* Ge₂Sb₂Te₅ близки друг к другу. Поэтому невозможно установить, в какую из подрешеток, либо в обе, смещается дочерний атом ¹¹⁹Sb. Если атом 119m Sn оказывается в подрешетке Sb, то его также можно рассматривать как антиструктурный дефект, т. к. электронный аналог атома

одной подрешетки оказывается в узле другой подрешетки. Вытесненный атомом отдачи из "своей" подрешетки атом Sb или Ge создает искажение окружения атома ^{119m}Sn и дополнительное уширение спектра.

Аналогичную структуру имеют спектры примесных атомов ^{119m}Sn, образующихся после радиоактивного распада материнских атомов ^{119m}Te в узлах теллура кристаллических решеток Sb₂Te₃ и GeTe (см. рис. 9). При этом во всех случаях в локальном окружении атомов ^{119m}Sn²⁺ находятся только атомы теллура.

ЗАКЛЮЧЕНИЕ

Таким образом, атомы олова и замещаемые ими атомы германия в структуре аморфных и поликристаллических $Ge_2Sb_2Te_5$ и $Ge_{1.5}Te_{8.5}$ имеют различную симметрию локального окружения (тетраэдрическую в аморфной фазе и октаэдрическую в кристаллической фазе). Этот вывод находится в согласии с результатами исследований кристаллизации аморфных пленок $Ge_2Sb_2Te_5$ методом XANES [1]. Методом эмиссионной мессбауэровской спектроскопии исследованы примесные центры ^{119m}Sn, образующихся после радиоактивного распада материнских атомов ^{119m}Te идентифицированы атомы олова, которые помещены в сосседние подрешетки и могут служить моделью антиструктурных дефектов в $Ge_2Sb_2Te_5$.

Данные мессбауэровской спектроскопии подтвердили близость локальной структуры атомов германия в *fcc*- и *hcp*-фазах соединения $Ge_2Sb_2Te_5$, так что установленная в [2] разница в структурном беспорядке между кубической и гексагональной фазами не связана с подрешетками германия.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kolobov A.V., Fons P., Frenkel A.I., Ankudinov A.I., Tominaga J., Uruga T. Understanding the phasechange mechanism of rewritable optical media // Nature Mater. 2004. V. 3. P. 703.
- 2. Hu C., Yang Z., Bi C., Peng H., Ma L., Zhang C., Gu Z., Zhu J. All-crystalline phase transition in nonmetal doped germanium-antimony-tellurium films for high-temperature non-volatile photonic applications // Acta Materialia. 2020. V. 188. P. 121.
- 3. Bobokhuzhaev K., Marchenko A., Seregin P. Structural and antistructural defects in chalcogenide semiconductors. Mössbauer spectroscopy. Academic Pubblishing, 2020. 282 p.
- Серегина Л.Н., Насрединов Ф.С., Мелех Б.Т., Маслова З.В., Тураев Э.Ю., Серегин П.П. Исследование локальной структуры стекол в системах кремний-теллур, германий-теллур и германий-теллур-мышьяк с помощью мессбауэровской спектроскопии на примесных атомах олова // Физика и химия стекла. 1977. Т. 3. С. 328..
- 5. *Micoulaut M., Gunasekera K., Ravindren S., and Boolchand P.* Quantitative measure of tetrahedral*sp*³-geometries in amorphous phasechange alloys // Phys. Rev. B. 2014. V. 90. P. 094207.
- 6. Бордовский Г.А., Марченко А.В., Насрединов Ф.С., Карулина Е.А., Серегин П.П., Шахович К.Б. Антиструктурные дефекты в стеклообразных сплавах Ge–Te, As–Te и Ge–As–Te // Физика и химия стекла. 2019. Т. 45. С. 326
- 7. Петров И.И., Имамов Р.М., Пинскер З.Г. Электронографическое определение структур Ge₂Sb₂Te₅ и GeSb₄Te₇ // Кристаллография. 1968. Т. 13. С. 417.
- 8. Friedrich I., Weidenhof V., Njoroge W. Structural transformations of Ge₂Sb₂Te₅ films studied by electrical resistance measurements // J. Appl. Phys. 2000. V. 87. P. 4130.
- 9. *Kato T., Tanaka K.* Electronic Properties of Amorphous and Crystalline Ge₂Sb₂Te₅ Films // Jpn. J. Appl. Phys. 2005. V. 44. P. 7340.
- Shelby R.M. Crystallization dynamics of nitrogen-doped Ge₂Sb₂Te₅ // J. Appl. Phys. 2009. V. 105. P. 104902.
- Siegrist T., Jost P., Volker H. Disorder-induced localization in crystalline phase-change material // Nature materials. 2011. V. 10. P. 202.
- Sousa V. Chalcogenide materials and their application to Non-Volatile Memories // Microelectronic Engineering. 2011. V. 88. P. 807.