СОСТАВЫ, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА И СОВМЕСТИМОСТЬ СВИНЦОВОБОРОСИЛИКАТНЫХ СТЕКОЛ С ОКСИДНЫМИ СОЕДИНЕНИЯМИ РУТЕНИЯ(IV)

© 2021 г. Н. С. Лозинский^{1, *}, А. Н. Лопанов², Я. А. Мороз¹

¹Институт физико-органической химии и углехимии им. Л.М. Литвиненко, ул. Р. Люксембург, 70, Донецк, 83114 Украина

²Белгородский государственный технологический университет им. В.Г. Шухова, ул. Костюкова, 46, Белгород, 308012 Россия

*e-mail: lozinsky58@mail.ru

Поступила в редакцию 15.07.2020 г. После доработки 02.12.2020 г. Принята к публикации 04.12.2020 г.

Систематизированы сведения по проблеме совместимости свинцовоборосиликатных стекол различного состава и оксидных соединений рутения(IV). Дано обоснование фактам протекающих между ними химических процессов с позиций теории кислотно-основного взаимодействия. Информативными показателями, определяющими направление такого взаимодействия, являются кислотность, ионный потенциал или орбитальная электроотрицательность компонентов, входящих в состав композиционных материалов. Установленные закономерности будут полезны для выбора состава стекол, не содержащих свинец и кадмий, при разработке новых рутениевых резисторов и рутенийсодержащих материалов.

Ключевые слова: свинцовоборосиликатные стекла, соединения рутения(IV), химическое взаимодействие, кислотно-основные свойства

DOI: 10.31857/S0132665121020086

введение

Согласно требованиям технического регламента ЕАЭС 037/2016 "Об ограничении применения опасных веществ в изделиях электротехники и радиоэлектроники", вступившего в силу с 01.03.2018, вводится запрет на использование соединений свинца и кадмия для изготовления изделий электротехники и радиоэлектроники и в том числе толстопленочных резисторов (ТПР).

Однако, ограничивая применение таких материалов, было бы неразумным и иррациональным отказываться от накопленных при их разработке опыта и знаний, в том числе о свойствах постоянных связующих (ПС) ТПР – свинцовоборосиликатных стекол, их совместимости (химической инертности) с соединениями рутения(IV). Целесообразно систематизировать и проанализировать эти сведения для эффективного их применения при разработке новых толстопленочных материалов [1].

Цель данной работы — систематизация сведений по вопросам совместимости свинцовоборосиликатных стекол и оксидных соединений рутения(IV) различного состава и обоснование протекающих между ними процессов с позиций теории кислотно-основного взаимодействия.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Легирование свинцовоборосиликатных стекол оксидными соединениями рутения(IV). Свинцовоборосиликатные стекла имеют плотность, препятствующую седиментации рутениевых токопроводящих фаз (ТПФ); температуру размягчения на 200–500°С ниже пиковой температуры вжигания паст [1] и ТКЛР, согласующийся с ТКЛР диэлектрических подложек для ТПР, применяемых в электронной отрасли.

В работах [1–6] приведены сведения о плотности, температуре начала деформации и термическом коэффициенте линейного расширения, а также температуре кристаллизации (если кристаллизуется), поверхностном натяжении и вязкости стекол, выбранных в качестве постоянных связующих (ПС). Влияние этих свойств стекол на параметры ТПР хорошо изучено [7, 8].

Свинцовоборосиликатные стекла не всегда однородны. Так, в системе PbO–SiO₂ при термообработке образуются кристаллиты pPbO · qSiO₂ с различными значениями р и q, которые варьируются в диапазоне от 1 до 4, а также богатые свинцом стеклянные кластеры из-за несмешиваемости стекла [2, 3]. Помимо этого, в матрице таких стекол доказано как образование кристаллов кристобалита, тридимита, так и консервация реликтов кварца. При этом размеры кристаллов варьируются в пределах от 10 до 100 Å [2]. В системе PbO–B₂O₃–SiO₂ с высоким содержанием свинца при температурах около 600–700°С возможна кристаллизация силикатов свинца PbSiO₃ и Pb₂SiO₄, а также анортита свинца (Ca,PbAl₂Si₂O₈ или PbAl₂Si₂O₈) при добавлении CaO и/или Al₂O₃ в рецептуру стекла, например, состава PbO : SiO₂ : B₂O₃ : Al₂O₃ = 50 : 35 : 7 : 4, или за счет диффузии Al₂O₃ из материала подложки [4].

Свинцовоборосиликатные стекла легируются оксидными соединениями рутения (IV) в результате растворения (диффузии) рутения в них [3, 5]. Данные этих работ свидетельствуют о том, что растворимость рутения в большинстве стекол, как правило, чрезвычайно низкая – 10 ppm (0.001 мас. %) и менее (ppm – 1 часть на 1 миллион частей по массе). По другим сведениям она выше – до 25 ppm [6] или даже 5.9 и 6.2 мас. % при максимальных температурах обработки 800 и 900°С соответственню [7]. Утверждается, что замена SiO₂ в составе стекла большим количеством добавок Fe₂O₃, Al₂O₃, TiO₂ увеличивает растворимость рутения, благодаря уменьшению их вязкости при таком изменении состава [3]. Противоречат этому утверждению данные работ [2, 8], в которых показано, что растворимость RuO₂ увеличивается с ростом содержания PbO в составе стекла и его основности, а замещение B₂O₃ на SiO₂ или PbO на BaO, MgO, Al₂O₃, TiO₂, GeO₂, TeO₂, наоборот, уменьшает его растворимость. При этом растворимость RuO₂ в расплаве стекла, по утверждению авторов работы [9], экспоненциально возрастает с ростом температуры термообработки, а по данным работы [10] такое воздействие ведет к снижению содержания Ru, растворенного в стекле.

Граница раздела частица RuO₂ (или Bi₂Ru₂O₇)-стекло представляет собой область диффузии рутения, в которой предполагается сосуществование ионов рутения в различных степенях окисления. Соотношение ионов с различной степенью окисления оценивается, как мас. %: 18 (Ru⁰), 46 (Ru³⁺), 36 (Ru⁴⁺) и 6 (Ru⁶⁺) со значением ошибки расчета 5.1% [11]. Авторы работы [12] отрицают существенное изменение состава стекла (марка T-33) вследствие растворения RuO₂, тогда как авторы работы [13] предполагают возможным частичное растворение RuO₂ в свинцово-боратном расплаве с его последующим сохранением в составе стеклофазы. Одним из структурных отличий стеклофазы последних стекол, свободных от влияния RuO₂ или рутенитов, является более высокая доля атомов бора, имеющих тетраэдрическую координацию, от их общего количества [13].

Растворимость в свинцовоборосиликатных стеклах, кроме состава и температуры, зависит от размера частиц ТПФ. В работе [9] показано, что для частиц RuO_2 с радиусом r = 500 нм в стекле P0 при 700°C она составляет 7.03 ppm, а для частиц с r = 4.3 нм – 8.75 ppm. Параллельно с процессом растворения наблюдается укрупнение нерастворившихся частиц RuO_2 , с изменением их исходной морфологии, в результате осаждения растворенного рутения из стекла, но не за счет его диффузии в месте контакта частиц ТПФ, а также образование наноразмерных кластеров RuO_2 в объеме стеклянной матрицы [4, 8]. При протекании этих процессов, растворимость RuO_2 в стекле, то есть концентрация рутения в стекле, является критическим фактором [8, 14].

В общем случае процесс растворения/осаждения RuO2 описывают уравнением (1):

$$\operatorname{RuO}_{2}[p] \leftrightarrow \operatorname{RuO}_{2}[c], \tag{1}$$

где: [p] – фаза со структурой рутила; [c] – стелофаза.

Помимо растворимости, RuO₂ способствует кристаллизации силикатов свинца из расплавов стекол системы PbO–SiO₂ [12].

Интерпретация поведения рутениевых пирохлоров ($Bi_2Ru_2O_7$, $Pb_2Ru_2O_{6.5}$, (Pb,Bi)₂ $Ru_2O_{6.5}$, (Bi,Gd)₂ Ru_2O_7 , $Bi_{1.5}Cu_{0.5}Ru_2O_x$, x = 0-1) по отношению к ПС несколько отличается от процесса растворения RuO_2 при вжигании резистивных паст.

Существует мнение, что перечисленные пирохлоры, имея составляющие (PbO, Bi_2O_3), которые образуют стекла с классическими стеклообразователями (SiO₂ и B_2O_3) и легко растворяются во многих стеклах, сами растворяются в ПС согласно схемам, представленным в виде уравнений (2), (3) [1]:

$$M_2 Ru_2 O_{7-\delta} + Cтекло \leftrightarrow M$$
-стекло + RuO_2 , (2)

где M = Pb, Bi, Gd, a $\delta = 0-1$ и

$$(\mathrm{Bi},\mathrm{Pb})_{2}\mathrm{Ru}_{2}\mathrm{O}_{6-7}[\Pi] \leftrightarrow 2(\mathrm{BiO}_{1.5},\mathrm{PbO})[\mathrm{c}] + 2\mathrm{RuO}_{2}[\mathrm{c}], \qquad (3)$$

где: [п] – фаза со структурой пирохлора.

Предполагается, что растворенные ионы рутения принимают форму кластеров размером менее 1 нм в стеклах с низким содержанием свинца и имеют тенденцию конденсироваться в кристаллиты $Pb_2Ru_2O_6$ в стеклах с высоким содержанием свинца. Типичное расстояние между кластерами Ru в стеклах с низким содержанием свинца составляет 2–4 нм [3].

Сами же токопроводящие фазы, частицы рутената свинца или висмута, увеличиваются в размерах с увеличением времени и температуры вжигания [15].

Химическое взаимодействие свинцовоборосиликатных стекол и их компонентов с оксидными соединениями рутения(IV). Как известно, в ПС рутениевых ТПР могут присутствовать следующие оксиды $\Im_n O_m$: K₂O, Na₂O, CaO, SrO, BaO, MgO, ZnO, CdO, PbO, CuO, Al₂O₃, SiO₂, B₂O₃, ZrO₂, Bi₂O₃, Fe₂O₃ [12, 16]. Сведения о тройных системах $\Im_n O_m$ -RuO₂-стеклообразующий оксид (SiO₂ или B₂O₃) содержатся в работах [4, 12, 13, 17–22], среди которых наибольший интерес представляют системы PbO-RuO₂-B₂O₃ и PbO-RuO₂-SiO₂ (табл. 1).

В системе PbO- B_2O_3 -RuO₂ при вжигании протекает взаимодействие с образованием при низких температурах (650°С и менее) соединения Pb₂Ru₂O₆, из которого при более высоких температурах вытесняется диоксид рутения. В образцах, обожженных при 1200°С, RuO₂ – единственная или доминирующая кристаллическая фаза [13].

Фазовый состав резисторов на основе ПС состава $2PbO-SiO_2$ и $1.5PbO-SiO_2$ представлен кристаллической фазой со структурой пирохлора – $Pb_2Ru_2O_6$ и оксидом свинца желтой (ж) модификации (табл. 2) [16, 23]. Характерно, что последний обнаружен в образцах всех серий. В составе пленок, ПС которых характеризуется отношением

№	Фазовый	Условия термоо	Лите-		
п/п	до термообработки	после термообработки	температура, °С	время, ч	ратура
		Система PbO-SiO ₂ -RuO ₂			
1	$RuO_2 + 2PbO + SiO_2$	$Pb_2Ru_2O_6 + PbSiO_3$	700	5	[18, 19]
	$3RuO_2 + 5PbO + 2SiO_2$	$Pb_2Ru_2O_6 + PbSiO_3$			
	7RuO ₂ + 10PbO + 3SiO ₂	$Pb_2Ru_2O_6 + PbSiO_3$			
	$RuO_2 + PbO + SiO_2$	$RuO_2 + PbSiO_3$			
	$RuO_2 + PbO + 2SiO_2$	$RuO_2 + PbSiO_3$			
	$2RuO_2 + 2PbO + SiO_2$	$RuO_2 + PbSiO_3 + Pb_2Ru_2O_6$			
	$RuO_2 + PbO + 2SiO_2$	$RuO_2 + Pb_2Ru_2O_6 + SiO_2$			
	Система С	aO–SiO ₂ –RuO ₂ (термодинамич	еский расчет)		
2	$CaRuO_3 + SiO_2$	$RuO_2 + CaSiO_3$	600-1300	—	[17]
	$CaRuO_3 + 2CaSiO_3$	$RuO_2 + Ca_3Ru_2O_7$			
	$RuO_2 + 2Ca_2SiO_4$	$CaRuO_3 + Ca_3Si_2O_7$	675< и >955		
	$Ca_3Si_2O_7 + Ca_3Ru_2O_7$	$2CaRuO_3 + 2Ca_2SiO_4$	600-1300		
		Система CaO $-SiO_2$ -RuO $_2$			
3	$CaRuO_3 + CaSiO_3$	$CaRuO_3 + CaSiO_3$	950	6	[20]
	$CaRuO_3 + SiO_2$	$CaRuO_3 + SiO_2 + RuO_2$			
		Система Bi_2O_3 - SiO_2 - RuO_2			
4	$6Bi_2O_3 + 2RuO_2 + SiO_2$	$Bi_2Ru_2O_7 + Bi_{12}SiO_{20}^*$	750	—	[21]
	$7Bi_2O_3 + 3RuO_2 + 3SiO_2$	$\mathrm{Bi}_{2}\mathrm{Ru}_{2}\mathrm{O}_{7}+\mathrm{Bi}_{12}\mathrm{SiO}_{20}+\mathrm{Bi}_{4}\mathrm{Si}_{3}\mathrm{O}_{12}$			
	$3Bi_2O_3 + 2RuO_2 + 3SiO_2$	$Bi_2Ru_2O_7 + Bi_4Si_3O_{12}$			
	$Bi_2O_3 + 2 RuO_2 + SiO_2$	$\mathrm{Bi}_{2}\mathrm{Ru}_{2}\mathrm{O}_{7}+\mathrm{Ru}\mathrm{O}_{2}+\mathrm{Bi}_{4}\mathrm{Si}_{3}\mathrm{O}_{12}$			
	$2\mathrm{Bi}_{2}\mathrm{O}_{3} + 4\mathrm{RuO}_{2} + 3\mathrm{SiO}_{2}$	$RuO_2 + Bi_4Si_3O_{12}$			
	$5Bi_2O_3 + 22RuO_2 + 8SiO_2$	$RuO_2 + Bi_4Si_3O_{12}$			
	$Bi_2O_3 + 2RuO_2 + 4SiO_2$	$\mathrm{RuO}_2 + \mathrm{Bi}_4 \mathrm{Si}_3 \mathrm{O}_{12} + \mathrm{SiO}_2$			
	$2\mathrm{Bi}_{2}\mathrm{O}_{3} + 4\mathrm{RuO}_{2} + 4\mathrm{SiO}_{2}$	$\mathrm{RuO}_2 + \mathrm{Bi}_4 \mathrm{Si}_3 \mathrm{O}_{12} + \mathrm{SiO}_2$			
		ZnO–SiO ₂ –RuO ₂			
5	$2 \operatorname{RuO}_2 + \operatorname{SiO}_2 + 2 \operatorname{ZnO}$	$RuO_2 + Zn_2SiO_4$	1000	5	[22]
	$7 \operatorname{RuO}_2 + \operatorname{SiO}_2 + 2 \operatorname{ZnO}$	$RuO_2 + Zn_2SiO_4$			
	$5 \text{ RuO}_2 + 3 \text{ SiO}_2 + 12 \text{ ZnO}$	$RuO_2 + Zn_2SiO_4 + ZnO$			
	$RuO_2 + 2 SiO_2 + ZnO$	$RuO_2 + Zn_2SiO_4 + SiO_2$			

Таблица 1. Сведения о фазовом составе образцов, содержащих оксидные соединения рутения(IV), до и после термообработки

* – (ү фаза).

РbO : SiO₂ от 1 : 1 и до 1 : 2.5, присутствует, кроме перечисленных выше, фаза со структурой рутила – RuO₂. Значения RIR (отношение интенсивностей рефлексов отражения (222) Pb₂Ru₂O₆ и (110) RuO₂, т.е. $I_{Pb_2Ru_2O_6}^{(222)}/I_{RuO_2}^{(110)}$) показывают, что в ряду образцов с возрастанием количества SiO₂ в ПС содержание RuO₂ увеличивается, а Pb₂Ru₂O₆ – уменьшается [12, 23, 24, 26] (табл. 2, 3).

№ п/п,	Состав ис	ходного стек	ла, мол. %	Фазовый состав	Условия термооб	Литера-		
марка стекла	PbO	SiO ₂	B ₂ O ₃	термообработки	температура, °С	время, ч	тура	
			Система	RuO ₂ -PbO-SiO ₂				
1	11.7	88.3	—	RuO ₂	850	0.25	[16]	
	51.8	48.2	_	RuO ₂				
	70.8	29.2	_	RIR = 4.0				
	46.0	54.0	_	RIR = 1.1				
	Ci	истема Pb ₂ R	$u_2O_{6.5}-xPt$	$O - (1 - x)SiO_2 - y$	$PbO-(1-y)SiO_2$		1	
2a	66.7	33.3	—	Pb ₂ Ru ₂ O ₆ , PbO	850	0.25	[23]	
	60.0	40.0	_	Pb ₂ Ru ₂ O ₆ , PbO				
	50.0	50.0	_	RIR = 24.1, PbO				
	40.0	60.0	-	RIR = 46.9, PbO				
	33.3	66.7	_	RIR = 17.4, PbO				
	28.6	71.4	_	RIR = 16.6, PbO				
2b	60.0	40.0	-	Pb ₂ Ru ₂ O ₆ , PbO				
	50.0	50.0	_	RIR = 18.1, PbO				
	40.0	60.0	-	RIR = 19.1, PbO				
2c	40.0	60.0	_	RuO ₂ , PbO				
	33.3	66.7	_	RuO ₂ , PbO				
	28.6	71.4	_	RIR = 11.7, PbO				
		Сис	тема Pb ₂ Ri	u ₂ O _{6.5} -PbO-SiO ₂ -	$-B_2O_3$			
CM-1	69.0	28.5	2.5	$Pb_2Ru_2O_6$	850	0.25	[16]	
CM-2	65.7	27.1	7.2	$Pb_2Ru_2O_6$				
CM-3	62.5	25.8	11.7	$Pb_2Ru_2O_6$				
CM-4	55.3	22.8	21.9	RIR = 5.2				
CM-5	54.0	22.3	23.7	RIR = 3.3				
CM-6	52.7	21.7	25.6	RIR = 1.7				
CM-7	51.4	21.2	27.4	RIR = 1.6				
CM-8	49.0	20.2	30.8	RIR = 0.5				
CM-9	46.7	19.3	34.0	RuO ₂				
CM-10	43.4	17.9	38.7	RuO ₂				
CM-11	34.0	14.0	52.0	RuO ₂				

Таблица 2. Фазовый состав образцов, содержащих оксидные соединения рутения(IV) и стекла различного состава

а – смесь стекол 2PbO · SiO₂ и PbO · 2.5SiO₂; b – смесь стекол 2PbO · SiO₂ и PbO · 1.5SiO₂; c – смесь стекол PbO · SiO₂ и PbO · 2.5SiO₂.

Сведения о фазовом составе резисторов на основе оксидных соединений рутения(IV) и свинцовоборосиликатных стекол систематизированы в табл. 4 [2–5, 8, 12–14, 16, 23, 27–37].

Из данных табл. 4 следует, что рутенит свинца не стабилен в присутствии богатого диоксидом кремния стекла (мольное отношение SiO₂/PbO составляет от 2 до 2.5 или при соотношении оксидов щелочного и кислотного характера около 0.5) [18, 19]; разложение рутенита свинца до RuO_2 наблюдается при температурах вжигания от 800 до

№ п/п	Состав исходного образца, мол. %			разца,	Фазовый состав образцов после	Условия термооб	Литера- тура	
,	PbO	RuO ₂	SiO ₂	B ₂ O ₃	термообработки	температура, °С	время, ч	51
				2 3 Cw	$\frac{1}{2}$.0.		
1*a	4 4 5	4 4 5	_	91 10	$ R_1 O_2 $	850	0.17	[24]
ı u	8.69	8 69	_	82.62	Ruo ₂	050	0.17	[2]]
	14.05	14.05	_	71 90				
1b	23.70	6.17	_	70.12	$Pb_2Ru_2O_7 \dots RuO_2(c\pi)$			
10	26.99	11.63		61.38	$1 \circ 21 \circ 2 \circ 7 = x$, $1 \circ 2 \circ 7 \circ 2$			
	30.80	18.02		51.18				
1c	31.15	12.30	_	56.54				
	28.29	6.58	_	65.13				
	34.44	18.87	_	46.69				
1d	50.00	8.52	_	41.48				
	50.00	15.34		34.66				
	50.00	22.55		27.45				
1e	31.18	12.96	_	51.86	RuO ₂			
	32.80	6.98	_	60.22	2			
	37.88	19.69	_	42.44				
lf	42.84	14.19	_	42.97				
	41.56	7.77	_	50.67				
	44.24	21.19	_	34.56				
1g	73.50	10.63	_	15.87	Рb ₂ Ru ₂ O _{7 – r} (сл.), RuO ₂			
1g	68.97	18.39	_	12.64	Рb ₂ Ru ₂ O _{7 – r} (сл.), RuO ₂			
_	66.25	23.85	_	9.90				
1h	7.97	33.00	_	59.03	RuO ₂			
	15.80	30.19	_	54.01	-			
	21.06	28.31	_	50.63				
					Система PbO-SiO ₂ -RuO ₂		1	1
2	43.0	14.0	43.0	-	$Pb_2Ru_2O_6 + RuO_2 + PbSiO_3$	800**	24	[12]
	33.3	33.3	33.4	_	$Pb_2Ru_2O_6 + RuO_2 + PbSiO_3$			
	20.0	60.0	20.0	_	$Pb_2Ru_2O_6 + RuO_2 + PbSiO_3$			
	60.0	10.0	30.0	_	$Pb_2Ru_2O_6 + T$ -PbSiO ₄ (сл.)			
	50.0	25.0	25.0	_	$Pb_2Ru_2O_6 + PbSiO_3$			
	40.0	40.0	20.0	_	$Pb_2Ru_2O_6 + RuO_2$			
	33.3	50.0	16.7	_	$Pb_2Ru_2O_6 + RuO_2$			
	75.0	6.3	18.7	_	$Pb_2Ru_2O_6$ (сл.) + <i>T</i> -PbSiO ₄			
	66.7	16.6	16.7	_	$Pb_2Ru_2O_6 + T-PbSiO_4$			
	50.0	13.3	36.7	_	Pb ₂ Ru ₂ O ₆			
	44.0	44.0	12.0	_	$Pb_2Ru_2O_6 + RuO_2$ (сл.)			
	46.0	46.0	8.0	—	$Pb_2Ru_2O_6 + RuO_2$ (сл.)			
	28.5	28.5	43.0	—	$Pb_2Ru_2O_6$ (сл.) + RuO_2			
				Систе	ема PbO-SiO ₂ -RuO ₂ -Al ₂ O ₃	–CaO	•	
3	35.08	4.59	53.95	а	RuO ₂	1000		[26]
					$Pb_2Ru_2O_6 + RuO_2$	900		
	37.99	9.80	46.68	b	$Pb_2Ru_2O_6 + RuO_2$			

Таблица 3. Исходный состав неорганической композиции резистивных паст, условия их термообработки и фракционный состав полученных толстопленочных резисторов

* Исходные материалы, использованные для изготовления образца: а – Pb₂Ru₂O₆ и H₃BO₃; b – Pb₂Ru₂O₆ и 10PbO · 90B₂O₃; c – Pb₂Ru₂O₆ и 25PbO · 75B₂O₃; d – Pb₂Ru₂O_{7 – x} и 30PbO · 70B₂O₃; e – Pb₂Ru₂O₆ и 40PbO · 60B₂O₃; f – Pb₂Ru₂O₆ и 50PbO · 50B₂O₃; g – Pb₂Ru₂O₆ и 80PbO · 20B₂O₃; h – RuO₂ и 25PbO · 75B₂O₃. ** При температуре выше 1000°С присутствует единственная кристаллическая фаза RuO₂. a – дополнительно содержит, мол. %: Al₂O₃ – 4.20; CaO – 2.18. b – дополнительно содержит, мол. %: Al₂O₃ – 3.20; CaO – 2.33.

1000°С [4, 5, 33]. При этом соблюдается общая тенденция: если содержание в стекле PbO снижается, а B_2O_3 растет, то увеличивается количество продукта взаимодействия — RuO₂. Исключение составляют стекла с очень большим содержанием SiO₂, когда содержание PbO не превышает 10 мол. % [4]. Предполагается, что в последнем случае на процессы трансформации ТПФ сильное влияние оказывает кинетика переходов, которая запаздывает из-за короткой изотермической выдержки при высокой вязкости ПС и низкой диффузионной способности ионов Ru⁴⁺ и Pb²⁺ [4].

Трансформация $Pb_2Ru_2O_6$ в RuO_2 протекает следующим образом: сначала $Pb_2Ru_2O_6$ разрушается, а потом RuO_2 кристаллизуется в различных местах зарождения в виде тонких пластинок в стекле согласно схеме (4) [34, 37]:

$$Pb_2Ru_2O_6 + [c] \rightarrow 2RuO_2 + 2PbO[c].$$
(4)

Когда мольное отношение SiO₂/PbO меньше единицы, протекает взаимодействие с образованием соответствующих пирохлорных фаз, согласно схемам (5), (6):

$$(\operatorname{Bi}_{2}\operatorname{O}_{3}, \operatorname{2PbO})[c] + 2\operatorname{RuO}_{2}[p] \leftrightarrow (\operatorname{Bi}, \operatorname{Pb})_{2}\operatorname{Ru}_{2}\operatorname{O}_{6}[\pi];$$
(5)

$$\operatorname{RuO}_2 + 2\operatorname{PbO}[c] \to \operatorname{Pb}_2\operatorname{Ru}_2\operatorname{O}_6[\pi].$$
(6)

Образование свинец-рутениевого пирохлора, по данным работы [4], происходит в форме соединения $Pb_2(Ru_{2-x}Pb_x)O_{6.5}$, в котором значения *x* изменяются в диапазоне от 0.31 до 0 с ростом температуры термообработки. При этом превращение RuO_2 в $Pb_2Ru_2O_6$ начинается с плавления стеклянной матрицы при нагревании, так как образованию пирохлорной структуры способствует рутений, не входящий в структуру RuO_2 (т.е. металлический Ru, растворенный в стекле) [3, 37].

Химическое взаимодействие в материалах состава $Pb_2Ru_2O_{7-x}-yPbO-(100 - y)B_2O_3$, где y = 10, 25 и 30, приводит к образованию достаточно мелких частиц RuO_2 [24].

Однако спорным остается вопрос о месте акта взаимодействия, непосредственно на поверхности частиц ТПФ или в объеме ПС [4, 14].

На результат взаимодействия оксидных соединений рутения(IV) со свинцовоборосиликатным стеклом влияет несколько факторов: морфология и размер порошков (поверхностная реакционная способность); состав и кислотность стекла; время выдержки и температура термообработки [5], что характерно для реакций, протекающих в твердом теле или в системе твердое тело—расплав и подчиняется известным закономерностям. Утверждается, что накоплению рутенита свинца способствует увеличение времени выдержки при максимальной температуре вжигания, а не значение этой температуры [5].

Фазы оксида висмута—рутения, содержащие ионы свинца, образуются посредством реакции обмена Ві на Рb, согласно схемам (7), (8) [4]:

$$Bi_2Ru_2O_7 + 2PbO \leftrightarrow Pb_2Ru_2O_6 + Bi_2O_3; \tag{7}$$

$$Bi_{2}Ru_{2}O_{7} + x(PbO)[c] \to x/2(Bi_{2}O_{3})[c] + Bi_{2-x}Pb_{x}Ru_{2}O_{7-x/2}.$$
(8)

После того, как свинцовоборосиликатные стекла замещают Ві в рутените висмута с образованием смешанного пирохлора и даже рутенита свинца, вновь образованный пирохлор $Pb_2Ru_2O_6$ при дальнейшем нагревании превращается в RuO_2 со структурой рутила. При этом максимальная температура этого окончательного превращения уменьшается с увеличением содержания оксида алюминия в стекле [10].

Пирохлор (Bi,Gd)₂Ru₂O₇ ведет себя аналогично Bi₂Ru₂O₇: начинает разрушаться при температурах между 800 и 825°C соответственно на Bi₂O₃ и Gd₂O₃, растворяющиеся в стекле и RuO₂. При этом, чем ниже концентрация PbO в стекле, тем ниже температура разложения пирохлорной фазы. Однако при достаточно высоких температурах

NG		Состав	стекла, н	мол. %	Фазовый состав		Т _{обж. пасты} ,	Литера-
JN⊵ -	PbO	SiO ₂	B_2O_3	Al ₂ O ₃	пасты	ТПР	°C	тура
1.1	34.7	63.5	_	1.8	Bi ₂ Ru ₂ O ₇	$(Bi,Pb)_2Ru_2O_7^*, RuO_2$	450-900	[28, 32]
1.2	38.8	45.9	13.5	1.8		$(Bi,Pb)_2Ru_2O_7^*$		
1.3	34.7	63.5	_	1.8	RuO ₂	RuO ₂		
1.4	38.8	45.9	13.5	1.8	2	2		
2	33.0	28.4	38.6	_	RuO ₂	RuO ₂	850	[31]
3	40.0	60.0	_	_	RuO ₂	RuO ₂	850	[12]
4	35.0	60.0	3.6	1.4	RuO ₂	RuO ₂	850	[14]
5			_	1.2	$Pb_2Ru_2O_{6.5}$	RIR = 104	700	[33]
					2 2 0.5	RIR = 295	800	
	36.7	62.1				RIR = 274	850	
						RIR = 116	900	
						RIR = 2	1000	
6.1			_	_	Pb2Ru2O6	Pb2Ru2O6	850	[16]
	70.8	29.2			RuO ₂	4.6		
6.2		10.0	_	_	$Pb_2Ru_2O_6$	Pb2Ru2O6		
	51.8	48.2			RuO ₂	RuO ₂		
6.3			_	_	$Pb_2Ru_2O_6$	RuO2		
	11.7	88.3			RuO ₂	RuO2		
7	28.8	71.2	_	_	$Pb_2Ru_2O_6$	RIR = 17	850	[23]
8	35.3	64.7	_	_	$Pb_2Ru_2O_6$	RIR = 10	850	[27]
	32.3	39.9	17.2	а	$Pb_{2}Ru_{2}O_{6}$	RIR = 1		
	30.6	58.7	8.00	2.70 MgO	$Pb_{2}Ru_{2}O_{6}$	RIR = 4		
	12.4	54.0	7.9	b	$Pb_2Ru_2O_6$	RIR = 4		
	34.4	30.7	17.7	с	$Pb_2Ru_2O_6$	RuO2		
	38.7	33.2	19.1	d	Pb ₂ Ru ₂ O ₆	RIR = 5		
9	32.3	59.1	_	8.6	RuO2	RuO	850	[29]
10	35.3	64.7	_	_	RuO ₂	RuO_2 . Ru	850	[2]
	32.4	63.1	_	4.5	RuO2	RuO2		
	36.3	54.4	BaO 3	.2: MgO 6.1	RuO ₂	RuO ₂		
11	29.3	40.5	30.2	_	RuCl ₂	Фаза со структурой	200-300	[37]
	_,					РьСО3 (церуссит)		[]
						$Pb_2^{2+}(Pb_x^{4+}Ru_{2-x}^{4+})O_{6.5}$	350-900	
						$Pb_2Ru_2O_6$	≈900	
						RuO ₂	1000	
12	65.1	33.5	1.4	_	RuO ₂	$Pb_2Ru_2O_6$	900	[3]
	9.9	70.9	19.2	_	$Pb_2Ru_2O_6$	RuO ₂		
13	33.6	23.7	42.7	_	$Pb_2Ru_2O_6$	RuO ₂	650-850	[5]
	33.0	43.5	23.5	_	RuO ₂	RuO ₂		
	46.0	20.0	34.0	_	RuO_2	RuO ₂		
	62.0	24.5	13.5	_	RuO_2	$Pb_2Ru_2O_6$		
14	30.0	55.0	14.0 ^e	1.0	$Pb_2Ru_2O_6$	$Pb_2Ru_2O_6$	850, 900	[30]
15	Стекло	о систе	мы PbO-	-CdO-BaO-	RuO ₂	RuO ₂	<480	[34]
	В	$_2O_3$ (co	став не п	юказан)	-	$Pb_2Ru_2O_6$	500-630	
16	19.7	61.6	18.8	—	RuO ₂	RuO ₂	850	[4]
					$Pb_2Ru_2O_6$	35.3% RuO ₂ **		
	32.4	50.5	17.1	_	RuO ₂	RuO ₂		
					Pb2Ru2O6	10.0% RuO2**		

Таблица 4. Сведения о составе ПС и оксидных соединений рутения(IV) паст, пиковых температурах их вжигания и фракционном составе полученных ТПР

No	Состав стекла, мол. %			мол. %	Фа	зовый состав	Т _{обж. пасты} ,	Литера-
JN⊻	PbO	SiO ₂	B_2O_3	Al ₂ O ₃	пасты	ТПР	°C	тура
	9.9	70.9	19.2	_	RuO ₂	RuO ₂		
					$Pb_2Ru_2O_6$	41.6% RuO2**		
	0.9	83.4	15.7	_	RuO ₂	RuO ₂		
					$Pb_2Ru_2O_6$	30.8% RuO ₂ **		
	36.7	44.6	18.7	—	RuO ₂	RuO ₂		
					$Pb_2Ru_2O_6$	3.7% RuO ₂ **		
	45.8	51.3	2.9	_	RuO ₂	RuO ₂		
	65.1	33.5	1.4	—	RuO ₂	$Pb_2Ru_2O_{6.5}$	850	[4]
	46.8	36.1	17.1	_	RuO ₂	RuO ₂		
					$Pb_2Ru_2O_6$	5.3% RuO ₂ **		
	52.0	26.4	21.5	_	RuO ₂	RuO ₂		
					$Pb_2Ru_2O_6$	3.5% RuO ₂ **		
	55.8	23.2	21.1	_	RuO ₂	RuO ₂		
					$Pb_2Ru_2O_6$	3.7% RuO ₂ **		
	5.2	76.6	18.2	_	RuO ₂	RuO ₂		
					$Pb_2Ru_2O_6$	18.9% RuO ₂ **		
	62.2	20.6	17.1	_	RuO ₂	RuO ₂		
					$Pb_2Ru_2O_6$	$Pb_2Ru_2O_6$		
	70.0	10.5	19.5	—	RuO ₂	$Pb_2Ru_2O_6$		
					$Pb_2Ru_2O_6$	$Pb_2Ru_2O_6$		
17	32.7	48.6	13.8	4.9	RuO ₂	RuO ₂	800	[8]
	26.3	53.2	15.2	5.3				
	18.5	58.8	16.8	5.9				
	20.0	28.0	50.0	2.0				
	39.2 ¹	50.2	7.9	2.7				
	20.0 ^g	28.0	50.0	2.0		Pb ₂ Ru ₂ O ₆	500-630	
18	29.3	40.5	30.2	—	RuCl ₃	50% RuO ₂ ¹¹	850	[36]
19	46.0	54.0	—	_	RuO ₂	RIR = 1.14		[16]
20	Стекло		мы SiO ₂ -	-CaO-BaO-	CaRuO ₃	$CaRuO_3$, RuO_2	750, 850	[35]
21	510-K	20 - 520	J_3 (coera	в не показан)	CaPuO		600	[12]
21	/0.8	29.2	_	—	CaruO ₃	ϕ_2 κ_2 ϕ_6 , κ_0 ϕ_2 , ϕ_2 , ϕ_3 ϕ_2	600	[15]
						Рb ₂ Ru ₂ O ₆ , RuO ₂ , при- месь (пр.) фазы ф	800	
	28.8	71.2	—	—		Силикат свинца, RuO ₂ , пр. CaRuO ₃	600	
						RuO ₂	800	
	32.3	39.9	17.2	5.9 ^a		RuO ₂ , пр. CaRuO ₃	600	
						RuO ₂	800	

Таблица 4. Окончание

* Количество катионов свинца, поступающих в решетку $Bi_2Ru_2O_7$, увеличивается с температурой вжигания. ** Содержание RuO_2 в ТПФ ТПР после термообработки композиции состава, мас. %: 20 $Pb_2Ru_2O_6$ и 80 соответствующего ПС.

а – стекло дополнительно содержит, мол.% : 5.9 Al₂O₃; 4.7 CdO. b – стекло дополнительно содержит, мол.% : 0.6 Al₂O₃, MgO 2.9; BaO 16.7; SrO 3.2; ZrO₂ 2.4. c – стекло дополнительно содержит, мол.% : 6.0 Al₂O₃; 1.6 CoO; 7.7 CuO; 1.4 MnO. d – стекло дополнительно содержит, мол.% : 6.52 Al₂O₃; 12.50 Nb₂O₅.

 $e - CaO вместо B_2O_3;$ f - CaO вместо PbO. g - BaO вместо PbO.

 \bar{h} – остальное количество рутения в ТПР в виде $Pb_2Ru_2O_6$.

и длительном времени термообработки (например, 950°С в течение нескольких часов) (Bi,Gd)₂Ru₂O₇ разрушается полностью и не зависимо от состава стекла [38].

Перовскиты общей формулы $MRuO_3$ (M = Ca, Sr, Ba) также реагируют со свинцово-силикатными стеклами по уравнению (9) [1]:

$$MRuO_3 + PbO \cdot 2SiO_2 \rightarrow RuO_2 + MO \cdot PbO \cdot 2SiO_2, \tag{9}$$

то есть они не стабильны в присутствии богатого диоксидом кремния стекла [20].

Кислотно-основное взаимодействие с участием свинцовоборосиликатных стекол. В научной литературе по данной теме авторы разделяются на тех, кто признает факт химического взаимодействия свинцовоборосиликатных с оксидными соединениями рутения(IV) и на тех, кто его отрицает. При этом исходят из общих термодинамических представлений о химическом потенциале, когда разность потенциалов любого компонента в расплаве и твердой фазе является движущей силой процесса, определяющего полноту перехода вещества из одной фазы в другую и существенно влияющей на скорости таких процессов, или ограничиваются указаниями в какой области составов стекла "бедной" или "богатой" по содержанию того или иного компонента это наблюдается [39]. Очевидно, что для реализации первого подхода требуются сложные термодинамические расчеты, для проведения которых отсутствуют необходимые данные, а второй — не является количественным [17].

В то же время, согласно теоретическим представлениям, в основе химического взаимодействия с участием расплавов силикатов лежит процесс, который описывается схемой (10) [39, 40 (с. 16), 41, 42]:

кислота +
$$O^{2-} =$$
 соль. (10)

Основные оксиды при ионизации дают катионы металлов и анионы кислорода, тогда как кислотные оксиды, в частности оксид кремния(IV), присоединяя анион кислорода, дают комплексные анионы, например, уравнения (11), (12) [39]:

$$K_2O = 2K^+ + O^{2-}; SiO_2 + O^{2-} = SiO_3^{2-};$$
 (11)

$$CaO = Ca^{2+} + O^{2-}; 2SiO_2 + O^{2-} = Si_2O_7^{4-}.$$
 (12)

Амфотерные оксиды, в зависимости от основности расплава, могут вести себя и как основания и как кислоты, например, уравнение (13) [39]:

$$Al_2O_3 = 2Al^{3+} + 3O^{2-}; \quad Al_2O_3 + 3O^{2-} = 2AlO_2^{-}.$$
 (13)

Очевидно, кислотность алюмоборосиликатного расплава тем выше, чем меньше в нем концентрация, точнее активность ионов кислорода O^{2-} [41, 42].

При возрастании кислотности расплава (т.е. при снижении активности кислородных анионов) валовые коэффициенты активности основных окислов в расплаве падают, а кислотных компонентов повышаются, причем этот эффект тем значительнее, чем сильнее основание или кислота, т.е. чем более они ионизированы [39].

Примером сказанного может служить следующая реакция нейтрализации с участием оксидных соединений рутения(IV) (схема (14)):

$$2\text{RuO}_2 + 2\text{O}^{2-} \to \text{Ru}_2\text{O}_6^{2-}.$$
 (14)

Таким образом, при наличии шкалы "активность ионов кислорода" оксиды элементов и стекла можно расположить в ряд, например, по возрастанию кислотности [41]. Однако такой шкалы не существует, а параметр "активность ионов кислорода" определяется экспериментально для конкретного стекла (оксида) при конкретной температуре [41].

Выходом из создавшегося положения является привлечение известных кислотно-основных шкал (например, только шкал электроотрицательностей известно около 20), которые позволяют, например, располагать оксиды в ряд по повышению их кислотности в расплавах [25, 39]:

 $K_2O, Na_2O \leq Li_2O \leq CaO \leq MgO \leq FeO \leq Fe_2O_3, Al_2O_3 \leq SiO_2 \leq P_2O_5, B_2O_3.$

В большинстве случаев авторы останавливают свой выбор на хорошо известных, наиболее полных и оправдавших себя при объяснении закономерностей твердофазных взаимодействий в оксидных системах и системах с участием свинцовоборосиликатных стекол параметрах, характеризующих кислотно-основные свойства (КОС): кислотность (К) или обратный показатель – "основность", например, в [39, 42, 43], ионный потенциал (ИП) [44] и орбитальную электроотрицательность (χ_M) [45].

Появление в образцах оксида рутения(IV) ряд авторов не связывают с термической диссоциацией рутенита свинца, поскольку для этого соединения она отмечена при температурах, превышающих 1200° C, а в эксперименте пленки обрабатывались при максимальной изотермической выдержке 850° C в течение 0.25 ч. Поэтому утверждается, что рутенит свинца разрушается с образованием RuO_2 вследствие химического вза-имодействия со стеклами свинцово-силикатной системы [19, 23, 37].

Данные табл. 3 показывают, что имеется тенденция к уменьшению отношения между количествами фаз $Pb_2Ru_2O_6/RuO_2$ при одной и той же температуре вжигания не только с увеличением содержания B_2O_3 в составе образца, но и с уменьшением мольного отношения PbO/B_2O_3 , т.е. с повышением кислотности свинцово-боратной составляющей. Таким образом, последнее сопровождается снижением устойчивости рутенита свинца в свинцовоборатном расплаве с ростом температуры [13]. Поскольку B_2O_3 и RuO_2 представляют собой оксиды кислотного характера, то реакции с их участием рассматриваются как кислотно-основное взаимодействие, в котором более сильная кислота B_2O_3 вытесняет более слабую – RuO_2 из ее соли $Pb_2Ru_2O_6$ [13, 24].

Сопоставление фазового состава обожженных образцов эквимолярного состава систем $PbO-B_2O_3-RuO_2$ и $PbO-SiO_2-RuO_2$ [12] показывает, что доля фазы RuO_2 в боратной системе выше, чем в силикатной, что согласуется с более кислотным характером B_2O_3 по сравнению с SiO₂ [13].

Таким образом, в образцах системы $Pb_2Ru_2O_6$ -свинцовоборосиликатное стекло, RuO_2 появляется благодаря взаимодействию $Pb_2Ru_2O_6$ со стеклами, содержащими оксид бора или большое количество оксида кремния(IV). При этом с увеличением содержания оксида бора в ПС резистивных паст растет концентрация оксида рутения(IV) в продуктах термообработки.

С другой стороны, взаимодействие рутенита свинца со стеклами имеет место у образцов, у которых ([SiO₂] + [B₂O₃])/[PbO] > 1. При этом концентрация образующегося RuO₂ в продуктах термообработки тем выше, чем выше кислотность использованного стекла. Для образцов системы RuO₂—свинцовоборосиликатное стекло наблюдается обратная зависимость: образование рутенита свинца в таких материалах наблюдается, если у выбранных стекол отношение ([SiO₂] + [B₂O₃])/[PbO] < 1, а содержание B₂O₃ не превышает 5 мас. %.

В табл. 5 приведены КОС стекол, для которых доказано их участие во взаимодействии с оксидными соединениями рутения(IV) или же их совместимость с этими соединениями.

Если стекло более сильная кислота, чем $Pb_2Ru_2O_6$, т.е. у которого К меньше, а χ_M и ИП больше, чем у этой ТПФ, то наблюдается вытеснение RuO_2 , а если стекло более сильное основание, чем оксид рутения(IV), т.е. у которого К больше, а χ_M и ИП меньше, чем у RuO_2 , то протекает взаимодействие с образованием рутенита свинца.

Так, например, для стекла состава, мол. %: 70.8PbO и 29.2SiO₂ (табл. 4, № 6.1) ИП = 39.8, а $\chi_M = 6.45$ (табл. 5). При сопоставлении значений этих параметров с данными для

N⁰	Кислотно-о	сновные сво	йства стекол	Марка	Кислотно-основные свойства стекол		
стекла*	К	ИП	XM	или № стекла*	K	ИП	XM
1.1	1.88	67.8	6.40	16.3	9.10	98.6	6.44
1.2	1.58	71.8	5.76	16.4	110.10	103.9	6.51
2	2.03	90.7	6.23	16.5	1.72	77.0	6.30
3	1.50	51.1	6.38	16.6	1.18	61.3	6.33
4	1.86	69.7	6.37	16.7	0.53	45.1	6.19
5	1.73	66.5	6.39	16.8	1.14	68.1	6.24
6.1; 21.1	0.41	39.8	6.45	16.9	0.92	66.2	6.19
6.2	0.93	54.9	6.32	16.10	0.79	63.2	6.17
6.3	7.55	86.9	6.55	16.11	18.20	101.8	6.47
7; 21.2	2.47	72.3	6.46	16.12	0.61	55.7	6.16
8.1	1.83	68.1	6.41	16.13	0.43	50.9	6.07
8.2, 21.3	1.70	73.8	6.24	17.1	2.06	75.6	6.29
8.3	2.00	74.3	6.38	17.2	2.08	81.3	6.32
8.4	1.85	70.9	6.21	17.3	4.41	88.1	6.35
8.5	1.25	67.5	6.19	17.4	4.00	106.4	6.24
8.6	1.35	81.5	6.28	17.5	1.55	69.3	6.01
9	2.10	67.0	6.32	17.6	4.00	105.9	6.14
10.1	1.83	68.1	6.41	18	2.42	89.1	6.29
10.2	2.09	68.6	6.38	19	1.17	59.3	6.35
10.3	1.19	60.5	6.32	CM-1	0.45	42.6	6.15
11	2.41	89.1	6.29	CM-2	0.52	47.7	6.16
12.1	0.54	45.1	6.19	CM-3	0.60	52.7	6.16
12.2	9.10	98.6	6.44	CM-4	0.81	63.9	6.16
13.1	1.98	92.4	6.21	CM-5	0.85	65.9	6.17
13.2	2.03	82.5	6.30	CM-6	0.90	68.0	6.17
13.3	1.17	77.8	6.17	CM-7	0.96	70.0	6.17
13.4	0.61	54.0	6.15	CM-8	1.04	73.7	6.17
14	1.27	61.2	6.23	CM-9	1.14	77.3	6.17
16.1	4.08	90.7	6.39	CM-10	1.30	82.4	6.17
16.2	2.09	79.6	6.33	CM-11	1.94	97.1	6.18

Таблица 5. Кислотно-основные свойства некоторых ПС

* Указаны строки из табл. 4 (если в строке несколько стекол – нумеруются сверху вниз через точку, например, 1.1 и 1.2. Повторяющимся в строках составам новый индекс не присваивался).

Рb₂Ru₂O₆ K = 0.64; ИП = 30.0; χ_M = 6.25 и RuO₂ ИП = 52.6; χ_M = 6.51 следует, что это стекло будет взаимодействовать с RuO₂ с образованием Pb₂Ru₂O₆. Для стекла состава, мол. %: 11.7 PbO и 88.3 SiO₂ (табл. 4, № 6.3) ИП = 86.9, а χ_M = 6.55 (табл. 5). При сопоставлении значений этих параметров с данными для Pb₂Ru₂O₆ и RuO₂ можно предположить, что это стекло будет взаимодействовать с Pb₂Ru₂O₆ с образованием RuO₂. Экспериментальные данные РФА образцов 6.1 и 6.3 подтверждают протекание этих взаимодействий.

При значениях К, χ_M и ИП стекол, близких к значениям К, χ_M и ИП RuO₂ или Pb₂Ru₂O₆, взаимодействие с оксидными соединениями рутения (IV) не наблюдается. Например, для стекла состава, мол. %: 11.7PbO и 88.3SiO₂ (табл. 4, № 6.2) ИП = 54.9, а $\chi_M = 6.32$ (табл. 5). При сопоставлении значений этих параметров с данными для Pb₂Ru₂O₆ и RuO₂ можно предположить, что это стекло не будет взаимодействовать как с Pb₂Ru₂O₆, так и с RuO₂. Экспериментальные данные РФА этих образцов указывают на отсутствие взаимодействия.

ЗАКЛЮЧЕНИЕ

Несмотря на наличие приемлемых технологических характеристик — устойчивости к восстановлению и кристаллизации и др. — кадмий-свинцовоборосиликатные стекла ограничены в дальнейшем их применении в ТПР.

В то же время, практика использования этих стекол позволила установить необходимые закономерности для получения ТПР с воспроизводимыми свойствами: влияние химического и гранулометрического состава, отношение к материалам подложек, контактов и ТПФ. Установлено химическое взаимодействие свинцовоборосиликатных стекол с оксидными соединениями рутения(IV), а также их совместимость.

Процесс термообработки резистивных паст сопровождается комплексом кислотноосновных реакций, приводящих к формированию нового химического и фазового состава пленок и морфологии частиц в них, а также легированию свинцовоборосиликатного стекла.

Взаимодействие между реагирующими неорганическими компонентами пасты зависит от: величины и длительности термообработки, площади контакта реагентов (распределения частиц по размеру и удельной поверхности порошков), а также подвижности и активности ионов в стекле (его температуры размягчения, вязкости и поверхностного натяжения, т.е. от химического состава).

Характер взаимодействия определяется кислотно-основными свойствами компонентов, входящих в состав композиционных материалов. Информативными показателями, определяющими направление такого взаимодействия, могут быть, например, кислотность, ионный потенциал или орбитальная электроотрицательность.

Сопоставление параметров К, χ_M и ИП стекол и фазового состава ТПР на основе оксидных соединений рутения(IV) показывает, что если у стекла К < 0.61 или χ_M > 6.16 или ИП > 50.9, то такое стекло разрушает рутенит свинца с образованием оксида рутения(IV) и не реагирует с RuO₂, и, наоборот, если у стекла К > 0.61 или χ_M < 6.16 или ИП < 50.9, то такое стекло реагирует с RuO₂ и совместимо, т.е. не реагирует с рутенитом свинца. При этом, чем ниже значение К и выше χ_M , тем больше образуется RuO₂ при разрушении Pb₂Ru₂O₆ и, наоборот, чем выше значение К и ниже χ_M , тем больше Pb₂Ru₂O₆ образуется из RuO₂. Однако линейной зависимости степени трансформации ТПФ от К или χ_M не наблюдается. Отметим что, между этими параметрами КОС стекла также нет линейной зависимости.

Установленные закономерности будут полезны для выбора состава стекол, не содержащих свинец и кадмий, при разработке новых рутениевых резисторов и рутенийсодержащих материалов.

СПИСОК ЛИТЕРАТУРЫ

^{1.} *Hormadaly J., Prudenziati M.* Materials science concepts for printed films // Printed films Materials science and applications in sensors, electronics and photonics. Printed Films: Materials Science and Applications in Sensors Electronics and Photonics. Oxford: Woodhead Publishing Limited. 2012. P. 63–89.

- Абдурахманов Г. Особенности структуры и транспортных свойств бесщелочных свинцовосиликатных стекол, легированных оксидами металлов. Дис. ... докт. физико-математических наук. Ташкент, 2014. 268 с.
- 3. Adachi K., Iida S., Hayashi K. Ruthenium clusters in lead-borosilicate glass in thick film resistors // J. Mater. Res. 1994. V. 9. № 7. P. 1866–1878.
- Adachi K., Kuno H. Decomposition of ruthenium oxides in lead borosilicate // J. Am. Ceram. Soc. 1997. V. 80. № 5. P. 1055–1064.
- 5. Vionnet Menot S. Low firing temperature thick-film piezoresistive composites—properties and conduction mechanism. Thèse N 3290 de docteur ès sciences. Lausanne, 2005. 209 p.
- Schreiber H.D., Settlejr F, Jamison, P.L., Eckenrode J.P., George H. Ruthenium in glass-forming borosilicate melt // J. Less Common Met. 1986. V. 115. № 1. P. 145–154.
- Gabáni S., Flachbart K., Pavlík V. Microstructural analysis and transport properties of RuO₂-based thick film resistors // Acta Phys. Pol. A. 2008. V. 113. № 1. P. 625–628.
- Nakano T., Suzuki K., Yamaguchi T. Analysis of interaction between RuO₂ and glass by growth of RuO₂ particles in glasses // J. Adhes. 1994. V. 46. № 1–4. P. 131–144.
- 9. Palarisamy P., Sarma D.H.R., Vest R.W. Solubility of ruthenium dioxide in lead borosilicate glasses // J. Am. Ceram. Soc. 1989. V. 72. № 9. P. 1755–1756.
- 10. *Shuto H., Okabe T.H., Morita K.* Ruthenium solubility and dissolution behavior in molten slag // Mater. Trans. 2011. V. 52. № 10. P. 1899–1904.
- Totokawa M., Tani T. Microanalyses for piezoresistive effect on actual and modeled interfaces of RuO₂-glass thick film resistors. // Advances in Electroceramic Materials II. Hoboken: John Wiley, 2010. V. 221. P. 151–162.
- 12. Шориков Ю.С., Варфоломеев М.Б., Бернер А.И., Заботина Е.Д. Взаимодействие в системе RuO₂-PbO-SiO₂ // Изв. АН СССР: Неорган материалы. 1987. Т. 23. № 2. С. 273-277.
- 13. Лозинский Н.С., Чеховский В.Г. Взаимодействие в системе RuO₂-PbO-B₂O₃ при температурах до 1473К // Журн. прикл. химии. 1993. Т. 66. № 3. С. 486-491.
- Meneghini C., Mobilio S., Pivetti F., Selmi I., Prudenziati M., Morten B. Local arrangement of Pb and Ru atoms in TFRs // J. Appl. Phys. 1999. V. 86. P. 3590–3593.
- 15. Crosbie G.M., Johnson F., Donlon W.T. Processing, X-ray, and TEM studies of QS87 series 56 kΩ/Square thick film resistors // Mat. Res. Soc. Symp. Proc. 1997. V. 457. P. 381–386.
- 16. Лозинский Н.С., Груба А.И., Шевцова Н.А., Волков В.И. Химическое взаимодействие в резисторах на основе рутенита свинца // Изв. АН СССР: Неорган. материалы. 1990. Т. 26. № 6. С. 1307–1312.
- 17. Jacob K.T., Gupta P. Refining subsolidus phase relations in the systems CaO-RuO₂-SiO₂ and CaO-RuO₂-V₂O₅ // Mat. Res. Bul. 2013. V. 48 № 9. P. 3082-3087.
- Hrovat M., Hole J., Belavič D., Bernard J. Subsolidus phase equilibria in the PbO-poor part of RuO₂-PbO-SiO₂ system // Mat. Let. 2006. V. 60. P. 2501–2503.
- 19. *Hrovat M., Belavič D., Hole J., Bernard J., Bencan A., Cilensek J.* The interacions of conductive and glass phase in thick-film resistors during firing // Inform. MIDEM. 2004. V. 34. № 1. P. 7–10.
- 20. *Hrovat M., Hole J., Belavič D., Bernard J.* Subsolidus phase equilibria in the CaO-poor part of the RuO₂−CaO−SiO₂ system // Mat. Res. Bull. 2010. V. 45. № 12. P. 2040–2043.
- 21. *Hrovat M., Maeder Th., Holc J., Belavič D., Cilenšek J., Bernard J.* Subsolidus phase equilibria in the RuO₂−Bi₂O₃−SiO₂ system // J. Europ. Ceram. Soc. 2008. V. 28. № 11. P. 2221–2224.
- Hrovat M., Holc J., Glinšek S. Subsolidus phase equilibria in the RuO₂-ZnO-SiO₂ system // J. Mater. Sci. 2007. V. 42. P. 5883-5885.
- 23. Лозинский Н.С., Груба А.И., Левченко Е.А., Самборская Н.В. Рутениевые резисторы с компенсированным ТКС на связующем из двух стекол // Техника средств связи. 1998. Т. ТПО. №. 3. С. 38–44.
- 24. Лозинский Н.С., Чеховский В.Г. Влияние некоторых факторов на свойства рутениевых свинцово-боратных пленок // Журн. прикл. химии. 1993. Т. 66. №1. С. 79–85.
- 25. *Киреев В.А*. О кислотно-основных свойствах окислов // Журн. физ. химии. 1964. Т. 38. № 8. С. 1881–1894.
- 26. *Park J.-A., Lee H.-L., Moon J.-W., Kim G.-D., Lee D.-A, Son Y.-B.* The behaviour of Ru based thick film resistor as a component of LCR network // J. Korean Ceram. Soc. 1997. V. 34. № 3. P. 233–240.
- 27. Лозинский Н.С., Груба А.И., Левченко Л.И., Гарштя О.Н. Влияние компонентов рутениевых паст на параметры керметных резисторов // Технология и конструирование в электронной аппаратуре. 1997. № 4. С. 39–46.
- 28. Shah J.S., Hahn W.C. Material characterization of thick film-resistor pastes // IEEE Trans. Compon., Hybrids, Manuf. Technol. 1978. V. CHMT-1. № 4. P. 383–392.
- Meneghini C., Mobilio S., Pivetti F., Selmi I., Prudenziati M., Morten B. RuO₂-based thick film resistors studied by extended X-ray absorption spectroscopy // J. Appl. Phys. 1999. V. 86. № 7. P. 3590–3593.
- 30. *Weiβmann R., Chong W.* Glasses for high-resistivity thick-film resistors // Adv. Eng. Mater. 2000. V. 2. № 6. P. 359–362.

- Ikegami A., Shinriki K. Chemical reaction and electrical properties of amorphous RuO₂-Ag-glass ternary system // Electrocomp. Sci. Technol. 1978. V. 5. P. 27–32.
- 32. *Kubový A., Havlas I.* The effect of firing temperature on the properties of model thick-film resistors I. Morphology and microstructure of the films // Silikaty. 1988. Č. 32. S. 109–123.
- 33. Prudenziati M., Morten B., Cilloni F., Ruffi G., Sacchi M. Interactions between alumina and high lead glasses for hybrid components // J. Appl. Phys. 1989. V. 65. № 1. P. 146–153.
- 34. Kužel R., Broukal J., Kindl D. X-Ray and microscopic investigations of resistors containing CdO and RuO₂ // IEEE Trans. Comp., Hybrids, Manuf. Technol. 1981. V. CHMT-4. № 3. P. 245–249.
- Rane S., Prudenziati M., Morten B., Golonka L., Dziedzic A. Structural and electrical properties of perovskite ruthenate-based lead-free thick film resistors on alumina and LTCC // J. Mat. Sci. Mater. Electron. 2005. V. 16. P. 687–69.
- Prudenziati M., Sirotti F., Sacchi M., Morten B., Tombesi A., Akomolafe T. Size effects in rutheniumbased thick-film resistors: rutile vs. pyrochlore-based resistors // Act. Passive Electron. Compon. 1991. V. 14. P. 163–173.
- 37. Morten B., Prudenziati M., Sacchi M., Sirotti F. Phase transitions in Ru based thick-film (cermet) resistors // J. Appl. Phys. 1988. V. 63. № 7. P. 2267–2271.
- Hrovat M., Belavič D., Benčan A., Holc J., Dražič G. A characterization of thick-film PTC resistors // Sens. Actuator A Phys. 2005. A 117. P. 256–266.
- 39. Тогобицкая Д.Н. Разработка методологии анализа и оптимизации процессов производства чугуна и стали на основе моделирования свойств и взаимодействия металлургических расплавов. Автореф. дис. ... докт. технических наук. Днепропетровск, 1999. 37 с.
- Зинченко В.Ф., Менчук В.В., Антонович В.П., Тимухин Е.В. Кислотно-основные свойства неорганических соединений // Одесса: Одесский нац. ун-т им. И.И. Мечникова, 2016. 144 с.
- 41. Конаков В.Г. Кислотно-основные свойства стеклообразующих оксидных расплавов // Вестник СПбГУ. 2005. Сер. 4: Физика. Химия. № 2. С. 82–95.
- 42. Яковлев О.И., Шорников С.И. Эффект кислотно-основного взаимодействия компонентов расплава при образовании HASP—стекол Луны // Физико-химические и петрофизические исследования в науках о Земле. Мат. XVII Междунар. конф. М.: ИГЕМ РАН, 2016. С. 377–380.
- 43. Мархасев Б.И. Об оценке кислотно-основных свойств окислов // Докл. АН СССР. 1965. Т. 162. № 3. С. 667–670.
- 44. Wang H.-J. Ion potential principle summary // LJRS. 2019. V. 19. № 2. P. 35–44.
- 45. *Годовиков А.А.* Орбитальные радиусы и свойства элементов. Новосибирск: Наука. Сиб. отд., 1977. 156 с.