# ТЕРМИЧЕСКИЕ СВОЙСТВА СТЕКОЛ И РАСПЛАВОВ СИСТЕМЫ СаО-В<sub>2</sub>О<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-CuO

© 2021 г. Е. Н. Селиванов<sup>1, \*</sup>, А. С. Вусихис<sup>1</sup>, С. В. Сергеева<sup>1</sup>, Р. И. Гуляева<sup>1</sup>, В. В. Рябов<sup>1</sup>

<sup>1</sup>Институт металлургии УрО РАН, ул. Амундсена, 101, Екатеринбург, 620016 Россия \*e-mail: lazarevasv@mail.ru

> Поступила в редакцию 15.07.2020 г. После доработки 27.11.2020 г. Принята к публикации 04.12.2020 г.

Методами дифференциально-термического анализа определены температуры девитрификации, "холодной" кристаллизации, плавления и стеклования образцов системы  $CaO-B_2O_3-Al_2O_3-CuO$ . В интервале температур  $880-1300^{\circ}C$  измерена вязкость алюмокальциевоборатных расплавов, содержащих до 8.1% CuO. Показано, что добавки оксида меди снижают вязкость и энергию активации вязкого течения.

Ключевые слова: оксидный расплав, бораты, вязкость, термические свойства, кристаллизация, стеклование, оксид меди DOI: 10.31857/S0132665121020116

#### ВВЕДЕНИЕ

Расплавы на основе оксида бора широко формируют при производстве стекол, глазурей и керамик, а также флюсов для выращивания монокристаллов оксидных соединений редких металлов [1-3]. Борсодержащие оксидные расплавы используют в процессах черной [4, 5] и цветной [6] металлургии, обеспечивая создание шлаков (оксидных расплавов) с требуемым набором физико-химических свойств. Применение боратов как флюсов в процессах рафинирования цветных металлов позволяет повысить качество черновой меди [6]. Кроме того, системы на основе оксида бора являются легкоплавкими [7, 8], поэтому их используют для задач моделирования металлургических процессов и корректировки свойств расплавов.

Интерес к боратным стеклам системы  $B_2O_3$ – $Al_2O_3$ –MeO (Me – Na, Mg, Ca, Sr, Ba) обусловлен их легкоплавкостью, рентгенопрозрачностью, высоким коэффициентом поглощения медленных нейтронов, низкими значениями показателя преломления, малой тепловой аберрацией и др. [9–11]. Оксид бора повышает скорости растворения тугоплавких оксидов и собственно стекловарения [12], оксид кальция – стойкость стекла в агрессивных средах, оксид алюминия – уменьшает склонность к ликвации, а оксид меди – обеспечивает фотохромность образцов [13]. Керамические изделия с добавлением боратов устойчивы к физическому воздействию, их добавка в глазури обеспечивает плавление при более низких температурах [9]. Оксид меди окрашивает глазурь в окислительной среде в синий цвет, а в восстановительной – в темно-красный [14]. При этом для получения блестящих покрытий оксид меди(II) необходимо вводить в количестве не более 15.0 мас. %.

Несмотря на значимость бораталюмокальциевых систем, сведения об их свойствах весьма ограничены [15–17], что осложняет обоснование температурных параметров

| Образец     | B <sub>2</sub> O <sub>3</sub> | CaO                  | Al <sub>2</sub> O <sub>3</sub> | CuO               |  |  |  |  |
|-------------|-------------------------------|----------------------|--------------------------------|-------------------|--|--|--|--|
| 1<br>2<br>3 | 67.9<br>64.9<br>62.3          | 21.6<br>20.0<br>19.5 | 6.0<br>8.7<br>9.3              | 2.8<br>5.4<br>8.1 |  |  |  |  |

**Таблица 1.** Составы синтезированных образцов В<sub>2</sub>O<sub>3</sub>-CaO-Al<sub>2</sub>O<sub>3</sub>-CuO, %

синтеза стекол и керамики. В связи с вышеизложенным сведения о свойствах стекол и расплавов системы  $CaO-B_2O_3$  с добавками  $Al_2O_3$  и CuO значимы для создания технологий производства (выплавка и охлаждение) новых материалов — бораталюмокальциевых стекол.

Цель исследования состоит в определении термических свойств стекол системы  $CaO-B_2O_3-Al_2O_3-CuO$  в широком температурном интервале и параметров вязкого течения расплавов.

#### МЕТОДЫ ИССЛЕДОВАНИЯ

Прекурсоры готовили сплавлением (1300°С) химически чистых (квалификация – "х. ч.") прокаленных B<sub>2</sub>O<sub>3</sub> (210°C) и CaO (910°C). Полученные сплавы имели соотношение B<sub>2</sub>O<sub>3</sub>/CaO около 3.2, что близко к эвтектическому составу системы B<sub>2</sub>O<sub>3</sub>-CaO с температурой плавления 955°C [18]. После охлаждения прекурсоры измельчали и смешивали с необходимым количеством CuO, смесь переплавляли в алундовых тиглях. После изотермической выдержки расплава в течение 10 мин и 1350°С проводили измерения вязкости вибрационным методом. Состав полученных образцов (табл. 1) после измерения вязкости соответствовал заданному отношению  $B_2O_3/CaO$ , содержание в них  $Al_2O_3$ достигало 9.3%, а CuO – 8.1%. Исследуемые образцы системы B<sub>2</sub>O<sub>3</sub>–CaO–CuO–Al<sub>2</sub>O<sub>3</sub> отличаются по содержанию  $Al_2O_3$  и CuO, но имеют постоянное отношение  $B_2O_3/CaO$ . Составы образцов определены методами спектрометрии с использованием атомноабсорбционного спектрометра Hitachi "Z-8000". Рентгенофазовый анализ образцов выполнен на дифрактометре XRD 7000 Maxima (Shimadzu) в Cu $K_{\alpha}$ -излучении в диапазоне углов рассеяния (20) равном 20°-70°. Для количественной оценки термической стабильности образцов использованы характеристические температуры, выявленные при термическом анализе: температуры девитрификации (tg), начала "холодной" кристаллизации ( $t_x$ ) и ее экзотермического пика ( $t_c$ ), плавления ( $t_{onset}$  и  $t_{liq}$ ) и стеклования (t<sub>s</sub>). По площади термических эффектов определены численные значения изменения теплоемкостей ( $\Delta c_{\rm p}$ ) и энтальпий ( $\Delta H_{\rm III}$  и  $\Delta H_{\rm Kp}$ ), характеризующих рассматриваемые превращения. Термический анализ образцов проведен на приборе Netzsch STA 449C Jupiter, предназначенном для совмещенной термогравиметрии и дифференциальносканирующей калориметрии. Образцы массой 18-23 мг помещали в платиновые тигли с крышками и подложками из Al<sub>2</sub>O<sub>3</sub>. При обработке данных использованы стандартные функции и настройки программного пакета NETZSCH Proteus Thermal Analysis [19], обеспечивающего определение температур с точностью  $\pm 0.1\%$  отн. Опыты проведены при нагреве образцов до 1150°С и последующем охлаждении до 500°С со скоростью 10°С/мин в токе аргона особой чистоты (99.998% Ar).

Для измерения вязкости использован вибрационный вискозиметр (рис. 1), работающий в режиме вынужденных колебаний [20–22]. Измерительный шпиндель, изготовленный из платиновой проволоки для исключения взаимодействия с расплавом, погружали на глубину 10 мм. Момент касания расплава фиксировали индикатором, включенным в измерительную диагональ моста сопротивлений. Измерения вязкости выполнены с точностью ±5% в диапазоне температур 880–1300°С.



Рис. 1. Схема установки для измерения вязкости: чехол из  $Al_2O_3$  (*I*); печь сопротивления (*2*); измерительный щуп (*3*); мультиметр цифровой APPA-207 (*4*); амортизирующие пружины (*5*); корпус вискозиметра (*6*); плоско-параллельные пружины (*7*); сердечник (*8*); кольцевой магнит (*9*); измерительная катушка (*10*); цифровой вольтметр (*11*); автогенератор (*12*); обмотка якоря (*13*); якорь вибратора (*14*); водоохлаждаемая крышка (*15*); термопара (*16*); тигель с образцом (*17*); мост Уитсона (*18*).

#### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Согласно данным рентгенофазового анализа (рис. 2), на дифрактограммах образцов отсутствуют четко фиксируемые рефлексы каких-либо соединений. Выраженные гало при углах (2 $\theta$ ) около 30° и 42° свидетельствуют о стеклообразном состоянии образцов.

Для кальциевоалюмоборатного образца с 2.8% CuO (рис. 3) девитрификация начинается при 611°C. Изменение теплоемкости ( $\Delta c_p$ ) равно 1.51 Дж/(г К). Процесс завершается при температуре 632°C. Для экзотермического эффекта "холодной" кристаллизации (начало/экстремум) при 817/855°C значение  $\Delta H_{\rm kp}$  рассчитано равным 241.5 Дж/г. Плавление образца начинается около 898°C, что существенно ниже температуры эвтектики системы B<sub>2</sub>O<sub>3</sub>-CaO [18]. Эффекта кристаллизации расплава при охлаждении образца не выявлено, что указывает на его склонность к переохлаждению. Образец имеет температуру стеклования при 606°C. Процесс сопровождается изменением теплоемкости ( $\Delta c_p$ ) на 1.16 Дж/(г К).

Нагревание кальциевоалюмоборатного образца с 5.4% СиО также сопровождается девитрификацией, начинающейся с 598°С и оканчивающейся при 615°С, характеризуемой изменением теплоемкости на 1.16 Дж/(г К). Экзотермический эффект "холодной" кристаллизации при 800/818°С имеет значение  $\Delta H_{\rm kp}$  равное 5.1 Дж/г. Плавление образца начинается при 888°С, экстремум имеет температуру 928°С. При охлаждении



Рис. 2. Рентгенограммы образцов 1-3.

не выявлен эффект кристаллизации образца. Температура стеклования образца близка к 590°С, процесс характеризуется величиной  $\Delta c_p$  равной 0.65 Дж/(г К).

В ходе термического анализа кальциевоалюмоборатного образца с 8.1% СиО выявлены эффекты, аналогичные предыдущим: начало девитрификации зафиксировано при 586°С, а завершение – 612°С. Процесс стеклования начинается с 576°С. Эффекты "холодной" кристаллизации (802/818°С) и плавления (889/914°С) слабо выражены. Сопоставление результатов термического анализа показало (табл. 2), что в области исследованных составов повышение содержания СиО сопровождается снижением температур девитрификации, стеклования и плавления образцов.

В первом приближении, мерой термической стабильности стекол является величина  $(t_s + 273)/(t_{liq} + 273)$ , определяемая эмпирическим правилом Каузмана или "правилом двух третей", согласно которому для большинства стеклообразующих систем в широком температурном интервале (до 2000°С) и скоростях охлаждения расплава от 0.01 до 10°С/с, это соотношение равно примерно 0.67 [23]. Уменьшением этого соот-



Рис. 3. Изменение тепловых потоков (ДСК) при нагреве и охлаждении (10°С/мин) образцов 1 (a), 2 (b), 3 (a).

|       | Нагрев                        |                          |                               |                           |                                |                                    |                           |                       | Охлаждение                         |                     |                               |
|-------|-------------------------------|--------------------------|-------------------------------|---------------------------|--------------------------------|------------------------------------|---------------------------|-----------------------|------------------------------------|---------------------|-------------------------------|
| Об-   | дев                           | итрифи                   | кация                         | "холодная" кристаллизация |                                |                                    | плавление                 |                       |                                    | стеклование         |                               |
| разец | <i>t</i> <sup>нач</sup><br>°С | $t_{g}^{cep}, ^{\circ}C$ | ∆с <sub>р</sub> ,<br>Дж/(г К) | $t_{\rm x}$ , °C          | $t_{\rm c}, {}^{\circ}{\rm C}$ | Δ <i>H</i> <sub>кр</sub> ,<br>Дж/г | <sup>t</sup> onset,<br>°C | t <sub>liq</sub> , °C | Δ <i>H</i> <sub>пл</sub> ,<br>Дж/г | t <sub>s</sub> , °C | ∆с <sub>р</sub> ,<br>Дж/(г К) |
| 1     | 611                           | 620                      | 1.51                          | 817                       | 855                            | -242                               | 898                       | 942                   | 154                                | 606                 | 1.17                          |
| 2     | 598                           | 606                      | 1.16                          | 800                       | 818                            | -5.1                               | 888                       | 928                   | 17                                 | 590                 | 0.65                          |
| 3     | 586                           | 599                      | 1.65                          | 802                       | 818                            | -4.3                               | 889                       | 914                   | 6                                  | 576                 | 0.90                          |

Таблица 2. Результаты термического анализа образцов системы B<sub>2</sub>O<sub>3</sub>-CaO-Al<sub>2</sub>O<sub>3</sub>-CuO

Таблица 3. Критерии термической стабильности образцов системы B2O3-CaO-Al2O3-CuO

| Образец | t <sub>s</sub> , °C | $t_{\rm liq}, ^{\circ}{\rm C}$ | $(t_{\rm s} + 273)/(t_{\rm liq} + 273)$ | $\Delta t$ | $H_{\rm r}$ | H     | S    |
|---------|---------------------|--------------------------------|-----------------------------------------|------------|-------------|-------|------|
| 1       | 606                 | 942                            | 0.73                                    | 211        | 1.69        | 0.240 | 9.12 |
| 2       | 590                 | 928                            | 0.72                                    | 210        | 1.64        | 0.243 | 4.38 |
| 3       | 576                 | 914                            | 0.72                                    | 227        | 2.03        | 0.267 | 4.26 |

ношения трактуют как снижение тенденции системы к стеклованию. Кроме данного соотношения, для количественной оценки термической стабильности стекол используют: разницу между температурами начала кристаллизации и стеклования ( $\Delta t = t_x - t_s$ ); критерий Хрубы ( $H_r$ ), определяемый как соотношение ( $t_x - t_s$ )/( $t_{liq} - t_x$ ); приведенную температуру стеклования (H) из выражения ( $t_x - t_s$ )/( $t_s + 273$ ); критерий (S) вычисленный по уравнению Сааде–Пуле из соотношения ( $t_c - t_x$ )( $t_x - t_s$ )/( $t_s + 273$ ), где  $t_x$ ,  $t_s$ ,  $t_{liq}$  и  $t_c$ температуры начала кристаллизации, стеклования, плавления и максимума экзотермического пика кристаллизации соответственно. Для всех изученных образцов критерий стабильности составляет чуть более 2/3, что хорошо согласуется с правилом Каузмана. Величины остальных критериев также указывают на стабильность стеклообразного состояния образцов (табл. 3).

Важной кинетической характеристикой расплавов является их динамическая вязкость как одно из свойств, позволяющее оценить изменения в структуре. Вязкость зависит от размеров и формы частиц (единиц вязкого течения) перемещающихся в полостях по свободному объему, имеющемуся в структуре жидкостей. Поскольку величина свободного объема с ростом температуры возрастает, вязкость – уменьшается [24, 25]. Эта зависимость наблюдается и для системы  $B_2O_3$ -CaO-Al<sub>2</sub>O<sub>3</sub>-CuO (рис. 4). В области температур над ликвидусом, добавки в расплав CuO монотонно снижают вязкость во всем рассмотренном интервале. При пониженных температурах эта зависимость не является монотонной: вязкость образца с 5.4% CuO имеет большее значение.

Для всех стеклообразующих жидкостей в широком температурном интервале зависимость вязкости от температуры выражена уравнением [26]:

$$\ln \eta = A + E_{\rm n}\{t\}/R(t+273),\tag{1}$$

где A,  $E_{\eta}$ , n – коэффициенты, определяемые экспериментально, t – температура расплава, °С, R – универсальная газовая постоянная, Дж K<sup>-1</sup> моль<sup>-1</sup>.

Энергия активации вязкого течения меняется с температурой и определяет перемещение структурных единиц расплава. Функциональную зависимость  $E_{\eta}$  от температу-



Рис. 4. Политермы вязкости расплавов B<sub>2</sub>O<sub>3</sub>-CaO-CuO-Al<sub>2</sub>O<sub>3</sub> образцов 1-3.

ры представляют как  $E_{\eta}^{o}/(t + 273)^{(n-1)}$ . В области высоких температур зависимость (1) линейна и совпадает с уравнением Френкеля—Андраде [7]:

$$\ln \eta = A + E_{\rm n}/R(t + 273). \tag{2}$$

Это уравнение справедливо для интервалов температур с постоянными структурными единицами вязкого течения. Поэтому энергия активации в этих интервалах не зависит от температуры.

В расплавах В<sub>2</sub>O<sub>3</sub>-CaO-Al<sub>2</sub>O<sub>3</sub>-CuO при 977–1335°С обнаружены две области линейного изменения вязкости (рис. 5) при представлении экспериментальных данных в координатах  $\ln \eta - 1/(t + 273)$ . Граница этих областей находится в точках пересечения прямых, характеризующих состояние (структуру) расплавов. Согласно полученных результатов (табл. 4), энергия активации вязкого течения ( $E_1$ ) расплава в высокотемпературной области (1335–1105°С) меняется в пределах 47.0–94.5 кДж/моль. Причем  $E_1$  образца с 5.4% СuO имеет большее значение.

В области температур 1160—977°С энергия активации вязкого течения ( $E_2$ ) меняется от 156.7 до 242.9 кДж/моль, причем большие значения  $E_2$  характерны для расплавов с повышенным содержанием CuO.

В интервале ниже 997–1020°С происходит полимеризация расплава, вязкость рассматриваемой системы не подчиняется уравнению Френкеля—Андраде, энергия активации зависит от температуры [26, 27]. Изменение вязкости связано с процессом ассоциации—диссоциации оксидных группировок и вязко-пластичным течением жидкости. В интервале температур, близких к ликвидусу (*t*<sub>1</sub>) начинается стеклование

| Образец | $\Delta t_1$ , °C | $A_1$ | <i>Е</i> <sub>1</sub> , кДж | $R^2$ | $\Delta t_2, ^{\circ}\mathrm{C}$ | $A_2$ | <i>Е</i> <sub>2</sub> , кДж | $R^2$ |
|---------|-------------------|-------|-----------------------------|-------|----------------------------------|-------|-----------------------------|-------|
| 1       | 1325-1151         | -7.41 | 71.6                        | 0.952 | 1151-987                         | -14.7 | 156.7                       | 0.996 |
| 2       | 1335-1161         | -9.41 | 94.5                        | 0.868 | 1161-1020                        | -14.9 | 166.9                       | 0.998 |
| 3       | 1310-1105         | -6.02 | 47.0                        | 0.990 | 1105–996                         | -23.1 | 242.9                       | 0.999 |

Таблица 4. Параметры вязкого течения в гомогенных областях расплавов



**Рис. 5.** Политермы вязкости расплавов B<sub>2</sub>O<sub>3</sub>-CaO-CuO-Al<sub>2</sub>O<sub>3</sub> в высокотемпературной области образцов 1–3 (точки – эксперимент, линии – аппроксимация).



**Рис. 6.** Политермы вязкости образцов 1–3 в области температур менее 977–1020°С (точки – эксперимент, линии – расчет).

расплава. Изменение вязкости с температурой (рис. 6) с высокой точностью описано линейным уравнением [28]:

$$\ln\eta = A + E_{\eta}^{\circ} / R(t + 273)^2.$$
(3)

Параметры представленного уравнения (табл. 5) позволяют, в некотором приближении, судить о существенном увеличении размеров группировок в ходе стеклования. Причем, для образцов с повышенным содержанием оксида меди величины  $E_n^o$  имеют

| Образец | $E_{\eta}^{\mathrm{o}}/R \times 10^{-7}, ^{\circ}\mathrm{C}^2$ | A      | $R^2$ |
|---------|----------------------------------------------------------------|--------|-------|
| 1       | 2.05                                                           | -12.60 | 0.998 |
| 2       | 2.00                                                           | -11.97 | 0.999 |
| 3       | 1.95                                                           | -12.27 | 0.996 |

Таблица 5. Параметры вязкого течения расплавов в начале стеклования

меньшие значения. Следовательно, вводимый оксид меди препятствует укрупнению группировок и оказывает отрицательное действие на стеклование расплавов.

### ЗАКЛЮЧЕНИЕ

Для образцов  $B_2O_3$ -CaO-Al<sub>2</sub>O<sub>3</sub>-CuO с отношением  $B_2O_3$ /CaO равным 0.32 и содержащих от 2.8 до 8.1% оксида меди, определены температуры девитрификации, "холодной" кристаллизации и плавления образцов и величины соответствующих им термических эффектов. Показано, что добавки оксида меди (до 8.1%) снижают указанные параметры. В расплавленном состоянии вязкость образцов колеблется в пределах 0.8–13.8 Па · с. Энергия активации вязкого течения гомогенных расплавов снижается при введении добавок оксида меди. Полученные данные полезны для обоснования параметров выплавки кальциевоалюмоборатных стекол, а также корректировки составов рафинировочных шлаков цветной металлургии.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект № 18-29-24093 мк.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Бобкова Н.М. Боратные стекла как основа легкоплавких малосвинцовых глазурей, флюсов и припоев. // Известия Национальной академии наук Беларуси. Серия химических наук. 2002. № 4. С. 14–17.
- 2. Пастухов Э.А, Денисов В.М., Бахвалов С.Г. Физико-химические свойства флюсов, используемых для выращивания монокристаллов разлагающихся полупроводниковых соединений // Физическая химия и технология в металлургии. Екатеринбург, 1996. С.176–183.
- 3. *Mohajerani A., Martin V., Boyd D., Zwanziger J.W.* On the mechanical properties of lead borate glass // J. Non-Crystalline Solids. 2013. V. 381. P. 29–34.
- 4. Бабенко А.А., Шартдинов Р.Р., Уполовникова А.Г., Сметанников А.Н., Гуляков В.С. Физические свойства шлаков системы: CaO-SiO<sub>2</sub>-B<sub>2</sub>O<sub>3</sub>, содержащей 15% Al<sub>2</sub>O<sub>3</sub> и 8% MgO // Известия высших учебных заведений. Черная металлургия. 2019. Т. 62. № 10. С. 769-773.
- 5. Ким А.С., Акбердин А.А., Султангазиев Р.Б., Киреева Г.М. Оценка эффективности использования высокоосновных борсодержащих шлаков при выплавке экономнолегированных борсодержащих сталей // Металлург. 2018. № 1. С. 40–44.
- 6. Белоусов А.А., Селиванов Е.Н., Беляев В.В., Литовских С.Н. Применение борсодержащих флюсов для повышения качества черновой меди // Цветная металлургия. 2003. № 10. С. 13–17.
- 7. Денисов В.М., Белоусова Н.В., Истомин С.А., Бахвалов С.Г., Пастухов Э.А. Строение и свойства расплавленных оксидов. Екатеринбург: УрО РАН. 1999. 498 с.
- Vusikhis A.S., Selivanov E.N., Dmitriev A.N., Chentsov V.P., Ryabov V.V. Structure Sensitive Properties of System B<sub>2</sub>O<sub>3</sub>-CaO Melts // Defect and Diffusion Forum. 2020. V. 400. P. 186–192.
- 9. *Nemilov S.V.* Viscosity of borate glass-forming melts: specific features of the BO<sub>4</sub> tetrahedron as a kinetic unit // Glass Physics and Chemistry. 1997. T. 23. № 1.P. 1–26.
- 10. Оганесян Р.М., Князян Н.Б., Костанян К.А. Стекла и стеклокристаллические материалы на основе алюмоборатов // Химический журн. Армении. 2007. Т. 60. № 4. С. 648–663.
- Клюев В.П., Певзнер Б.З. Тепловое расширение и температура стеклования кальциевоборатных и кальциевоалюмоборатных стекол // Физика и химия стекла. 2003. Т. 29. Вып. 2. С. 191–204.
- 12. Маневич В.Е. Субботин К.Ю., Ефремов В.В. Сырьевые материалы, шихта и стекловарение. М.: Стройматериалы, 2008. 223 с.
- Подсвиров О.А., Сидоров А.И., Цехомский В.А., Востоков А.В. Формирование нанокристаллов меди в фотохромных стеклах при электронном облучении и термообработке // Физика твердого тела. 2010. Т. 52. Вып. 9. С. 1776–1779.

- 14. Масленникова Т.Н., Пищ И.В. Керамические пигменты. М.: Стройматериалы, 2009. 223 с.
- 15. *Князян Н.Б.* Особенности строения боратных и алюмоборатных стекол // Химический журн. Армении. 2001. Т. 54. № 1–2. С. 36–46.
- 16. Sreenivasu D., Narsimlu N., Sastry G.S., Chandra Mouli V. EPR study of Cu<sup>2+</sup> in Na<sub>2</sub>O–NaF– B<sub>2</sub>O<sub>3</sub>–Bi<sub>2</sub>O<sub>3</sub> glasses // J. Mater. Sci.: Materials in Electronics. 1996. V. 7(4). P. 283–284.
- Ray S.B. Preparation and Characterization of Aluminum Borate // J. of the Amer. Cer. Soc. 1992. V. 75(9). P. 2605–2609.
- Slag Atlas. 2nd Edition. Edited by Verien Deutscher Eisenhüttenleute (VDEh). Düsseldorf: Verlag Stahleisen GmdH, 1995. 616 p.
- 19. NETZSCH Proteus Software. Thermal Analysis. Version 4.8.3.
- 20. Гладких В.Н. Вискозиметрия металлургических расплавов. М.: Металлургия, 1989. 96 с.
- Истомин С.А., Иванов А.В., Рябов В.В., Пастухов Э.А. Влияние механоактивации оксидов РЗМ на вязкость боратных расплавов // Расплавы. 2011. № 4. С. 11–16.
- 22. Selivanov E., Gulyaeva R., Istomin S., Belyaev V, .Tyushnyakov S., Bykov A. Viscosity and thermal properties of slag in the process of autogenous smelting of copper-zinc concentrates // Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy. 2015. V. 124. № 2. P. 88–95.
- Biswas K., Sontakke A.D., Majumder M., Annapurna K. Nonisothermal crystallization kinetics and microstructure evolution of calcium lanthanum metaborate glass // J. Therm. Anal. Calorim. 2010. V. 101. P.143–151.
- 24. Морохов П.В., Ананьин В.М., Иванников А.А., Севрюков О.Н., Сучков А.Н. Эффект объемного расслоения расплава и его проявления в вискозиметрии и дифференциальном термическом анализе // Цветные металлы. 2014. № 12. С. 38–44.
- Вусихис А.С., Леонтьев Л.И., Селиванов Е.Н., Ченцов В.П., Рябов В.В. Вязкость расплавов систем В<sub>2</sub>O<sub>3</sub>-CaO-NiO (FeO) // Бутлеровские сообщения. 2019. Т. 59. № 7. С. 104–108.
- 26. Аппен А.А. Химия стекла. Л.: Химия, 1974. 352 с.
- 27. Метвеенко В.Н., Кирсанов Е.А. Структурная вязкость и структурная упругость полимерных расплавов // Журн. прикладной химии. 2018. Т. 91. № 5. С. 720–748.
- Гулоян Ю.А. Физико-химические основы технологии стекла. Учебное пособие. Владимир: Транзит-ИКС, 2008. 735 с.