ВЛИЯНИЕ ДОБАВОК ВИСМУТА НА КИНЕТИКУ И МЕХАНИЗМ КРИСТАЛЛИЗАЦИИ СТЕКЛА As₂Se₃

© 2021 г. Е.В.Школьников*

Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., 5, Санкт-Петербург, 194021 Россия *e-mail: eshkolnikov@yandex.ru

> Поступила в редакцию 27.08.2020 г. После доработки 04.10.2020 г. Принята к публикации 04.12.2020 г.

Выполнен сравнительный анализ кинетики массовой объемной кристаллизации стекол $AsSe_{1.5}Bi_x$ (x = 0, 0.01 u 0.05) в интервале температур $210-260^{\circ}C$ по данным измерения плотности с использованием обобщенного уравнения Колмогорова—Аврами, результатов фазового и дифференциально-термического анализов. Исследованы кинетика поверхностной кристаллизации стекла As_2Se_3 с 0.4 ат. % Ві при 270 и $310^{\circ}C$, параметры удельной электропроводности и микротвердость закаленных полупроводниковых ситаллов на различных этапах термообработки.

Ключевые слова: поверхностная и объемная изотермическая кристаллизация стекол, обобщенное уравнение Колмогорова—Аврами, кинетические параметры массовой объемной кристаллизации, зарождение и рост кристаллов **DOI:** 10.31857/S0132665121020128

введение

При термообработке значительно выше температуры стеклования T_g (174 ± 2°C) чистое монолитное стекло As₂Se₃ кристаллизуется преимущественно с поверхности [1, 2]. Монолитные стекла As₂Se₃, легированные 5–10 ат. % Sn [3], 1–5 ат. % Pb [4] или 2 ат. % Bi [5], при термообработке в оптимальных условиях кристаллизуются не с поверхности, а равномерно по всему объему. Добавки висмута до 3.7 ат. % понижают температуру кристаллизации халькогенидных стекол [6]. Влияние малых добавок висмута на характер и кинетические параметры кристаллизации стекла As₂Se₃ изучено недостаточно.

Цель работы — анализ кинетики и механизма массовой изотермической кристаллизации стекол $AsSe_{1.5}Bi_x$ (x = 0.01 и 0.05) в интервале температур 210—310°C с использованием данных [5] и дополнительного экспериментального исследования кристаллизации стекла As_2Se_3 , легированного висмутом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез стекол $AsSe_{1.5}Bi_{0.01}$ и $AsSe_{1.5}Bi_{0.05}$, называемых далее стеклами соответственно I и II, проводили методом вакуумной плавки из особо чистых элементных веществ с общей массой 7 г в интервале 700–900°С с последующей закалкой кварцевых ампул с расплавами в воздухе от 700°С. Стеклообразное состояние и однородность закаленных сплавов подтверждали раковистый излом, рентгеноаморфность, отсутствие микрокристаллических и других включений при просмотре шлифов в инфракрасном микроскопе МИК-1 или металлографическом микроскопе МИМ-8. Концентрацию висмута в стеклах проверяли методом эмиссионного спектрального анализа.

Определение средней скорости линейного изотермического роста кристаллов в интервале 270–310°С выполняли с погрешностью $\pm 5-10\%$, измеряя с помощью микроскопа толщину поверхностного закристаллизованного слоя в 5–7 точках по периметру скола полированных пластин после термообработки в бюксах с силиконовым маслом.

Кинетику объемной изотермической кристаллизации стекол исследовали в форме шлифованных дисков в бюксах или ампулах. Для исключения влияния поверхностной кристаллизации на измеряемые свойства стекла I с 0.4 ат. % Ві проводили механическое удаление закристаллизованного слоя.

Микротвердость *H* измеряли на приборе ПМТ-3 при нагрузке 50 г, эффективную плотность *d* кристаллизующихся стекол определяли при комнатной температуре гидростатическим взвешиванием в толуоле. Дифференциальный термический анализ (ДТА) проводили в вакуумированных кварцевых ампулах на дериватографе системы F. Paulik, J. Paulik, L. Erdey, рентгенофазовый анализ (РФА) — на дифрактометре УРС-50ИМ с использованием Си K_{α} -излучения. Измерение удельной электропроводности σ полупроводниковых сплавов выполняли в изотермических условиях в интервале 20–100 или 20–200°С с помощью моста постоянного тока Р4060, при сопротивлениях менее 10³ Ом потенциометрическим зондовым методом.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Выбор температурного интервала кристаллизации стекол проводили с учетом результатов ДТА, представленных для стекол $AsSe_{1.5}Bi_{0.01}$ ($T_g = 172 \pm 2^{\circ}C$) и $AsSe_{1.5}Bi_{0.05}$ ($T_g = 175 \pm 2^{\circ}C$) на рис. 1. На кривых ДТА (при нагревании) измельченных стекол со скоростью 2–11°C/мин наблюдается экзотермический эффект кристаллизации при 270–350°C и эндотермический эффект плавления основной термодинамически стабильной фазы α -As₂Se₃ при 370–375°C. Кривая ДТА стекла $AsSe_{1.5}Bi_{0.05}$ отличается появлением слабого экзотермического эффекта кристаллизации при 250 \pm 5°C (рис. 1). Согласно данным РФА стеклокристаллических материалов $AsSe_{1.5}Bi_x$ ($x \le 0.1$), первичной кристаллической фазой является Bi_2Se_3 (температура плавления ~708°C) с ромбоэдрической слоистой структурой типа тетрадимита [7]. Взаимная растворимость As_2Se_3 и Bi_2Se_3 в кристаллическом состоянии не превышает 1 мол. % [5].

Предварительное исследование изотермической кристаллизации показало, что добавка 0.4 ат. % Ві к стеклу As_2Se_3 стимулирует поверхностную кристаллизацию, которая происходит быстрее объемного превращения и затрудняет его исследование. Проведены были исследования кинетики поверхностной изотермической кристаллизации стекла I при 270 и 310°C. Изотермическая кристаллизация монолитного стекла II с добавкой 2 ат. % Ві происходит равномерно по всему объему в температурном интервале 210–260°C.

Кинетика поверхностной кристаллизации стекол на основе As₂Se₃. На рис. 2 представлены экспериментальные зависимости толщины *l* поверхностного закристаллизованного слоя чистого и легированного 0.4 ат. % Ві стекла As₂Se₃ от времени термообработки т при 270°С. После индукционного периода $\tau_{инд}$ наблюдали прямолинейные зависимости *l*(τ), указывающие на кинетический контроль скорости роста поверхностного кристаллического слоя в стеклах. Первичное зарождение кристаллов происходило, по-видимому, гетерогенно на дефектах полированной поверхности [8] и в настоящей работе не исследовалось. В табл. 1 приведены значения $\tau_{инд}$ и средней скорости линейного изотер-

Рис. 1. Термограммы кристаллизации и плавления стеклопорошков $AsSe_{1.5}Bi_{0.01}$ (*1*, *1*') и $AsSe_{1.5}Bi_{0.05}$ (*2*, *2*') при скорости нагревания соответственно 5.0 и $4.4^{\circ}C$ /мин.

Рис. 2. Изменение толщины поверхностного кристаллического слоя от времени термообработки при 270°C в стеклах: $As_2Se_3(I)$, $AsSe_{1.5}Bi_{0.01}(2)$.

мического роста u_3 закристаллизованного слоя, определенные из экспериментальных зависимостей $l(\tau)$ для стекол на основе As₂Se₃

Из рис. 2 и табл. 1 видно, что добавление 0.4 ат. % висмута в 2–3 раза уменьшает индукционный период $\tau_{инд}$ и примерно в 2 раза увеличивает скорость u_3 изотермической поверхностной кристаллизации стекла. С использованием температурных зависимо-

Стекло	$t \pm 1^{\circ}\mathrm{C}$	τ_{μ}	нд	u _э	<i>u</i> _T [1]
		Ч	с	см/с	
As ₂ Se ₃	270	5.0	1.8×10^{4}	$\begin{array}{c} 1.4 \times 10^{-6} \\ 1.2 \times 10^{-6} \ [9] \end{array}$	8.2×10^{-7}
	310	0.5	1.8×10^{3}	1.4×10^{-5} 1.1×10^{-5} [9]	1.2×10^{-5}
As _{2.1} Se ₃	270	7.0	2.5×10^{4}	1.0×10^{-6}	7×10^{-7}
As ₂ Se ₃ Bi _{0.02}	270	1.7	6.1×10^{3}	3.8×10^{-6}	—
	310	0.25	9.0×10^2	1.8×10^{-5}	—

Таблица 1. Влияние температуры, избытка мышьяка и добавки висмута на индукционный период и скорость *и* линейного изотермического роста кристаллов в стекле As₂Se₃*

*и_Э – экспериментальные данные Э.Ю. Бессоновой и из работы [9], и_Т – теоретический расчет автора [1].

№ этапа	Время, Ч	<i>H</i> ±3, кг/мм ²	-lgσ _{20°C} (Ом ⁻¹	$\lg \sigma_0 \pm 0.1$ cm ⁻¹)	$E_{\sigma} \pm 0.03,$ $\Im B$	$d \pm 0.003,$ Γ/cm^3	P_d , % As ₂ Se ₃	Фазовый состав по данным РФА
1	0	140	12.1	3.0	1.76	4.644		Аморфная фаза
2	17	141	12.1	3.2	1.78	4.650		Ві ₂ Se ₃ и аморфная
3	40	141	12.2	3.1	1.77	4.654	0	фаза
							(As_2Se_3)	
4	50	140	12.2	2.6	1.72	4.663	5	Bi_2Se_3 , As_2Se_3
5	70	118	12.3	2.4	1.71	4.703	27	и аморфная фаза
6	82	91	12.3	2.6	1.74	4.743	51	
7	106	80	12.4	3.2	1.82	4.787	75	
8	131	66	12.6	3.1	1.85	4.830	99	
9	171	64	12.9	3.2	1.88	4.832	100	
							(As_2Se_3)	
10	190	65	13.2	3.3	1.92	4.831		

Таблица 2. Экспериментальные данные объемной кристаллизации стекла $AsSe_{1.5}Bi_{0.01}$ при 240°C

стей $\ln \tau_{\text{инд}}(T^{-1})$ и $\ln u_3(T^{-1})$ найдены экспериментальные энергии активации 128 ± 9 и 103 ± 8 кДж/моль соответственно процессов зарождения и роста кристаллов основной фазы As₂Se₃ в стекле I. Исключив аналогично [1] влияние термодинамического фактора 1 – exp($\Delta G/RT$) на скорость линейного роста кристаллов, получили для легирован-

ного висмутом стекла I энтальпию активации роста кристаллов фазы $As_2Se_3 \Delta H_a^{"} = 122 \pm 9$ кДж/моль, существенно меньшую, чем в чистом стекле стехиометрического состава As_2Se_3 (153 ± 4 кДж/моль).

Кинетика и механизм объемной изотермической кристаллизации стекол $AsSe_{1.5}Bi_x$ (x = 0.01, 0.05). Кинетическое исследование объемной изотермической кристаллизации стекол I (0.4 ат. % Bi, 5 образцов) и II (2 ат. % Bi, 10 образцов разных плавок) проводили в низкотемпературном интервале 210–260°С, в котором ожидали согласно [10] повышенную скорость объемного зарождения кристаллов. Характерные экспериментальные данные приведены в табл. 2–4 и на рис. 3–5.

Изотермическая кристаллизация образцов стекла II происходила с выделением фазы Bi₂Se₃ на первой и основной фазы α-As₂Se₃ на второй ступени. К этому заключе-

Рис. 3. Измеренные при 20°C плотность d и микротвердость H объемно кристаллизующегося стекла AsSe_{1.5}Bi _{0.05} в зависимости от времени термообработки при 210 (1), 225°C (2) (a); 240 (3), 260°C (4) (б). Образцы разных плавок обозначены различными точками.

№ этапа	Время,	$H \pm 3$,	$-\lg \sigma_{20^\circ C}$	$\lg \sigma_0 \pm 0.1$	$E_{\sigma} \pm 0.03,$	$d \pm 0.002$,	$P_{d}, \%$	Фазовый состав по ланным РФА
Stand	1	кі/мм	(Ом ⁻¹	cm^{-1})	30	1/CM		no guilliblin 1 471
1	0	140	11.5	3.2	1.73	4.775		Аморфная фаза
2	13	139	11.4	3.4	1.74	4.775	0	
3	37	141	11.5	3.0	1.71	4.789	29	Bi ₂ Se ₃
4	50	139	11.5	3.1	1.70	4.807	66	и аморфная фаза
5	58	131	11.4	2.7	1.66	4.817	88	
6	60	130	11.5	2.5	1.65	4.823	100(Bi ₂ Se ₃)	
7	62	130	11.5	2.2	1.62	4.823		Bi ₂ Se ₃ , As ₂ Se ₃
8	70	126	11.4	2.3	1.63	4.832	6	и аморфная фаза
9	76	121	10.9	0.1	1.29	4.844	13	
10	90	116	10.1	-1.7	0.99	4.879	34	
				3.8*	1.84*			
11	95	111	9.8	-2.4	0.88	4.893	43	
				3.7*	1.81*			
12	105	97	9.4	-2.5	0.73	4.922	61	
13	161	85	9.3	2.0	1.46	4.985	99	
14	175	83	10.2	1.4	1.40	4.986	$100(As_2Se_3)$	
				4.5*	1.93*			
15	210	80	11.5	1.5	1.53	4.948		
				4.8*	2.03*			

Таблица 3. Экспериментальные данные объемной кристаллизации стекла $AsSe_{1.5}Bi_{0.05}$ при 210°C

* В интервале 100-200°С.

Таблица 4. Экспериментальные данные объемной кристаллизации стекла $AsSe_{1.5}Bi_{0.05}$ при 260°C

Nº	Время,	$H\pm 3,$	$-\lg\sigma_{20^\circ C}$	$\lg \sigma_0 \pm 0.1$	$E_{\sigma} \pm 0.03$,	$d \pm 0.002$,	P.4. %	Фазовый состав
этапа	Ч	кг/мм²	(Ом ⁻¹	см ⁻¹)	эВ	г/см3	u ³ ···	по данным РФА
1	0	144	11.6	3.4	1.77	4.767	~0	Аморфная фаза
2	0.5	125	10.5	1.7	1.44	4.774	15	Bi ₂ Se ₃
3	1.0	116	6.5	-1.4	0.60	4.795	58	и аморфная фаза
4	1.7	112	5.0	-0.7	0.51	4.815	100(Bi ₂ Se ₃)	
5	2.0	110	4.5	-0.3	0.49	4.816		Bi ₂ Se ₃ , As ₂ Se ₃ и
				2.2*	0.88*			аморфная фаза
6	2.6	103	4.2	-0.6	0.42	4.822	6	
7	3.5	95	3.4	-1.5	0.21	4.853	29	
8	5.0	77	3.3	-1.9	0.17	4.888	56	
9	6.3	71	3.2	-2.0	0.14	4.923	83	
10	7.5	65	2.8	-1.8	0.12	4.938	95	
11	12	62	3.2	-19	0.13	4.945	100(As ₂ Se ₃)	
12	17	61	3.1	-2.3	0.10	4.928		
				1.2*	0.4*			

* В интервале 100-200°С.

Рис. 4. Штрих-рентгенограммы поликристаллических порошков Bi_2Se_3 (*I*), As_2Se_3 (*2*) и стеклокристаллических материалов $AsSe_{1.5}Bi_{0.01}$ после термообработки: 171 ч при 240°C (*3*), $AsSe_{1.5}Bi_{0.05}$ после термообработки при 210°C 62 ч (*4*) и 175 ч (*5*). Излучение CuK_{α} . На штрих-рентгенограммах *3*–*5* линии фазы Bi_2Se_3 отмечены черными кружками, остальные линии принадлежат фазе As_2Se_3 .

нию привели результаты РФА поликристаллических порошков Bi_2Se_3 и As_2Se_3 , полученных измельчением стехиометрических сплавов после их длительной вакуумной кристаллизации соответственно при 500 и 350°С, и стеклокристаллических материалов на различных этапах термообработки (рис. 4, межплоскостные расстояния *d*(hkl) интенсивных рефлексов для ромбоэдрической модификации Bi_2Se_3 равны 3.54, 3.03, 2.23, 2.06, 1.89, 1.70 Å; для моноклинной α-модификации As_2Se_3 соответственно 4.98, 2.88, 2.84, 1.80, 1.78, 1.72 Å).

При кристаллизации стекла I с низким содержанием висмута наблюдали три наиболее интенсивных рентгеновских рефлекса фазы Bi_2Se_3 (рис. 4, штрих-рентгенограммы 1 и 3). Результаты измерения микротвердости и микроскопические наблюдения с увеличением до 2000*х* указывали на однородность стеклокристаллических материалов (ситаллов) состава II и высокую дисперсность кристаллических фаз.

По данным микроскопии и РФА при низкотемпературной кристаллизации стекла с 2 ат. % Ві наблюдали индукционный период $\tau_{инд}$ (13 ± 2 ч при 210° С), в котором практически не изменялись микротвердость, плотность и параметры удельной электропроводности E_{σ} , σ_0 и $-\lg\sigma_{20^{\circ}C}$ (табл. 3) в выражении $\sigma = \sigma_0 \exp(-E_{\sigma}/2kT)$ для собственной проводимости полупроводников. При последующем выделении первичной фазы Bi_2Se_3 с более высокой плотностью (7.66 г/см³) постепенно возрастала эффективная плотность (в итоге на 1.0%) закаленных стеклокристаллических материалов без существенного изменения микротвердости (табл. 3, этапы 3–7) и параметров удельной электропроводности (рис. 5, кривые 1, 4 и 7).

Селенид висмута — широко используемый термоэлектрик и перспективный топологический изолятор с проводящей поверхностью, имеет переменный состав Bi_{2+x}Se₃ с узкой областью гомогенности ($x \le 0.04$). Идеальный стехиометрический монокристалл Bi₂Se₃ в объеме является полупроводником с запрещенной зоной ~0.35 эВ. Вакансии селена в реальных кристаллах низкоомного селенида висмута *n*-типа действуют как доноры электронов [11].

Из-за малого содержания фазы Bi_2Se_3 характер изменения плотности и микротвердости (рис. 3) определяется расстекловыванием (devitrification) вторичной основной фазы As_2Se_3 . Выделение кристаллической фазы As_2Se_3 постепенно повышало эффективную плотность (в итоге на 3.4%) и значительно понижало микротвердость легированных 2 ат. % Ві стеклокристаллических материалов, как и при кристаллизации чистого стекла As_2Se_3 . Однако химическая стойкость ситаллов на основе селенидов висмута и мышьяка [12] не зависит от степени кристаллизации и в 3–4 раза выше, чем полностью закристаллизованного стекла As_2Se_3 .

На первой и второй ступенях низкотемпературной изотермической кристаллизации эффективная плотность закаленных ситаллов возрастала, приближаясь к предельным значениям (табл. 2–3). При увеличении времени или температуры термообработки происходили вторичные процессы агрегации и срастания кристалликов с понижением дисперсности и эффективной плотности материалов (рис. 3, кривые 2–4, табл. 4).

Определение степени завершенности кристаллизации α_d выполняли согласно выражению

$$\alpha_d = (d_{\tau} - d_0) / (d_{\infty} - d_0), \tag{1}$$

где d_0 , d_{τ} и d_{∞} – плотность материала соответственно в исходном состоянии, на этапе термообработки τ и в конце расстекловывания исследуемой фазы. В табл. 2–4 приведены результаты определения процента кристаллизации $P_d = 100\alpha_d$ для фаз Bi₂Se₃ и As₂Se₃.

Изотермы $\alpha_d(\tau)$ в виде *S*-образных кривых с перегибом анализировали на основе уравнения Колмогорова–Аврами, обобщенного нами ранее [3] на ступенчатые изотермические фазовые превращения в следующем виде

$$\alpha_i = 1 - \exp\left(-k_i \tau_{\text{KHH}}^{\eta_i}\right),\tag{2}$$

где α_i — степень завершенности процесса кристаллизации анализируемой *i*-фазы; n_i , k_i — соответственно кинетический параметр и константа валовой скорости кристаллизации *i*-фазы; $\tau_{\text{кин}}$ — кинетическое время кристаллизации, определяемое разностью общего времени термообработки τ и индукционного периода $\tau_{\text{инд}}$ кристаллизации *i*-фазы.

При двойном логарифмировании уравнения (2) получаем выражение

$$\lg[-\lg(1-\alpha)] = \lg(k/2.3) + n\lg\tau_{_{\rm KHH}},\tag{3}$$

Рис. 5. Параметры удельной электропроводности в зависимости от времени объемной изотермической кристаллизации стекла AsSe_{1.5}Bi_{0.05} при 210 (*1*, *4*, *7*), 240 (*2*, *5*, *8*) и 260°С (*3*, *6*, *9*). Участки кривых *1** и *4** относятся к измерениям электропроводности в интервале 100–200°С, все остальные кривые – к измерениям в интервале 20–100°С. Образцы разных плавок обозначены различными точками.

которому соответствует прямая линия в координатах $lg[-lg(1 - \alpha)] = f(lg\tau_{кин})$. По таким изотермам (см. рис. 6) методом наименьших квадратов определены с надежностью 95% средние кинетические параметры *n* и -lgk для выделения основной кристаллической фазы As₂Se₃ в стеклах I и II (табл. 5). Полученные значения кинетического параметра *n* свидетельствуют о преимущественно гетерогенном зарождении и двумерном росте кристаллов As₂Se₃ в исследуемых стеклах I и II. По данным оптической и электронной микроскопии [2] морфология роста в виде пластинок (plate-like) характерна для монокристаллов As₂Se₃ и растущих индивидуальных кристаллов в стекле As₂Se₃.

Для первой ступени кристаллизации (фаза Bi_2Se_3 в стекле II, табл. 3) оценка кинетических параметров *n* и lg*k* дает значения 2.85 \pm 0.15 и -15.0 ± 0.8 . Согласно теорети-

Рис. 6. Изотермы объемной кристаллизации вторичной основной фазы As_2Se_3 из стекла $AsSe_{1.5}Bi_{0.05}$ при 210 (1), 225 (2), 240 (3) и 260°С (4). Образцы разных плавок обозначены различными точками, $\alpha' = 1 - \alpha$.

ческой модели [13] эти результаты свидетельствуют о двумерном линейном росте гомогенно образующихся и уже имевшихся ~15% готовых зародышей первичной фазы Bi₂Se₃ в образцах стекла II при достижения заданной температуры кристаллизации (210°C).

По данным [14] для анизотропных монокристаллов Bi_2Se_3 характерна двумерная слоистая структура в форме механически разделяющихся листов. Смежные слои связаны слабыми силами Ван дер Ваальса. По нашему мнению, наноразмерные ассоциаты тригональных структурных единиц $BiSe_{3/2}$ в стекле II обеспечили при оптимальной термообработке преимущественно гомогенное зарождение кристаллов Bi_2Se_3 , в которых атомы Bi образуют характерные для структуры селенида висмута три прочные короткие и три более слабые и длинные ионно-ковалентные связи Bi–Se.

Стекло	$AsSe_{1.5}Bi_{0.01}$	AsSe _{1.5} Bi _{0.05}				
$t \pm 1^{\circ}\mathrm{C}$	240	210	225	240	260	
n	2.05 ± 0.10	2.05 ± 0.06	2.03 ± 0.03	1.98 ± 0.05	2.03 ± 0.04	
$-\lg k \pm 0.4$	11.10	10.78	9.75	8.72	8.12	
$-n^{-1}\lg k$	5.43	5.26	4.82	4.40	4.00	
$\lg \tau_{_{\rm HHJ}} \pm 0.09$	5.16	5.01	4.47	4.02	3.56	
$\lg\tau_{0.5,\rm Kuh}\pm0.09$	5.35	5.18	4.72	4.32	3.92	

Таблица 5. Кинетические параметры объемной изотермической кристаллизации фазы As_2Se_3 из стекол $AsSe_{1.5}Bi_x$

Изотермическое выделение первичной фазы Bi_2Se_3 в стекле с 2 ат. % Ві ускоряет кристаллизацию основной фазы As_2Se_3 , уменьшая по сравнению с кристаллизацией чистого стекла As_2Se_3 [1] примерно в 4 раза скрытый период образования фазы As_2Se_3 и в 13 раз кинетический период полупревращения $\tau_{0.5, \text{ кин}}$ (табл. 5). Возможно, это связано с высокой дисперсностью первичной фазы Bi_2Se_3 , заметным сходством слоистых структур, близостью коэффициентов линейного термического расширения ~ 1.9×10^{-5} и 2.2×10^{-5} K⁻¹ кристаллов соответственно Bi_2Se_3 [14] и As_2Se_3 [2]. Изотермическая кристаллизация в стекле II тонкодисперсной первичной фазы As_2Se_3 с уменьшением

термодинамического ΔG^* или кинетического барьера зарождения $\Delta G'_a$ по сравнению с чистым стеклом As₂Se₃.

Оценим изменение концентрации центров кристаллизации при легировании стекла As_2Se_3 2 ат. % Ві. В соответствии с найденными значениями кинетического параметра *n* (табл. 5) в уравнении (2) при гетерогенном объемном зарождении и двумерном росте кристаллов As_2Se_3 константа валовой скорости кристаллизации описывается формулой [3]

$$k = \pi l N u^2, \tag{4}$$

где l — толщина растущей пластинки кристалла (~10⁻⁷ см для As₂Se₃), N — объемная концентрация готовых центров кристаллизации.

Оценка концентрации готовых центров N по формуле (4) с использованием данных k (табл. 5) дает значения ~4 × 10⁸ и 4 × 10¹⁰ см⁻³ для объемной гетерогенной кристаллизации фазы As₂Se₃ на второй ступени при 240°C соответственно в стеклах I и II (при допущении постоянства в этих стеклах величины $u = (3.4 \pm 0.1) \times 10^{-7}$ см с⁻¹, согласно данным измерения в стекле As₂Se₃ при 240°C [2]). Для гетерогенной изотермической кристаллизации чистого стекла As₂Se₃ при 240°C наша оценка [4] концентрации центров N дает ~2 × 10⁸ см⁻³, а по скорости гомогенного зарождения и индукционному периоду на три порядка меньше. Таким образом, можно пренебречь вкладом гомогенного зарождения (<0.02% при 240°C) кристаллов As₂Se₃ в концентрацию готовых центров N в формуле (4).

Анализируя известные формулы для скорости стационарной нуклеации применительно к пластинчатым кристаллам As_2Se_3 в стеклах $AsSe_{1.5}Bi_x$, можно показать, что при снижении термодинамического барьера зарождения кристаллов ΔG^* на 10–15% скорость гетерогенного зарождения на нанокристаллах Bi_2Se_3 превысит скорость гомогенного зарождения кристаллов As_2Se_3 на 2–3 порядка. Такое превышение вполне возможно, как установлено в работе [16] прямыми измерениями скорости стационарного зарождения кристаллов дисиликата лития на наночастицах Ag и в объеме чистого стекла $Li_2O \cdot 2SiO_2$.

Методом наименьших квадратов из зависимостей $n^{-1} \lg k (T^{-1})$ и $\lg \tau_{\text{инд}} (T^{-1})$ по данным табл. 5 определены эффективная энергия активации E_a (125 ± 6 кДж/моль) массовой объемной кристаллизации фазы As₂Se₃ в стекле II в интервале температур 210–260°С и энтальпия активации E'_a зарождения ($\alpha \sim 0$) кристаллов этой фазы, равная 142 ± 6 кДж/моль и существенно меньшая соответствующей величины (170 ± 9 кДж/моль) [4] при кристаллизации чистого стекла As₂Se₃ (табл. 6).

Поскольку эффективная величина энергии активации E_a в изокинетической области температур (параметр *n* в уравнении (2) постоянен) равна $[E'_a + (n-1)E']/n$ согласно [3], то при известных величинах E_a и E'_a можно найти энергию активации линейно-

Степень кристаллизации о	Стекло As ₂ Se ₃ [4]	Стекло AsSe _{1.5} Bi _{0.05}			
Степень кристализации о	$E_{ m a}$, кДж/моль				
~0	170 ± 9	142 ± 7			
0.25	144 ± 9	125 ± 6			
0.50	140 ± 7	119 ± 5			
0.75	143 ± 8	116 ± 6			
0.90	141 ± 8	114 ± 5			

Таблица 6. Эффективная энергия активации (E_a) объемной изотермической кристаллизации стекла As₂Se₃ и фазы As₂Se₃ из стекла AsSe_{1.5}Bi_{0.05} в интервале 210–260°C

го роста кристаллов $E_a^{"}$ (110 ± 7 кДж/моль для основной фазы As₂Se₃ в стекле II с 2 ат. % висмута). Полученная величина $E_a^{"}$ удовлетворительно согласуется со значениями энергии активации на этапах преимущественного роста ($\alpha > 0.5$) кристаллов As₂Se₃ в этом стекле (табл. 6), найденными методом сечения кинетических кривых (рис. 6, 7) при постоянных значениях степени кристаллизации α .

Процесс реконструктивной кристаллизации вторичной основной фазы As₂Se₃ в стекле II описывается интервалом значений энергии активации E_a (табл. 6) и создает возрастающее отклонение состава остаточной стеклофазы от стехиометрического соотношения мышьяка и селена в соединении As₂Se₃ при ступенчатых превращениях:

1.
$$AsSe_{1.5}Bi_{0.05}(c) = 0.025 Bi_2Se_3(\kappa) + AsSe_{1.43}(c),$$

2.
$$AsSe_{1.43}(c) = 0.5yAs_2Se_3(\kappa) + As_{1-y}Se_{1.43-1.5y}(c), y \le 0.71.$$

Влияние температуры и концентрации висмута на характер кристаллизации и параметры электропроводности стеклокристаллических сплавов AsSe $_{1.5}Bi_x$ ($x \le 0.05$)

При постепенном легировании стекла As_2Se_3 висмутом до 3.7 ат. % плотность повышается на 7.9%, микротвердость практически не изменяется, удельная электропроводность при 20°С постепенно повышается на 2 порядка, а энергия активации электропроводности E_{σ} уменьшается на 0.2 эВ [6].

Рис. 7. Влияние температуры на индукционный период (*1*) и время завершения кристаллизации фазы As₂Se₃ из стекла AsSe_{1.5}Bi_{0.05} на 25 (*2*), 50 (*3*), 75 (*4*) и 90% (*5*).

Увеличение концентрации висмута от 0.4 ат. % в стекле I до 2 ат. % в стекле II повышает кристаллизационную способность и изменяет характер массовой изотермической кристаллизации с поверхностно-объемной (табл. 1, 2) на равномерную по всему объему стекла с образованием полупроводниковых ситаллов (табл. 3, 4).

Характер изменения параметров электропроводности при изотермической кристаллизации стекол $AsSe_{1.5}Bi_x$ зависит в основном от концентрации Bi и температуры (рис. 5). Выделение первичной низкоомной фазы Bi_2Se_3 с малой объемной долей практически не изменяет параметры удельной электропроводности стекол I и II, кристаллизующихся соответственно при 240 и 210°C (табл. 2, 3).

На второй ступени кристаллизации выделяется основная фаза As_2Se_3 с низкой электропроводностью *p*-типа, и проводимость кристаллизующегося стекла I постепенно понижается на порядок (табл. 2, этапы 4–10). Энергия активации собственной электропроводности E_{σ} увеличивается при этом на 0.2 эВ, приближаясь к величине E_{σ} для полностью закристаллизованного стекла As_2Se_3 (1.95–2.0 эВ).

Расчет эффективной удельной электропроводности σ при 20°C по теоретической формуле для матричной двухфазной системы [17] с использованием объемных долей фаз (~0.01 для Bi₂Se₃ в кристаллизующемся стекле I с 0.4 ат. % Bi) и величин электропроводности непрерывной стеклофазы (1.6×10^{-13} Om⁻¹ cm⁻¹) или кристаллической фазы As₂Se₃ (3×10^{-14} Om⁻¹ cm⁻¹) и разобщенных невытянутых кристаллических микровключений Bi₂Se₃ (0.5 Om⁻¹ cm⁻¹) дает значения σ , близкие к экспериментальным (табл. 2, этапы 3 и 10).

На этапах выделения фазы Bi₂Se₃ при низкотемпературной(210 и 225°C) кристаллизации параметры электропроводности ситаллов II с 2 ат. % Ві определяются слабо проводящей стеклообразной фазой, блокирующей низкоомные нано- и микрокристаллы селенида висмута (рис. 5, кривые 1, 4 и 7, табл. 3, этапы 2–7). При последующей термообработке при 210°C (этапы 8–12, табл. 3) наблюдаются постепенное уменьшение параметров E_{σ} и σ_0 и увеличение электропроводности на 2 порядка при 20°C.

Следует отметить, что измеренная в интервале 100–200°С собственная электропроводность ситаллов II, полученных низкотемпературной кристаллизацией при 210°С, имеет параметры E_{σ} и σ_0 , близкие к параметрам основной кристаллической фазы As₂Se₃ (табл. 3, этапы 14–15).

При повышении температуры кристаллизации (240 и 260°С) образцов стекла II уже на этапах выделения низкоомной фазы Bi_2Se_3 с объемной долей до 4% фиксируются скачкообразное падение параметров E_{σ} и σ_0 и увеличение электропроводности максимально на 9 порядков при 20°С (рис. 5, штриховые линии) с изменением носителей заряда с *p*- на *n*-тип, характерный для кристаллов Bi_2Se_3 . Наблюдаемый рост электропроводности (при 20°С) при формировании ситаллов II с 2 ат. % Ві может быть вызван протеканием при термообработке процессов агрегации и срастания низкоомных микрокристаллов Bi_2Se_3 с постепенным понижением дисперсности, микротвердости ситаллов (рис. 3) и созданием связности фазы Bi_2Se_3 (проводящих нитей или шнура в образце между электродами). Измеренная в интервале 100–200°С электропроводность ситаллов II, полученных кристаллизацией при 260°С, имеет параметры E_{σ} и σ_0 , близкие к параметрам поликристаллического селенида висмута (табл. 4, этап 12).

ЗАКЛЮЧЕНИЕ

Введение в стекло $As_2Se_3 0.4$ ат. % висмута в 2–3 раза уменьшает индукционный период и в 2 раза увеличивает скорость изотермической поверхностной кристаллизации стекла при 270–310°С.

Увеличение концентрации висмута от 0.4 до 2 ат. % в стекле As_2Se_3 значительно ускоряет расстекловывание при 210–240°С, изменяя характер массовой изотермической кристаллизации с поверхностно-объемной на равномерную по всему объему стекла с образованием полупроводниковых ситаллов.

Ускоряющее влияние добавки 2 ат. % Ві на изотермическую кристаллизацию стекла As₂Se₃ вызвано в основном снижением термодинамического барьера и энтальпии активации объемного гетерогенного зарождения пластинчатых кристаллов фазы As₂Se₃ на зародившихся в основном гомогенно слоистых кристаллах первичной фазы Bi₂Se₃.

Процесс ступенчатого расстекловывания $AsSe_{1.5}Bi_{0.05}$ сопровождается непрерывным изменением химического состава и характеризуется интервалом значений энергии активации. При изотермической кристаллизации стекла As_2Se_3 с 2 ат. % Ві в интервале $240-260^{\circ}C$ уже на этапах выделения первичной фазы Bi_2Se_3 протекают процессы агрегации и срастания низкоомных микрокристаллов этой фазы с сильным ростом (максимально на 9 порядков при $20^{\circ}C$) электропроводности полупроводниковых стеклокристаллических материалов.

СПИСОК ЛИТЕРАТУРЫ

- Школьников Е.В. Влияние переохлаждения и отклонений от стехиометрии на кинетику и механизм кристаллизации стекла As₂Se₃ // Физ. и хим. стекла. 2020. Т. 46. № 2. С. 148–163.
- Henderson D.W., Ast D.G. Viscosity and crystallization kinetics of As₂Se₃ // J. Non-Crystalline Solids. 1984. V. 64. № 1. P. 43–70.
- Школьников Е.В. Кинетика ступенчатой объемной кристаллизации стекол AsSe_{1.5}Sn_x (x ≤ 0.28) // Физ. и хим. стекла. 2017. Т. 43. № 2. С. 172–183.
- 4. Школьников Е.В Влияние добавок Рb на кинетику и механизм кристаллизации стекла As₂Se₃ // Физ. и хим. стекла. 2019. Т. 45. № 1. С. 16–28.
- 5. Школьников Е.В., Бессонова Э.Ю. Механизм электропроводности полупроводниковых стеклокристаллов на основе As₂Se₃ и Bi₂Se₃ // Известия АН СССР. Неорганические материалы. 1976. Т. 12. № 2. С. 210–214.
- 6. *Борисова З.У.* Халькогенидные полупроводниковые стекла. Л.; Изд. Ленингр. ун-та, 1983. 344 с.
- 7. Андреев О.В., Инглизян П.Н., Щурова М.А., Калиев Д.И. Твердые растворы в системах Bi₂Se₃-Sm₂Se₃, Sb₂Se₃-Sm₂Se₃ и Bi₂Se₃-SmSe и их свойства // Термоэлектрики и их применения: Доклады межгос. конф. Санкт-Петербург: ФТИ РАН, 2015. С. 334–340.
- 8. Филипович В.Н., Калинина А.М., Фокин В.М., Юрицын Н.С., Сычева Г.А. Кинетические законо-мерности зарождения кристаллов в объеме и на поверхности силикатных стекол // Физ. и хим. стекла. 1999. Т. 25. № 2. С. 327–336.
- 9. Malek J., Shanelova J., Martinkova S., Pilny P., Kostal P. Crystal growth velocity in As₂Se₃ supercooled liquid // Crystal Growth. Design. 2017. V. 17. № 9. P. 4990–4999.
- 10. Школьников Е.В. Полуэмпирический расчет кривых Таммана для кристаллизации стекол As₂X₃ и TlAsX₂ (X–S, Se, Te) // Физ. и хим. стекла.1980. Т.6. № 3. С.282–288.
- 11. Lawal Abdullahi, Shaary A., Ahmed R., Ali M.H., Jarconi Norshila. Electronic and optical properties of Bi₂Se₃ topological insulator: a promising absorbing layer for broadband photodetector // ARPN J. Engineering and Applied Sciences.2017. V. 12. № 21. P. 5880–5886.
- 12. *Федотова Г.В., Школьников Е.В.* Скорость растворения закристаллизованных в различной степени стекол AsSe_{1.5}Bi_{0.05} // Физ. и хим. стекла. 1978. Т. 4. № 2. С. 213–218.
- 13. *Hay J.N.* Appllication of the modified Avrami equations to polymer crystallization kinetics // Brit. Polym. J. 1971. V. 3. № 3. P. 74–82.
- 14. Rasin A., Qiyuan L., Yin X., Giovanni Z. Growth, morphology and crystal structure of electrodeposited Bi₂Se₃ films // Electrochimicaq Acta. 2019. V. 299. № 3. P. 654–662.
- 15. Chen X., Zhou H.D., Kiswandhi A., Miotkowski I., Chen Y.P., Sharma P.A., Sharma A.L. Lima, Hekmaty M.A., Smirnov D., Jiang Z. Thermal expansion coefficients of Bi₂Se₃ and Sb₂Te₃ crystals from 10 K to 270 K // Applied Physics Letters. 2011. V. 99. № 26. 261912-3 p.
- 16. Сычева Г.А. Гомогенное и гетерогенное зарождение кристаллов серебросодержащих стекол и их оптические свойства // Физ. и хим. стекла. 2015. Т. 41. № 4. С. 530–535.
- 17. Оделевский В.И. Расчет обобщенной проводимости гетерогенных систем // Журн. техн. физики. 1951. Т. 21. № 6. С. 667–677.