ПОЛИЭЛЕМЕНТНЫЕ ГЕКСАБОРИДЫ В СИСТЕМЕ La-Ce-Sm-B

© 2021 г. Д. Д. Несмелов^{1,} *, Е. С. Новоселов¹, И. Д. Шабалкин¹, Д. П. Данилович¹, М. И. Теневич¹

¹Санкт-Петербургский государственный технологический институт (технический университет), Московский проспект, 26, Санкт-Петербург, 190013 Россия *e-mail: dnesmelov@yandex.ru

> Поступила в редакцию 23.10.2020 г. После доработки 01.02.2021 г. Принята к публикации 05.02.2021 г.

Полиэлементные твердые растворы гексаборидов в системе La–Ce–Sm–В получены твердофазным боротермическим восстановлением смеси оксидов P3M в вакууме 10^{-2} Па при температуре 1450–1650°С. С использованием растровой электронной микроскопии исследована морфология частиц твердых растворов. Средний размер частиц твердых растворов составил от 200 до 400 нм. Установлено, что температура начала вторичной рекристаллизации твердых растворов лежит в интервале 1550–1650°С. Методами рентгенофазового и микрорентгеноспектрального анализов определен фазовый и химический состав порошков. Определены размеры кристаллитов и параметры кристаллической решетки. Зависимость параметров кристаллической решетки от концентрации атомов заместителей демонстрирует положительное от-клонение от закона Вегарда.

Ключевые слова: синтез, твердый раствор, дисперсность, боротермическое восстановление, гексаборид лантана

DOI: 10.31857/S0132665121030094

ВВЕДЕНИЕ

Гексаборид лантана широко применяется в современной технике благодаря выдающимся термоэмиссионным характеристикам – низкой работе выхода электронов и высокой плотности тока эмиссии [1–3]. Кроме того, высокая плотность свободных носителей заряда важна для перспективного направления использования LaB₆ – создания материалов для солнечной энергетики [4, 5]. Среди материалов, в которых реализуется явление локализованного поверхностного плазмонного резонанса гексаборид лантана выделяется положением максимума поглощения в ближней инфракрасной области спектра, вследствие чего LaB₆ способен эффективно поглощать солнечное тепло [6-8]. С увеличением диаметра наночастиц гексаборида вплоть до 80 нм наблюдается увеличение длины волны максимума поглощения [9, 10]. Благодаря способности изоструктурных гексаборидов РЗЭ образовывать непрерывные ряды твердых растворов $La_x R_{(1-x)} B_6$ (где R – один или несколько РЗЭ) существует возможность регулирования оптических характеристик материала в достаточно широких пределах. В ряде работ [8, 11, 12] исследовано влияние концентрации растворенных в решетке LaB₆ атомов Sm, Eu, Yb на спектральные характеристики. Наиболее существенное влияние на смещение частоты плазмонного резонанса (и, как следствие, максимума поглощения) оказывает допирование гексаборида трехвалентного лантана

Элемент	Электронная конфигурация	Степень окисления	Атомный радиус, Å
La	$5d^16s^2$	+3	1.87
Ce	$4f^15d^16s^2$	+3, +4	1.83
Pr	$4f^36s^2$	+3, +4	1.82
Sm	$4f^{6}6s^{2}$	+2, +3	1.81
Eu	$4f^76s^2$	+2, +3	2.02
Tb	$4f^96s^2$	+3, +4	1.77
Dy	$4f^{10}6s^2$	+3, +4	1.77
Tm	$4f^{13}6s^2$	+2, +3	1.74
Yb	$4f^{14}6s^2$	+2, +3	1.93

Таблица 1. Электронные конфигурации, валентность и радиус атома лантана и некоторых лантаноидов [13–16]

атомами, изменяющими электронную плотность системы — f-металлами со степенью окисления +2 или +4 и отличающимися атомными радиусами. В табл. 1 приводятся электронные конфигурации, характерные степени окисления и радиусы атомов лантана и лантаноидов, проявляющих степень окисления, отличную от +3.

Проявление аномальной степени окисления атомами Се и Tb (+4), а также Eu и Yb (+2), традиционно объясняют формированием устойчивых электронных конфигураций 4f⁰, 4f⁷ и 4f¹⁴ [15, 16]. Однако степень окисления +2 также характерна для Sm и Tm, а +4 – для Pr и Dy, которые не формируют таких конфигураций. Это связано как со стабильностью электронной конфигурации, так и с термодинамическими параметрами химического соединения, в состав которого входит атом.

В связи с этим представляет интерес получение полиэлементных тройных гексаборидов, в которых влияние на электронную плотность системы будут оказывать как двух-, так и четырехвалентные атомы P3M, аномальная степень окисления которых обусловлена различными факторами — стабильностью электронной конфигурации (Се, Тb, Eu или Yb) и термодинамическими параметрами (Sm, Tm, Pr или Dy). Ранее были синтезированы монокристаллические гексабориды, в состав которых входили атомы P3M различной валентности [17–21], однако синтез высокодисперсных порошков полиэлементных гексаборидов в литературе не описан.

Целью настоящей работы был синтез порошков полиэлементных твердых растворов гексаборидов $La_x(Ce,Sm)_{(1-x)}B_6$, в состав которых входят гетеровалентные атомы La, Ce и Sm, исследование их состава и структуры, а также построение концентрационной зависимости параметра элементарной ячейки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез твердых растворов проводили в следующих стехиометрических соотношениях: $La_x(Ce_{0.25}Sm_{0.75})_{1-x}$ и $La_x(Ce_{0.75}Sm_{0.25})_{1-x}$, где x = 0.2, 0.4, 0.6 или 0.8 (см. табл. 2).

Оценку энергии образования смешанных боридов в сравнении с индивидуальными боридами проводили с использованием открытого программного комплекса MaterialsProject.com, основанного на принципах теории функционала плотности в обобщенном градиентном приближении (GGA) и обобщенном градиентном приближении с коррекцией Хаббарда (GGA+U) [22, 23].

В работе использовали порошки оксидов лантана, церия и самария с паспортным содержанием основной фазы 99.99 мас. % и аморфный бор марки Б-99А с содержанием бора 99.5 мас. %. С учетом гигроскопичности оксидов РЗМ, непосредственно перед подготовкой реакционных смесей проводили термогравиметрический и дифференци-

Обозначение	Стехиометрия	Обозначение	Стехиометрия
LC	$La_{0.5}Ce_{0.5}B_{6}$	LS	La _{0.5} Sm _{0.5} B ₆
LC1	$La_{0.2}Ce_{0.8}B_{6}$	LS1	$La_{0.2}Sm_{0.8}B_{6}$
LC2	$La_{0.8}Ce_{0.2}B_{6}$	LS2	$La_{0.8}Sm_{0.2}B_{6}$
LCS1	La _{0.2} (Ce _{0.75} Sm _{0.25}) _{0.8} B ₆	LCS2	La _{0.2} (Ce _{0.25} Sm _{0.75}) _{0.8} B ₆
LCS3	La _{0.4} (Ce _{0.75} Sm _{0.25}) _{0.6} B ₆	LCS4	La _{0.4} (Ce _{0.25} Sm _{0.75}) _{0.6} B ₆
LCS5	La _{0.6} (Ce _{0.75} Sm _{0.25}) _{0.4} B ₆	LCS6	$La_{0.6}(Ce_{0.25}Sm_{0.75})_{0.4}B_6$
LCS7	$La_{0.8}(Ce_{0.75}Sm_{0.25})_{0.2}B_6$	LCS8	La _{0.8} (Ce _{0.25} Sm _{0.75}) _{0.2} B ₆

Таблица 2. Составы твердых растворов

альный термический анализ исходных соединений с использованием термоанализатора-дериватографа Shimadzu DTG-60. Значения потери массы учитывали при подготовке смесей.

Смешение компонентов проводили в лабораторном аттриторе HD-01 при частоте вращения вала 400 об./мин в течение 2 ч в среде высокоочищенного бензина БР-2 с использованием оснастки и мелющих тел из SiC. Затем смесь высушивали и гранулировали на сите с размером ячейки 100 мкм. Из полученного порошка формовали образцы в форме цилиндров диаметром 20 и высотой 10 мм методом одноосного полусухого прессования при давлении 30 МПа.

Высокотемпературный синтез боридов проводили боротермическим восстановлением оксидов по схеме, которая может быть условно описана в виде трех параллельно протекающих твердофазных реакций:

$$La_2O_3 + B = LaB_6 + B_2O_2,$$
 (1)

$$CeO_2 + B = CeB_6 + B_2O_2,$$
 (2)

$$Sm_2O_3 + B = SmB_6 + B_2O_2.$$
 (3)

В реальных условиях синтез полиэлементных боридов описывается более сложной совокупностью химических и диффузиионных процессов.

Термообработку образцов, отформованных в виде цилиндров из смеси оксидов и бора проводили в вакуумной печи сопротивления СШВЛ 1.2.5/25 с изотермической выдержкой в течение 2 ч при давлении остаточных газов не более 10^{-2} Па. Изотермическую выдержку в трех сериях эксперимента проводили при температуре 1450, 1550 и 1650°С. После синтеза таблетки дробили в ступке.

Рентгенофазовый анализ исходных компонентов и полученных в результате синтеза порошков проводили на многофункциональном порошковом дифрактометре Rigaku SmartLab 3 в диапазоне углов 20 10° — 80° (Си K_{α} излучение, Ni-фильтр, шаг 0.01°). Вычисление параметров кристаллической решетки проводили с использованием условия Вульфа—Бреггов: $\lambda = 2d_{hkl}$ sin θ ($\lambda = 1.540593$ Å — длина волны рентгеновских лучей, d_{hkl} — расстояние между параллельными плоскостями узлов пространственной решетки кристалла, θ — угол между отражающей плоскостью и падающим лучом). Размеры областей когерентного рассеяния определяли в рамках подхода Халдера—Вагнера [24] с использованием программного обеспечения Rigaku SmartLab Studio II. Объемное распределение частиц порошков по размерам определяли методом лазерной дифракции в жидкости с использованием прибора Shimadzu SaldNano-7500. Анализ дисперсности и морфологии порошков проводили с помощью СЭМ Tescan Vega 3SBH; микрорентгеноспектральный анализ химического состава осуществляли с помощью рентгеновского энергодисперсионного микроанализатора Aztec X-Act (Oxford Instruments).

Рис. 1. Энергия образования индивидуальных и смешанных гексаборидов (LC – $La_{0.5}Ce_{0.5}B_6$, LS – $La_{0.5}Sm_{0.5}B_6$, LCS – $La_{0.25}Ce_{0.25}Sm_{0.25}B_6$).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты расчета энергий образования индивидуальных фаз и смешанных боридов показаны на рис. 1. По соотношению величины энергии можно заключить, что наиболее энергетически выгодным является образование LaB₆. Величины энергии образования смешанных боридов являются промежуточными по отношению к индивидуальным боридам и близки к аддитивным значениям.

Результаты ДТГ и ДТА исходных оксидов (рис. 2) демонстрируют заметную потерю массы (в среднем 12 мас. %) и проявление двух выраженных эндотермических эффектов. Изменение массы прекращается при температуре около 900°С. В комплексе с данными рентгенофазового анализа исходных компонентов это позволяет утверждать, что коммерческие оксиды РЗМ в процессе хранения в заводской упаковке в течение гарантийного срока под воздействием влаги и углекислого газа из атмосферы образуют смесь гидроксидов, карбонатов и гидрокарбонатов РЗМ. Разложение смеси перечисленных соединений приводит к наблюдаемой картине ДТА/ДТГ.

После проведения твердофазного синтеза во всем исследованном температурном диапазоне (1450–1650°С) по данным РФА (рис. 3a) в синтезированных порошках присутствовала основная кубическая фаза Pm3m. Интенсивность пиков кубической фазы закономерно возрастает с увеличением температуры изотермической выдержки. Положение максимумов по оси 20 в спектрах составов с отличающейся концентрацией атомов-заместителей различно, что свидетельствует об изменении межплоскостных расстояний. В спектрах составов, синтезированных при температуре 1450°С присутствуют слабые пики гидроксидов лантана, церия и самария, что указывает на незавершенность процесса синтеза. Непрореагировавшие остатки оксидов, находившиеся в продуктах синтеза, при хранении на воздухе взаимодействовали с атмосферной влагой с образованием соответствующих гидроксидов. В спектрах смесей, синтезированных при более высоких температурах (1550 и 1650°С) заметны слабые пики промежуточных соединений – боратов RBO₃ и R₃BO₆. При повышении температуры изотермиче-

Рис. 2. Результаты дифференциальной термогравиметрии и дифференциального термического анализа оксида лантана.

Рис. 3. Спектры рентгеновской дифракции смесей, синтезированных с различным содержанием атомов-заместителей (*a*) и смещение пиков при больших углах 2θ (*б*).

ской выдержки до 1650°C рефлексы RBO₃ становятся очень слабыми и единственной примесью, рефлексы которой фиксируются достоверно, становится R₃BO₆.

Морфология и дисперсность порошков смешанных боридов заметно зависит от температуры синтеза (рис. 4). Однако несмотря на это, общим признаком частиц всех синтезированных полиэлементных гексаборидов, независимо от температуры синтеза и состава является изометричность. При низкой температуре изотермической выдержки (1450°С) в процессе синтеза преимущественно формировались зерна, близкие по форме к сферической. С увеличением диаметра частиц наблюдается более выраженное стремление к кубической форме. Средний диаметр частиц смесей различных составов, синтезированных при 1450°С практически не отличался и находился в диапазоне 200–250 нм. По данным лазерного анализа дисперсности, частицы были распределены по размерам по закону, близкому к нормальному логарифмическому (рис. 5).

Отдельные крупные частицы достигали размеров 600-1000 нм, однако их содержание было невысоким и это не приводило к появлению второго максимума на кривой

Рис. 4. РЭМ-снимки порошков твердых растворов: LCS1 (*a*, *в*) и LCS7 (*б*, *г*), синтезированных при 1450°С (*a*, *б*) и 1650°С (*в*, *г*).

распределения. При увеличении температуры синтеза до 1550°С доля крупных частиц возрастала, средний диаметр достигал 300–350 нм, распределение также имело вид кривой с одним максимумом. Порошки, синтезированные при температуре 1650°С, помимо частиц сферической морфологии со средним размером 350–400 нм, содержали крупные частицы (до 10 мкм) с выраженной кубической огранкой. Это проявилось в бимодальном характере распределения частиц по размерам (рис. 5), где максимум в области 300 нм соответствует основной фракции, а правый максимум соответствует более крупным кубическим частицам. Формирование частиц двух размерных групп связано с вторичной рекристаллизацией за счет диффузионного поглощения мелких частиц крупными в течение изотермической выдержки. Во всех синтезированных твердых растворах эти процессы начинаются в интервале температур 1550–1650°С.

Данные о параметрах элементарной ячейки (*a*) и размерах областей когерентного рассеяния (d_{OKP}) полиэлементных боридов, синтезированных при температуре 1650°С представлены в табл. 3 и на рис. 6.

Изменение размеров ОКР не имеет выраженной зависимости от состава твердого раствора и принимает значения от 98 до 140 нм.

Параметр элементарной ячейки гексаборидов закономерно изменяется с увеличением концентрации атомов-заместителей Се и Sm. На рис. 6 показаны рассчитанные

Рис. 5. Распределение по размерам частиц порошков LCS7.

по правилу аддитивности теоретические (3, 4) и экспериментальные (1, 2) концентрационные зависимости параметра *a*. Положительное отклонение параметра ячейки от закона Вегарда наблюдается как для составов LCS1, 3, 5, 7, отвечающих формуле La_x(Ce_{0.75}Sm_{0.25})_{1 – x}B₆ (кривая 2), так и для составов LCS2, 4, 6, 8, описывающихся формулой La_x(Ce_{0.25}Sm_{0.75})_{1 – x}B₆ (кривая 1). Однако характер этих зависимостей отличается: для составов, в которых соотношение Ce : Sm составляет 0.75 : 0.25 он близок к линейному или квадратичному с малой кривизной, т.е. отклонение непрерывно возрастает с увеличением концентрации заместителей. Для составов с преимущественным содержанием самария (Ce : Sm = 0.25 : 0.75) наиболее близка кубическая функция, а максимальное отклонение фиксируется в области эквиатомного общего содержания заместителей по отношению к лантану.

Существует несколько вероятных причин появления положительного отклонения параметра ячейки твердых растворов гексаборидов от аддитивности: различие коэффициентов изотермической сжимаемости гексаборидов La, Sm и Ce (рис. 7), возникновение катионных вакансий в решетке гексаборида из-за избытка бора, что может приводить к увеличению 4f-электронной плотности на атомах P3M и к увеличению параметра ячейки. Кроме того, учитывая тот факт, что Sm и Ce способны кроме степени окисления +3 проявлять также степень окисления соответственно +2 и +4, их од-

	d _{OKP} , нм	a, Å		$d_{\rm OKP}$, нм	a, Å
LCS1	91	4.1462	LCS2	91	4.1452
LCS3	140	4.1496	LCS4	118	4.1512
LCS5	121	4.1525	LCS6	98	4.1545
LCS7	118	4.1552	LCS8	123	4.1561

Таблица 3. Параметры тонкой структуры твердых растворов

Рис. 6. Зависимость параметра ячейки полиэлементного гексаборида от концентрации лантана: $La_x(Ce_{0.25}Sm_{0.75})_1 - {}_xB_6$ (*I*), $La_x(Ce_{0.75}Sm_{0.25})_1 - {}_xB_6$ (*2*), $La_x(Ce_{0.25}Sm_{0.75})_1 - {}_xB_6$ (расчет) (*3*), $La_x(Ce_{0.75}Sm_{0.25})_1 - {}_xB_6$ (расчет) (*4*).

Рис. 7. Соотношение линейной сжимаемости и коэффициента Пуассона гексаборидов La, Се и Sm по данным [25].

новременное введение в решетку гексаборида лантана оказывает противоположно направленное влияние на концентрацию свободных электронов в системе, что изменяет величину формального заряда и приводит к нелинейной концентрационной зависимости параметра ячейки.

ЗАКЛЮЧЕНИЕ

Боротермическим восстановлением при температурах изотермической выдержки от 1450 до 1650°С синтезированы твердые растворы гексаборидов $La_x(Ce_{0.75}Sm_{0.25})_{1-x}B_6$ и $La_x(Ce_{0.25}Sm_{0.75})_{1-x}B_6$. Согласно данным РФА, основная фаза во всех составах соответствовала структурному типу Р*m*3*m*. При температурах синтеза 1450 и 1550°С продукты содержали примеси боратов RBO3 и R3BO6. При температуре 1650°C синтезированы твердые растворы гексаборидов с незначительной примесью R₃BO₆. С увеличением температуры синтеза от 1450 до 1650°С средний размер частиц гексаборидов возрастал от 200 до 400 нм. Установлено, что температура начала вторичной рекристаллизации твердых растворов лежит в интервале 1550-1650°С. Вторичная рекристаллизация приводит к появлению крупных частиц с выраженной кубической морфологией размером до 10 мкм. Отмечено закономерное изменение параметра элементарной ячейки гексаборидов с увеличением концентрации атомов-заместителей Се и Sm. Положительное отклонение параметра ячейки от закона Вегарда наблюдается как для составов, отвечающих формуле $La_x(Ce_{0.75}Sm_{0.25})_{1-x}B_6$, так и для составов $La_x(Ce_{0.25}Sm_{0.75})_{1-x}B_6$. Для составов, в которых соотношение Ce : Sm составляет 0.75 : 0.25 положительное отклонение непрерывно возрастает с увеличением концентрации заместителей. Для составов с преимущественным содержанием самария (Ce : Sm = 0.25 : 0.75) максимальное отклонение фиксируется в области эквиатомного общего содержания заместителей по отношению к лантану.

Нелинейный характер зависимости параметра ячейки от концентрации атомов-заместителей может быть связан с различием коэффициентов сжимаемости гексаборидов La, Sm и Ce, наличием катионных вакансий в решетке гексаборида, а также с влиянием различий в электронной структуре гетеровалентных атомов P3M. Отмеченная специфика концентрационной зависимости указывает на возможность регулирования свойств полиэлементных гексаборидов не только за счет изменения концентрации атомов-заместителей, но и путем целенаправленного влияния на концентрацию свободных электронов в системе подбором гетеровалентных P3M.

Работа выполнена при поддержке гранта РФФИ, проект № 18-33-20221 мол_а_вед с использованием оборудования инжинирингового центра СПбГТИ(ТУ).

СПИСОК ЛИТЕРАТУРЫ

- 1. Lafferty J.M. Boride cathodes // J. Applied Physics. 1951. T. 22. № 3. C. 299–309.
- 2. Taran A., Voronovich D., Plankovskyy S., Paderno V. Review of LaB₆, Re-W Dispenser, and BaHfO₃-W Cathode Development // IEEE Transactions on Electron Devices. 2009. T. 56. № 5. C. 812–817.
- 3. *Goebel D.M., Chu E.* High-Current Lanthanum Hexaboride Hollow Cathode for High-Power Hall Thrusters // J. Propulsion and Power. 2013. T. 30. № 1. C. 35–40.
- 4. Sani E., Mercatelli L., Meucci M., Zoli L. Lanthanum hexaboride for solar energy applications // Scientific Reports. 2017. T. 7. № 1. C. 718.
- 5. *Silvestroni L., Sciti D., Zoli L., Balbo A.* An overview of ultra-refractory ceramics for thermodynamic solar energy generation at high temperature // Renewable Energy. 2019. T. 133. C. 1257–1267.
- 6. *Machida K., Okada M., Yoshio S., Adachi K.* Plasmon-band subpeak and oxidation of solar-control LaB₆ nanoparticles // J. Materials Research. 2016. T. 31. № 18. C. 2780.
- 7. *Mattox T.M., Urban J.J.* Tuning the Surface Plasmon Resonance of Lanthanum Hexaboride to Absorb Solar Heat: A Review // Materials. 2018. T. 11. № 12. C. 2473.
- Mattox T.M. Moving the Plasmon of LaB₆ from IR to Near-IR via Eu-Doping // Materials. 2018. T. 11. № 2. C. 226.
- 9. Yuan H., Zhang X., Li B., Li M. Size dependent optical properties of LaB₆ nanoparticles enhanced by localized surface plasmon resonance // J. Rare Earths. 2013. T. 31. № 11. C. 1096–1101.
- Chen C.J., Chen D.H. Preparation of LaB₆ nanoparticles as a novel and effective near-infrared photothermal conversion material // Chemical Engineering J. 2012. T. 180. C. 337–342.
- Chao L., Bao L., Wei W., Tegus O. Optical properties of Yb-doped LaB₆ from first-principles calculation // Modern Physics Letters B. 2016. T. 30. № 07. C. 1650091.

- Chao L., Bao L., Shi J., Wei W. The effect of Sm-doping on optical properties of LaB6 nanoparticles // J. Alloys and Compounds. 2015. T. 622. C. 618–621.
- 13. Emsley J. The Elements. Oxford University Press, Oxford, 1998.
- 14. Dragoset R.A. Periodic Table: Atomic Properties of the Elements. NIST, 2001.
- 15. Atwood D.A. The rare earth elements: fundamentals and applications. John Wiley & Sons, 2013.
- 16. Ахметов Н.С. Общая и неорганическая химия. 4-е изд., испр. М.: Высш. школа, 2001. 743 с.
- 17. *Makeev K.M., Gurin V.N., Derkachenko L.I., Volkov M.P.* Obtaining of crystals of polyelemental solid solutions of rare earth hexaborides // Technical Physics Letters. 2016. T. 42. № 1. C. 1–3.
- 18. Гурин В.Н., Волков М.П., Иванова Е.В., Деркаченко Л.И. Особенности структуры и магнитных свойств полиэлементных гексаборидов РЗМ // Термоэлектрики и их применения. 2017. С. 120–126.
- Гурин В.Н. Структурные и термодинамические условия образования полиэлементных твердых растворов редкоземельных соединений // Химия твердого тела и функциональные материалы-2018. Термодинамика и материаловедение. 2018. С. 201.
- 20. *Korsukova M.M., Gurin V.N., Otani S., Ishizawa Y.* Solid solution hardening and atomic displacement parameters in La_{1 − x}Ce_xB₆ crystals // Solid State Communications. 1996. T. 99. № 4. C. 215–219.
- 21. Gurin V.N., Derkachenko L.I., Korsukova M.M. Additivity of the crystal structure and properties of solid solutions of rare earth metal hexaborides // Technical Physics Letters. 2005. T. 31. № 9. C. 793–795.
- 22. Jain A., Ong S.P., Hautier G. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation // Apl. Materials. 2013. T. 1. № 1. C. 011002.
- Jain A., Hautier G., Ong S.P., Moore C. Formation enthalpies by mixing GGA and GGA+ U calculations // Physical Review B. 2011. T. 84. № 4. C. 045115.
- 24. *Halder N.C., Wagner C.N.J.* Separation of particle size and lattice strain in integral breadth measurements // Acta Crystallographica. 1966. T. 20. № 2. C. 312–313.
- 25. Gaillac R., Pullumbi P, Coudert F. X. ELATE: an open-source online application for analysis and visualization of elastic tensors // J. Physics: Condensed Matter. 2016. T. 28. № 27. C. 275201.