КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: ЧЕТЫРЕХСЛОЙНЫЕ КЛАСТЕРЫ-ПРЕКУРСОРЫ *К*373 = 1@14@52@102@204, *К*399 = 1@16@69@118@281, *К*242 = 0@4@26@68@148 И *К*266 = 0@4@26@76@164 В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ Al₃₃₄₀Cu₂₃₂Ta₂₃₃₆-*cF*5928

© 2021 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Межвузовский научно-исследовательский центр по теоретическому материаловедению, Самарский технический университет, ул. Молодогвардейская, 244, Самара, 443011 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 11.03.2021 г. После доработки 11.03.2021 г. Принята к публикации 06.08.2021 г.

С помощью компьютерных методов (пакет программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $Al_{3340}Cu_{232}Ta_{2336}$ -*cF*5928 (*a* = 45.376 Å, *V* = 93 428 Å³, пр. группа *F*-43*m*). Определены четырехслойные кластеры-прекурсоры *K*373 (с центром в позиции 4*a*) = = 1@14@52@102@204, *K*399 (4*c*) = 1@16@69@118@281, *K*242 (4*b*) = 0@4@26@68@148 и *K*266 (4*d*) = 0@4@26@76@164 с симметрией –43*m*. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров *K*399, *K*373, *K*242, *K*266 в виде: первичные цепи \rightarrow слой \rightarrow каркас.

Ключевые слова: интерметаллид Al₃₃₄₀Cu₂₃₂Ta₂₃₃₆-*cF*5928, самосборка кристаллической структуры, четырехслойные кластеры-прекурсоры *К*399, *К*373, *К*242 и *К*266 **DOI:** 10.31857/S0132665121060305

ВВЕДЕНИЕ

В настоящее время известно более 1400 топологических типов тройных интерметаллидов, содержащихся в базах данных ICSD [1] и PCD [2] и определенных с помощью пакета программ ToposPro [3]. Кристаллохимическое семейство интерметаллидов с кубической пространственной группой *F*-43*m* (216) насчитывает наибольшее число структурных типов и наиболее кристаллохимически сложные интерметаллиды этого семейства содержат в кубических *F*-ячейках от 448 до 23256 атомов (табл. 1 [4–13]). Пространственная группа *F*-43*m* характеризуется 8 позициями с различной точечной симметрией, их них четыре позиции 4*a*, 4*b*, 4*c*, 4*d* обладают максимальной симметрией -43*m* и в этих позициях располагаются центры различных по составу полиэдрических кластеров-прекурсоров в исследованных ранее тройных интерметаллидах Li₂₆Na₅₈Ba₃₈-*cF*488 и Ce₈₀Pd₁₂₈In₂₈₄-*cF*492.

Для кристаллической структуры интерметаллида Li₂₆Na₅₈Ba₃₈-*cF*488 в установлены два типа каркас-образующих кластеров с симметрией -43*m*: *K*69 состава

Интерметаллид	Группа симметрии	Параметр кубической ячейки, Å	Объем, Å ³	Индекс Пирсона	Последователь- ности Вайкоффа
$Ce_{20}Y_{20}Mg_{188}$ [4]	F-43m	22.458	11 326.2	cF448	h ⁶ gfe ⁶ dcba
$Na_{28}In_{14}Sn_{15}$ [5]	<i>F</i> -43 <i>m</i>	22.993	12155.9	cF456	h ⁷ fe ⁵ dcba
$Ce_{20}Mg_{19}Zn_{81}$ [6]	F-43m	21.198	9525.3	cF480	$ih^4gf^2e^7ca$
Li ₁₃ Na ₂₉ Ba ₁₉ [7]	F-43m	27.335	20424.8	cF488	$h^7 g f e^6 db$
Ce ₂₀ Pd ₃₆ In ₆₇ [8]	F-43m	21.838	10414.8	cF492	ih ⁴ g ² fe ⁹ a
Na ₂₀₄ Ba ₁₆ Sn ₃₂₂ [9]	F-43m	25.053	15725.3	cF556	ih ⁵ g ² fe ⁹ b
Rh ₁₄₀ Al ₄₀₃ [10]	<i>Pm</i> -3	19.935	7922.3	<i>cP</i> 549	$l^{12}k^7j^9i^4h^2g^2f^2b$
Mn ₁₈ Pd ₁₃₈ Al ₃₈₇ [11]	<i>Pm</i> -3	20.211	8255.9	cP549	$l^{12}k^7j^9i^4h^2g^2f^2b$
Al ₃₃₄₀ Cu ₂₃₂ Ta ₂₃₃₆ [12, 13]	F-43m	45.376	93428.3	cF5928	$i^{27}h^{60}g^3f^3e^{19}ca$
Al ₁₂₈₂₈ Cu ₁₂₄₄ Ta ₉₀₆₃ [12, 13]	F-43m	71.490	365372.5	cF23256	$i^{150}h^{168}g^6f^6e^{31}ca$

Таблица 1. Кристаллохимические данные интерметаллидов

Ва@16(Ba₄Na₁₂)@52(Ba₂₈Na₂₄) в позиции 4*a* с внутренним центрированным полиэдром Фриауфа и *K*26 состава 0@Li₄@Li₂₂ в позиции 4*c* с внутренним тетраэдрическим кластером Li₄. В качестве спейсеров, занимающих пустоты в 3D каркасе из нанокластеров *K*69 и *K*26, установлены тетраэдрические центрированные кластеры Ba(Ba₄) в позиции 4*b* и тетраэдрические кластеры Na₄ в позиции 4*d*.

Для кристаллической структуры интерметаллида $Ce_{80}Pd_{128}In_{284}$ -*cF*492 в определены два нанокластера-прекурсора с симметрией -43*m*: двухслойный нанокластер *K*61 состава In@16(Ce₄In₁₂)@44(Ce₄In₁₂Pd₂₈) в позиции 4*a* с внутренним центрированным полиэдром Фриауфа In@16(Ce₄In₁₂) и двухслойный нанокластер *K*42 состава 0@8(In₈)@34(Ce₆Pd₄In₂₄) с внутренним полиэдром In₈ в позиции 4*b*. В пустотах каркаса в позициях 4*c* и 4*d* расположены In₄-тетраэдры.

Для кристаллической структуры интерметаллида $Rh_{140}Al_{403}$ -*cP*549 и $Mn_{18}Pd_{138}Al_{387}$ -*cP*549 с пространственной группой *Pm*-3 (200) установлены два новых кластерных прекурсора с симметрией *m*-3: четырехслойный кластер *K*244 = = 0@12@20@80@132 с внутренним икосаэдром Pd_{12} или Rh_{12} и трехслойный кластер *K*245 = 1@14@48@206 с внутренним 15-атомным полиэдром $Al@Pd_8Al_6$ или $Al@Rh_8Al_6$.

В работе осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $Ta_{156}Al_{288}$ -*cF*444 с пространственной группой *F*-43*m*. Установлены два типа каркас-образующих кластеров симметрией -43*m*: двухслойные кластеры *K*61 и *K*26, образующие 3D упаковки. Двухслойный нанокластер *K*61 = $Ta@16(Ta_4Al_{12})@44(Ta_{16}Al_{28})$ (с центром в позиции 4*a*) образуется на полиэдре Фриауфа $Ta@16(Ta_4Al_{12})$ и содержит 44 атома $Ta_{16}Al_{28}$ во второй оболочке. Двухслойный нанокластер *K*26 = $0@Al_4@22(Al_6Ta_{16})$ (с центром в позиции 4*b*) образуется на Al_4 -тетраэдре и содержит 22 атома (Al_6Ta_{16}) во второй оболочке.

В работе [13] кристаллические структуры $Ta_{156}Al_{288}$ -*cF*444, $Al_{3340}Cu_{232}Ta_{2336}$ -*cF*5928, и $Al_{12828}Cu_{1244}Ta_{9063}$ -*cF*23256 были описаны как состоящие из кластеров, таких как фуллерены Al_{76} , додекаэдры Ta_{20} , усеченные по двум вершинам пентагональные бипирамиды (pentagonal bifrusta) и полиэдры Фриауфа. Характерной особенностью

Позиции центра кластера	Кластер-темплат	Координационные последовательности N_1, N_2, N_3, N_4
4 <i>а</i> (атом Та)	Ta@14(Al6Ta8)	14 52 102 204
4 <i>b</i> (центр ZA1)	0@Cu4	4 26 68 148
4 <i>с</i> (атом Та)	Ta@16(Ta4A112)	16 69 118 281
4 <i>d</i> (центр ZA2)	0@Al4	4 26 76 164

Таблица 2. Al₃₃₄₀Cu₂₃₂Ta₂₃₃₆. Кластеры-темплаты и значения их координационных последовательностей. Кристаллографические позиции, соответствующие центрам пустот тетраэдрических кластеров *K*4, обозначены ZA1 и ZA2

Al₃₃₄₀Cu₂₃₂Ta₂₃₃₆-*cF*5928, и Al₁₂₈₂₈Cu₁₂₄₄Ta₉₀₆₃-*cF*23256 отмечены кластеры в виде слоя из семи связанных ребрам гексагональных Та-бипирамид.

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры $Al_{3340}Cu_{232}Ta_{2336}$ -*cF*5928. Определены новые четырехслойные кластеры-прекурсоры *K*399 (с центром в позиции 4*c*), *K*373 (4*a*), *K*242 (4*b*), и *K*266 (4*d*) с симметрией -43*m*. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров *K*399, *K*373, *K*242, *K*266 в виде: первичные цепи \rightarrow слой \rightarrow каркас.

Работа продолжает исследования [14–20] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ТороsPro [3], позволяющего проводить многоцелевое исследование кристаллической структуры в автоматическом режиме, используя представление структур в виде "свернутых графов" (фактор-графов). Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома (табл. 2). Алгоритм разложения структуры любого интерметаллида, представленного в виде свернутого графа, на кластерные единицы основывается на следующих принципах: структура образуется в результате самосборки из кластеров-прекурсоров, при этом кластеры-прекурсоры образуют каркас структуры; кластеры-прекурсоры занимают высокосимметричные позиции; набор нанокластеров-прекурсоров и кластеров-спейсеров включает в себя все атомы структуры.

КЛАСТЕРЫ-ПРЕКУРСОРЫ И САМОСБОРКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Аl₃₃₄₀Cu₂₃₂Ta₂₃₃₆

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве [14]. На первом уровне самоорганизации системы определяется механизм формирования первичных цепей структуры из нанокластеров 0-уровня, центры которых находятся в позициях 4*a*, 4*b*, 4*c*, 4*d* (табл. 2), далее – механизм само-

Рис. 1. Расположение 16 полиэдрических кластеров-темплатов в элементарной ячейке в позициях 4a, 4b, 4c и 4d.

сборки из цепей микрослоя (2-ой уровень) и затем из микрослоя — трехмерного микрокаркаса структуры (3-й уровень).

Кристаллографические данные Al₃₃₄₀Cu₂₃₂Ta₂₃₃₆

Пространственная группа *F*-43*m* (216) характеризуется позициями с точечной симметрией: -43*m* (4*a*, 4*b*, 4*c*, 4*d*), 3*m* (16*e*), 2*mm* (24*f*, 24*g*), *m* (48*h*). Порядок группы 96.

В элементарной ячейке в частных положениях 4*a*, 4*b*, 4*c*, 4*d* с симметрией-43*m* расположены 16 кластеров-темплатов *K*15 (4*a*) = Ta@14(Al₆Ta₈), *K*17 (4*c*) = Ta@16(Ta₄Al₁₂), *K*4 (4*b*) = 0@Cu4, *K*4 (4*d*) = 0@Al₄ (табл. 2, рис. 1). В тетраэдрическом кластере *K*4 (4*b*) = 0@Cu4 расстояния Cu–Cu = 2.576 Å сравнимы с расстояниями в металле Cu-*cF*4, равными 2.56 Å. В тетраэдрическом кластере *K*4 (4*d*) = 0@Al4 расстояния Al– Al = = 2.808 Å также сравнимы с расстояниями в металле Al-*cF*4 = 2.86 Å.

На кластерах-темплатах формируются четырехслойные кластеры-прекурсоры K373(4a) = 1@14@52@102@204 (рис. 2), K399(4c) = 1@16@69@118@281 (рис. 3), K242(4b) = 0@4@26@68@148 (рис. 4) и K266(4d) = 0@4@26@76@164 (рис. 5)

Самосборка кристаллической структуры Al₃₃₄₀Cu₂₃₂ Ta₂₃₃₆

Первичные цепи. Самосборка первичной цепи S_3^1 –А происходит при связывании нанокластеров *K*373 с *K*242 в направлении [011] (рис. 1, 6). Самосборка другой первичной цепи S_3^1 –В происходит при связывании нанокластеров *K*399 с *K*266 также в на-

Рис. 2. Четырехслойный кластер К373 (4а).

правлении [011] (рис. 1, 7). Расстояние между центрами нанокластеров, занимающих в элементарный *F*-ячейке частные положения 4a, 4b, 4c и 4d, соответствует половине длины вектора трансляции a/2 = 22.688 Å (рис. 1).

Самосборка слоя. Образование микрослоя S_3^2 происходит при связывании параллельно расположенных первичных цепей S_3^1 –А и S_3^1 –В в плоскости [100] (рис. 8). Расстояние между центрами кластеров из соседних цепей соответствует половине длины вектора трансляции a/2 = 22.688 Å.

Самосборка каркаса. Микрокаркас структуры S_3^3 формируется при связывании двух микрослоев в направлении [100]. Расстояние между микрослоями определяет длину вектора трансляции a/2 = 22.688 Å.

ЗАКЛЮЧЕНИЕ

Осуществлен геометрический и топологический анализ кристаллической структуры $Al_{3340}Cu_{232}Ta_{2336}$ -*cF*5928 с пространственной группой *F*-43*m*. Определены новые четырехслойные кластеры-прекурсоры *K*399 (4*c*), *K*373 (4*a*), *K*242 (4*b*), и *K*266 (4*d*) с симметрией -43*m*. Реконструирован симметрийный и топологический код процессов са-

Рис. 3. Четырехслойный кластер *К*399 (4*c*).

Рис. 4. Четырехслойный кластер *К*242 (4*b*).

Рис. 5. Четырехслойный кластер *К*266 (4*d*).

Рис. 6. Фрагмент первичной цепи S_3^1 -А из кластеров K373 (4*a*) и K242 (4*b*).

Рис. 7. Фрагмент первичной цепи S_3^1 -В из кластеров *К*399 (4*c*) и *К*266 (4*d*).

Рис. 8. Фрагмент слоя из кластеров *К*373 (4*a*), *К*242 (4*b*), *К*399 (4*c*) и *К*266(4*d*).

мосборки 3D структур из кластеров-прекурсоров K399, K373, K242 и K266 в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Моделирование процесса самосборки кристаллической структуры выполнено при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, нанокластерный анализ выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию АААА-А19-119022290092-5 (ИХС РАН), гранта РНФ 20-13-00054 топологический анализ выполнен при поддержке Минобрнауки РФ в рамках государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 3. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.
- Flandorfer H., Kostikas A., Rogl P., Godart C., Giovannini M., Saccone A., Ferro R. On the magnetic and valence properties of Ce–Mg–Y compounds // J. Alloys Compd. 1996. V. 240. P. 116–123.
- Blase W., Cordier G., Vogt T. Preparation and Crystal Structure of Na₂₈In₁₄Sn₁₅ // Z. Anorg. Allg. Chem. 1991. V. 606. P.79–90.
- Pavlyuk V., Solokha P., Zelinska O., Paul-Boncour V., Nowik-Zajac A. Ce₂₀Mg₁₉Zn₈₁: a new structure type with a giant cubic cell // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2008. V. 64. P. i50–i52.
- Smetana V., Babizhetskyy V., Vajenine G., Simon A. Neue Li26-Cluster in Li₁₃Na₂₉Ba₁₉ // Z. Anorg. Allg. Chem. 2006. V. 632. P. 2115–2115.
- Tursina A.I., Nesterenko S.N., Noel H., Seropegin Y.D. A new ternary indide, Ce₂₀Pd₃₆In₆₇ // Acta Crystallogr., Sect. E: Struct. Rep. Online 2005. V. 61. P. i99–i101.
- 9. *Bobev S., Sevov S.C.* Naked Clusters of 56 Tin Atoms in the Solid State // J. Am. Chem. Soc. 2002 V. 124. P. 3359–3365.
- Sugiyama K., Sun W., Hiraga K. Crystal structure of a 2/1 cubic approximant in an Al–Rh–Si alloy // J. Non-Crystalline Solids. 2004. V. 334. P. 156–160.
- Sugiyama K., Kaji N., Hiraga K. Crystal structure of a cubic Al₇₀Pd₂₃Mn₆Si; a 2/1 rational approximant of an icosahedral phase // Z. Kristallogr. 1998. V. 213. P. 90–95.
- 12. Weber T., Dshemuchadse J., Kobas M., Conrad M., Harbrecht B., Steurer W. Large, larger, largest a family of cluster-based tantalum copperaluminides with giant unit cells. I. Structure solution and refinement // Acta Crystallographica B. 2009 V. 65. P. 308–317.
- Conrad M., Harbrecht B., Weber T., Jung D.Y., Steurer W. Large, larger, largest a family of clusterbased tantalum copper aluminides with giant unit cells. II. The cluster structure // Acta Cryst. 2009. B65. P. 318–325.
- 14. Ilyushin G.D. Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure // Struct. Chem. 2012. V. 20. № 6. P. 975–1043.
- 15. Pankova A.A., Blatov V.A., Ilyushin G.D., Proserpio D.M. γ-Brass Polyhedral Core in Intermetallics: The Nanocluster Model // Inorg. Chem. 2013. V. 52. № 22. P. 13094–13107.
- 16. *Ilyushin G.D.* Intermetallic Compounds $K_n M_m$ (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystal-lography Reports. 2020. V. 65. No 7. P. 1095–1105.
- 17. *Ilyushin G.D.* Intermetallic Compounds Na_kM_n (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. No 4. P. 539–545.
- 18. Ilyushin G.D. Intermetallic Compounds Li_kM_n (M = Ag, Au, Pt, Pd, Ir, Rh): Geometrical and Topological Analysis, Tetrahedral Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 2. P. 202–210.

- 19. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем. Новый кластер-прекурсор (InNa₅)(AuAu₅) и первичная цепь с симметрией 5m для самосборки кристаллической структуры Na₃₂Au₄₄In₂₄-oP100 // Физика и химия стекла. 2019. Т. 45. № 4. С. 303–310.
- 20. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem. 2019. V. 30. № 6. P. 2015–2027.