КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: НОВЫЙ ТРЕХСЛОЙНЫЙ НАНОКЛАСТЕР-ПРЕКУРСОР *К*211 = 1@14@80@116 В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ Er₈₈Mn₁₁₀Al₂₃₇Si₂₃₇-*cP*672

© 2021 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Межвузовский научно-исследовательский центр по теоретическому материаловедению, Самарский технический университет, ул. Молодогвардейская, 244, Самара, 443011 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 17.06.21 г. После доработки 04.08.21 г. Принята к публикации 06.08.21 г.

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры $Er_{88}Mn_{110}Al_{237}Si_{237}$ -*cP*672 (*a* = 21.820 Å, *V* = 10389.9 Å³, пр. группа *Pm*-3*n*). Установлены 886 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 4 до 8. Рассмотрен вариант самосборки кристаллической структуры из новых трехслойных кластеров *K*211 = Al@14(Er_8Al_6)@80($Al_{66}Mn_{24}$)@116($Er_{24}Mn_8Al_{84}$) с симметрией *m*-3. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров *K*211 в виде: первичная цепь \rightarrow слой \rightarrow каркас. В больших пустотах каркаса расположены атомы Mn в позиции 6*b* с симметрией *mm*.

Ключевые слова: интерметаллид Er₈₈Mn₁₁₀Al₂₃₇Si₂₃₇-*cP*672, самосборка кристаллической структуры, трехслойные нанокластеры-прекурсоры *K*211 = 1@14@80@116 **DOI:** 10.31857/S0132665121060317

ВВЕДЕНИЕ

В двойных системах M-Si установлена кристаллизация 674 интерметаллических соединений, в тройных системах M1-M2-Si образуются 3432 соединения, и в четверных системах M1-M2-M3-Si образуются 622 соединения [1, 2]. Наибольшее число двойных, тройных и четверных интерметаллидов кремний образует с атомами Cr, Mn, Fe, Co, Ni, Cu, Al, и *Ln*. Наиболее кристаллохимически сложными являются двойные интерметаллиды Li₂₂Si₅-*cF*432 с пр. группой *F*-43*m* [3], K₁₂Si₁₇-*mP*464 с пр. группой $P2_1/c$ [4], тройные интерметаллиды Li₁₄₇Cu₁₁₄Si₁₇₈-*hR*441 с пр. группой *R*-3*m* [5] и Cr₃₀Al₁₀₂Si₁₁-*oP*576 с пр. группой *Pbnm* [6]. Наиболее кристаллохимически сложный (и не имеющий кристаллохимических аналогов) кремний-содержащий интерметаллид Er₈₈Mn₁₁₀Al₂₃₇Si₂₃₇-*cP*672 с пр. группой *Pm*-3*n* (по. 223) получен в четверной системе Er-Mn-Al-Si, где также выделен Er₅Mn₄Al_{23-x}Si_x-*tP*32 с пр. группой *P4/mmm* (по. 123) [7]. В двойных системах M—Ge, тройных системах M1-M2—Ge и четверных системах M1-M2-M3—Ge установлено образование 1239, 4654, и 894 интерметаллидов германия соответственно. Наибольшее число двойных, тройных и четверных интерметаллидов германия образует с атомами Mn, Fe, Co, Ni, Cu, Ga и Ln. Наиболее кристаллохимически сложный (и также не имеющий кристаллохимических аналогов) германий-содержащий интерметаллид $Al_{679}Co_{197}Pd_{98}Ge_{25}$ -*cP*1024 с пр. группой *Pa*-3 (по. 205) получен также в четверной системе Pd—Co—Al—Ge [8].

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры $Er_{88}Mn_{110}Al_{237}Si_{237}-cP672$. Рассмотрена самосборка кристаллической структуры с участием трехслойных кластеров-прекурсоров K211 == Al@14(Er_8Al_6)@80(Al_66Mn_{24}@116(Er_{24}Mn_8Al_{84})). Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Работа продолжает исследования [9–12] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [13]. Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k — число атомов в k-ой координационной сфере данного атома. Полученные значения координационных последовательностей атомов в 3D-сетках приведены в табл. 1, в которой также даны число и типы соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома.

Алгоритм разложения в автоматическом режиме структуры интерметаллида, представленного в виде свернутого графа на кластерные единицы приведен в работах [9–12].

САМОСБОРКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ Er₈₈Mn₁₁₀Al₂₃₇Si₂₃₇-сP672

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее — механизм самосборки из цепи микрослоя (2-ой уровень) и затем из микрослоя — трехмерного микрокаркаса структуры (3-й уровень).

Кристаллографические данные

Интерметаллид $Er_{88}Mn_{110}Al_{237}Si_{237}$ -*cP*672 характеризуется параметрами элементарной ячейки: a = 21.820 Å, V = 10389.9 Å³, 25 кристаллографически независимыми атомами с последовательностью Вайкоффа $l^7k^9j^2i^2gfeba$. Кристаллическая структура $Er_{88}Mn_{110}Al_{237}Si_{237}$ характеризуется уникальным набором координационных чисел, определенных с помощью ToposPro (табл. 1): для атомов Al (Si) – 9 (3 атома), 10 (4 атома), 11 (2 атома), 12 (3 атома), 13 (1 атом), 14 (2 атома), и 15 (1 атом); для атомов Mn –

Атом	Окружение	Координационные последовательности $N_1 - N_5$		
A11	7Al + 2Mn + 2Er	11 42 107 196 309		
A12	6Al + 2Mn + 2Er	10 43 100 192 301		
A13	9Al + 2Mn + 2Er	13 52 112 205 340		
Al4	6Al + 2Mn + 2Er	10 44 102 196 327		
A15	7Al + 2Mn + 3Er	12 48 109 195 323		
A16	10Al + 3Mn + Er	14 46 104 201 316		
A17	7Al + 2Mn + 3Er	12 46 110 187 301		
A18	5Al + Mn + 4Er	10 44 103 194 304		
A19	6Al + 2Mn + 2Er	10 43 99 187 283		
A110	6Al + 2Mn + 4Er	12 49 105 205 330		
A111	10Al + 2Mn + 3Er	15 54 117 204 324		
A112	8Al + Mn	9 42 109 194 314		
A113	6Al + 4Mn + Er	11 41 92 185 296		
Al14	4Al + Mn + 4Er	9 43 99 211 310		
A115	5A1 + 4Er	9 57 117 196 309		
A116	6A1 + 8Er	14 80 116 230 344		
Mn1	9A1 + 2Er	11 46 105 198 301		
Mn2	8A1 + 2Er	10 46 104 195 321		
Mn3	11Al	11 41 104 176 329		
Mn4	8A1 + 4Er	12 49 106 198 325		
Mn5	6A1 + 4Er	10 40 110 228 298		
Er1	12Al + 5Mn	17 49 116 210 329		
Er2	12Al + 3Mn	15 42 107 202 328		
Er3	12Al + Mn	13 48 118 197 330		
Er4	14Al + 3Mn	17 50 131 209 332		

Таблица 1. Локальное окружение атомов Al(Si), Mn, Er в структуре $Er_{88}Mn_{110}Al_{237}Si_{237}$ -*сP*672 и значения их координационных последовательностей

10 (2 атома), 11 (2 атома) 12 (1 атом); для атомов Er – 13 (1 атом), 15 (1 атом), 17 (2 атома). Кристаллографические позиции атомов Si и Al не дифференцированы, т. е. предполагается, что атомы Al и Si статистически занимают 16 одних и тех же кристаллографических позиций. Пространственная группа кристаллической структуры Pm-3n (по. 223) характеризуется позициями с симметрией: m-3 (2a), mmm (6b), -4m2 (6c, 6d), 32 (8e), mm2(12f, 12g, 12h) и др.

Метод полного разложения 3D фактор-графа структуры на кластерные подструктуры был использован для определения каркас-образующих нанокластеров кристаллической структуры. Количество вариантов разложения 3D атомной сетки на кластерные подструктуры с числом выделенных кластеров, равным 4, 5, 6, 7 и 8, составило соответственно 18, 124, 270, 316, 171.

Таблица	2.	Варианты	кластерного	представления	кристаллической	структуры
Er ₈₈ Mn ₁₁₀ /	Al ₂₃	₇ Si ₂₃₇ -cP672	из четырех струн	ктурных единиц.	Указан центральный	атом поли-
эдрическо	го к	ластера, чис	ло его оболочек	(в первой скобк	се) и количество атомо	ов в каждой
оболочке	(во	второй скоб	ке). Кристаллог	рафические поз	иции, соответствующ	ие центрам
пустот пол	иэд	црических кл	астеров, обознач	нены ZA с указан	нием типа позиции	

Al16(3)(1@14@80@116) Mn5(1)(1@10) Al12(0)(1) Er2(1)(1@15)
Al16(3)(1@14@80@116) Mn5(0)(1) Al12(0)(1) Er2(1)(1@15)
Al16(3)(1@14@80@116) Mn5(0)(1) Al12(1)(1@9) Er2(1)(1@15)
Al16(3)(1@14@80@116) Mn5(1)(1@10) Al12(1)(1@9) Er2(1)(1@15)
Al16(2)(1@14@80) Mn5(2)(1@10@40) Mn3(1)(1@11) Er1(1)(1@17)
Al16(2)(1@14@80) Mn5(2)(1@10@40) Mn3(0)(1) Al4(1)(1@10)
Al16(2)(1@14@80) Mn5(2)(1@10@40) Mn3(1)(1@11) Al4(1)(1@10)
A116(2)(1@14@80) Mn5(2)(1@10@40) A112(1)(1@9) Er1(1)(1@17)
ZA2(6d)(2)(0@8@44) Al16(3)(1@14@80@116) Mn5(1)(1@10) Al12(0)(1)
ZA2(6d)(2)(0@8@44) Al16(3)(1@14@80@116) Mn5(0)(1) Al12(0)(1)
ZA2(6d)(2)(0@8@44) Al16(3)(1@14@80@116) Mn5(0)(1) Al12(1)(1@9)
ZA2(6d)(2)(0@8@44) Al16(3)(1@14@80@116) Mn5(1)(1@10) Al12(1)(1@9)
ZA2(6d)(2)(0@8@44) A116(2)(1@14@80) Mn3(1)(1@11) Er3(1)(1@13)
ZA2(6d)(2)(0@8@44) A116(2)(1@14@80) A112(1)(1@9) Er3(1)(1@13)
ZA2(6d)(2)(0@8@44) Mn3(2)(1@11@41) A115(1)(1@9) Er3(1)(1@13)
ZA2(6d)(2)(0@8@44) Mn3(1)(1@11) Er4(1)(1@17) Er3(1)(1@13)
ZA2(6d)(2)(0@8@44) Er4(1)(1@17) Al12(1)(1@9) Er3(1)(1@13)
ZA2(6d)(1)(0@8) Al16(3)(1@14@80@116) Mn5(1)(1@10) Al4(1)(1@10)

		24' 24 0 04'
Кластер 1@14	80-атомная оболочка	116-атомная оболочка
1 Al16	12 A111	24 A13
6 Al15	8 Al13	24 A15
8 Er4	24 Al2	24 Al6
	12 A19	12 A17
	24 Mn1	12 Er1
		12 Er3
		8 Mn3
14 вершин, 24 ребра, 12 граней	80 вершин, 234 ребра, 156 граней	116 вершин, 318 ребер, 204 грани

Таблица 3.	Трехслойный кластер	K211 = A1@14(Erg)	$_{8}Al_{6})@80(Al_{6})$	6Mn24)@116(Er2	$_{4}Mn_{8}Al_{84}$
------------	---------------------	-------------------	--------------------------	----------------	---------------------

Рис. 1. Кластеры-прекурсоры *K*15 в кристаллических структурах $Er_{88}Mn_{110}Al_{237}Si_{237}$ -*cP*672 (слева) и $Al_{39}Fe_2Pd_{21}$ -*cF*248 (справа). Длины связей атомов указаны в Å.

Рассмотрим вариант самосборки кристаллической структуры из трехслойных кластеров-прекурсоров K211 = 1@14@80@116 с центром в позиции 2a и с максимальной симметрией *m*-3 (табл. 2, 3). Кластер K211 характеризуется внутренним 15-атомным полиэдром Al@14(Er₈Al₆) в виде кубооктаэдра (рис. 1), 80 атомами Al₆₆Mn₂₄ во второй оболочке и 116 атомами в третьей оболочке Er₂₄Mn₈Al₈₄ (рис. 2). Отметим, что такой же топологический тип внутреннего 15-атомного полиэдра состава Al@14(Pd₈Al₆) (рис. 1) найден нами в структуре интерметаллида Al₃₉Fe₂Pd₂₁-*cF*248 [14]; на этом полиэдре основан двухслойный кластер K51 = 1@14@36.

В пустотах каркаса из связанных кластеров K211 расположены тетрамеры из четырех кластеров Er@15(Al₁₂Mn₃); в центре тетрамера в позиции 6*b* с симметрией *mmm* расположен атом Mn (рис. 3).

Самосборка кристаллической структуры Er₈₈Mn₁₁₀Al₂₃₇Si₂₃₇

Первичная цепь S_3^1 формируется в результате связывания металлокластеров K211 + K211вдоль диагонали ячейки (рис. 4). Центр димера находится в позиции 8*c* с симметрией 3*m*. Микрослой S_3^2 образуется при связывании параллельно расположенных первичных цепей S_3^1 со сдвигом (рис. 4). Расстояние между центрами кластеров K211 из соседних цепей определяет длину вектора трансляций c = 21.820 Å. Каркас структуры S_3^3 формируется при связывании слоев S_3^2 со сдвигом.

ЗАКЛЮЧЕНИЕ

Осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида Er₈₈Mn₁₁₀Al₂₃₇Si₂₃₇. Рассмотрен вариант самосборки кристаллической струк-

Рис. 2. Вторая оболочка $Al_{66}Mn_{24}$ (сверху) и третья оболочка $Er_{24}Mn_8Al_{84}$ (снизу).

туры из трехслойных кластеров $K211 = Al@14(Er_8Al_6)@80(Al_{66}Mn_{24})@116(Er_{24}Mn_8Al_{84})$ с симметрией *m*-3. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров K211 в виде: первичная цепь $\rightarrow c$ лой \rightarrow каркас. В больших пустотах каркаса расположены тетракластеры, состоящие из полиэдров Er@15(Al₁₂Mn₃); в центре тетракластера расположен атом Mn в позиции 6b с симметрией *mmm*.

Рис. 3. Тетрамер из кластеров $Er@15(Al_{12}Mn_3)$. В центре расположен атом Mn_5 .

Рис. 4. Слой из кластеров К211. В центре расположен тетрамер.

Моделирование процесса самосборки кристаллической структуры выполнено при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, нанокластерный анализ выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию Института химии силикатов РАН № АААА-А19-119022290092-5 и гранта ОНФ 21-73-30019 топологический анализ выполнен при поддержке Минобрнауки РФ в рамках государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Villars P., Cenzual K. Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- 2. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST).
- 3. Nesper R., von Schnering H.G. Li₂₁Si₅, a Zintl phase as well as a Hume-Rothery phase // J. Solid State Chem. 1987. V. 70 P. 48–57.
- 4. Hoch C., Wendorff M., Roehr C. Synthesis and crystal structure of the tetrelides $A_{12} M_{17} (A = Na,$ K, Rb, Cs; M = Si, Ge, Sn) and A_4B_9 (A = K, Rb) // J. Alloys Compd. 2003. V. 361. P. 206–221. 5. *Pavlyuk V.V., Kevorkov D.G., Bodak O.I., Pecharskii V.K.* Crystal structure of Cu₁₁₉Li₁₄₅Si₁₇₇ //
- Kristallografiya. 1995. V. 40. P. 188-189.
- 6. *He Z.B., Kuo K.H.* Crystal structure of the primitive orthorhombic epsilon'-(Al,Si)₄Cr phase // J. Alloys Compd. 2005. V. 395. P. 117–125.
- 7. Calta Nicholas P., Kanatzidis Mercouri G. Quaternary Aluminum Silicides Grown in Al Flux: $RE_5Mn_4Al_{23-x}Si_x$ (RE = Ho, Er, Yb) and $Er_{44}Mn_{55}$ (AlSi)₂₃ // Inorganic Chemistry. 2013. V. 52. P. 9931–9940.
- 8. Sugiyama K., Yubuta K., Yokoyama Y., Suzuki S., Simura R. F AlCoPdGe alloy with three types of Pseudo-Mackay clusters // Acta Physica Polonica, A. 2014. V. 126. P. 588-593.
- 9. Ilyushin G.D. Modeling of the Self-Organization Processes in Crystal-Forming Systems. Tetrahedral Metal Clusters and the Self-Assembly of Crystal Structures of Intermetallic Compounds // Crystallography Reports. 2017. V. 62. 5. P. 670-683.
- 10. Ilyushin G.D. Symmetry and Topology Code of the Cluster Self-Assembly of Intermetallic Compounds $A_2^{[16]}B_4^{[12]}$ of the Friauf Families Mg_2Cu_4 and Mg_2Zn_4 // Crystallography Reports. 2018. V. 63. 4. P. 543–552.
- 11. Shevchenko V.Ya., Medrish I.V., Ilyushin G.D., Blatov V.A. From clusters to crystals: scale chemistry of intermetallics // Struct. Chem. 2019. V. 30. № 6. P. 2015-2027.
- 12. Шевченко В.Я., Блатов В.А., Илюшин Г.Д. Кластерная самоорганизация интерметаллических систем: новый четырехслойный кластер-прекурсор K244 = 0@12@20@80@132 и новый трехслойный кластер-прекурсор *K*245 = 1@14@48@206 в кристаллической структуре Rh₁₄₀Al₄₀₃-*cP*549 и Mn₁₈Pd₁₃₈Al₃₈₇-*cP*549 // Физика и химия стекла. 2021. Т. 47. № 1. С. 3–15. 13. *Blatov V.A., Shevchenko A.P., Proserpio D.M.* Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. P. 3576–3585.
- 14. Edler F.J., Gramlich V., Steurer W. Structure and disorder phenomena of cubic Al₃₉Fe₂Pd₂₁ in comparison with related structures // J. Alloys Compd. 1998 V. 269. P. 7–12.