КЛАСТЕРНАЯ САМООРГАНИЗАЦИЯ ИНТЕРМЕТАЛЛИЧЕСКИХ СИСТЕМ: НОВЫЙ ДВУХСЛОЙНЫЙ НАНОКЛАСТЕР-ПРЕКУРСОР $K44 = 0@8(U_2Ni_6)@36(U_{12}Ni_{24})$ В КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЕ $U_{66}Ni_{96}-hR162$

© 2021 г. В. Я. Шевченко^{1, *}, В. А. Блатов², Г. Д. Илюшин^{2, 3}

¹Институт химии силикатов им. И.В. Гребенщикова РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

² Межвузовский научно-исследовательский центр по теоретическому материаловедению, Самарский технический университет, ул. Молодогвардейская, 244, Самара, 443011 Россия

³Федеральный научно-исследовательский центр "Кристаллография и фотоника", Ленинский пр., 59, Москва, 119333 Россия

*e-mail: shevchenko@isc.nw.ru

Поступила в редакцию 17.06.21 г. После доработки 04.08.21 г. Принята к публикации 06.08.21 г.

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры $U_{66}Ni_{96}$ -hR162 с параметрами ромбоэдрической ячейки: a = 11.778 Å, c = 20.748 Å, V = 2492.90 Å³, и пр. гр. R-3. Установлен новый двухслойный нанокластер-прекурсор $0@8(U_2Ni_6)@36(U_{12}Ni_{24})$ с внутренним полиэдром из 8 атомов в виде гексагональной бипирамиды U_2Ni_6 и внешней оболочкой из 36 атомов U₁₂Ni₂₄. Центр кластера-прекурсора *K*44 находится в позиции 4*b* с точечной симметрией -43*m*. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров *K*44 в виде: первичная цепь \rightarrow слой \rightarrow каркас. В пустотах каркаса расположены центрированные тетраэдры $K5 = NiU_4$ в позиции 6*c* с симметрией 3.

Ключевые слова: интерметаллид $U_{66}Ni_{96}-hR162$, самосборка кристаллической структуры, двухслойные нанокластеры-прекурсоры $K44 = 0@8(U_2Ni_6)@36(U_{12}Ni_{24})$ DOI: 10.31857/S0132665121060329

ВВЕДЕНИЕ

По данным [1, 2] в двойных системах с участием больших атомов щелочных металлов Na и K образуются 79 интерметаллидов Na_n M_k (с 17 атомами M) и 61 K-интерметаллид K_n M_k (с 15 атомами M). В [3] проведено моделирование самосборки структурных типов интерметаллидов Na_n M_k , имеющих кристаллохимические аналоги. Установлены типичные тетраэдрические металлокластеры M_4 , октаэдрические кластеры M_6 и икосаэдрические металлокластеры M_{13} . В [4] установлены кластерные прекурсоры S_3^0 кристаллических структур, образующихся в системах K–M, где M = Ag, Au, As,

Sb, Bi, Ge, Sn, Pb. Проведено моделирование способа самосборки кристаллических структур интерметаллидов из *наночастиц различного иерархического уровня* — от метал-

Соединение	Пр. группа	Параметры элементарной ячейки в Å, градусах	$V, Å^3$	Класс Пирсона	
Системы Th- <i>M</i>					
ThBe13	<i>Fm</i> -3 <i>c</i> (226)	10.383, 10.383, 10.383	1119.3	<i>cF</i> 112	
Th14Cu51	<i>P</i> 6/ <i>m</i> (175)	11.812, 11.812, 8.844	1068.6	<i>hP</i> 68	
Th14Au51	<i>P</i> 6/ <i>m</i> (175)	12.809, 12.809, 9.264	1316.3	<i>hP</i> 68	
Th14Ag51	<i>P</i> 6/ <i>m</i> (175)	12.766, 12.766, 9.419	1329.4	<i>hP</i> 68	
Th6Mn23	<i>Fm</i> -3 <i>m</i> (225)	12.443, 12.443, 12.443	1926.5	<i>cF</i> 116	
Th6Cd23	<i>Fm</i> -3 <i>m</i> (225)	14.142, 14.142, 14.142	2828.3	<i>cF</i> 116	
Th6Mg23-cF116	<i>Fm</i> -3 <i>m</i> (225)	14.270, 14.270, 14.270	2905.8	<i>cF</i> 116	
Системы U-M					
UBe13	<i>Fm</i> -3 <i>c</i> (226)	10.268, 10.268, 10.268	1082.6	<i>cF</i> 112	
U10Ni13	<i>C</i> 12/ <i>m</i> 1(12)	7.660, 13.080, 7.650, 90.00, 108.88, 90.00	725.3	<i>mC</i> 46	
U2Zn17	<i>R</i> -3 <i>m</i> (166)	8.981, 8.981, 13.160	919.3	hR57	
U2Zn17	<i>P</i> -6 <i>m</i> 2(187)	8.990, 8.990, 26.350	1844.3	<i>hP</i> 114	
U14Au51	<i>P</i> 6/ <i>m</i> (175)	12.648, 12.648, 9.135	1265.6	<i>hP</i> 68	
U ₆₆ Ni ₉₆	<i>R</i> -3(148)	11.779, 11.779, 20.749	2492.9	hR162	
Системы Ри-М					
PuBe13	<i>Fm</i> -3 <i>c</i> (226)	10.282, 10.282, 10.282	1087.0	<i>cF</i> 112	
Pu14Au51	<i>P</i> 6/ <i>m</i> (175)	12.710, 12.710, 9.210	1288.5	<i>hP</i> 68	
Pu14Ag51	<i>P</i> 6/ <i>m</i> (175)	12.730, 12.730, 9.402	1319.5	<i>hP</i> 68	
Pu3Zn22	<i>I</i> 41/ <i>amd</i> (141)	8.850, 8.850, 21.180	1658.9	<i>tI</i> 100	
Pu2Zn9	P63/mmc(194	14.430, 14.430, 14.140	2549.8	<i>hP</i> 142	
ZrPu28	<i>I</i> 41/ <i>a</i> (88)	18.190, 18.190, 7.858	2599.9	<i>tI</i> 120	
PuCd6	<i>Im</i> -3(204)	15.590, 15.590, 15.590	3789.1	<i>cI</i> 184	
Pu31Rh20	<i>I</i> 4/ <i>mcm</i> (140)	11.076, 11.076, 36.933	4530.9	<i>tI</i> 204	
Pu31Pt20	<i>I</i> 4/ <i>mcm</i> (140)	11.302, 11.302, 37.388	4775.8	<i>tI</i> 204	

Таблица 1. Кристаллохимические данные интерметаллидов [1, 2]

локластеров-прекурсоров S_3^0 до стадии формирования первичной цепи S_3^1 , микрослоя S_3^2 и микрокаркаса S_3^3 .

В двойных системах с участием больших атомов актинидов Th, U, Pu (близких по размерам с атомами K и Na) установлена кристаллизация 124 интерметаллидов в 32 системах Th—M, 120 интерметаллидов в 35 системах U—M, и 99 соединений в 36 системах Pu – M [1, 2]. Наибольшее число интерметаллидов атомы Th, U и Pu образуют с атомами Ni, Ge, Al, Bi.

Во всех Th-, U- и Pu-системах образуются интерметаллиды, входящие в два кристаллохимических семейства (табл. 1). Первое семейство интерметаллидов ABe_{13} -cF112, где атомы A = Hf, Zr, Mg, Dy, Tb, Ce, Th [5], U [5], Np, Pu [6], Ca, и Sr c KU = 24 занимают большие пустоты в 3D каркасе из икосаэдрических кластеров Be_{13} , Co₁₃, Cu₁₃, Zn₁₃,

Атом	Окружение	Координационные последовательности	
		$N_1 N_2 N_3 N_4 N_5$	
Nil	4Ni + 7U	11 49 109 200 331	
Ni2	5Ni + 7U7	12 49 111 214 340	
Ni3	5Ni + 7U7	12 51 116 221 346	
Ni4	6Ni + 6U	12 49 114 214 346	
Ni5	5Ni + 7U7	12 50 114 212 347	
Ni6	4Ni + 8U8	12 50 119 210 347	
U1	10Ni + 3U3	13 44 110 210 344	
U2	12Ni + 4U4	16 52 122 218 362	
U3	11Ni + 5U5	16 52 119 218 354	
U4	10Ni + 5U5	15 51 116 216 344	
U5	9Ni + 6U6	15 53 120 223 341	

Таблица 2. U₆₆Ni₉₆-*hR*162. Локальное окружение атомов U и Ni и значения координационных последовательностей

Cd₁₃. Второе семейство включает в себя интерметаллиды Th₁₄ M_{51} -hP68 (M – Cu, Ag, Au), U₁₄Au₅₁-hP68 [7], Pu₁₄ M_{51} -hP68 (M – Ag, Au).

Наиболее кристаллохимически сложными в Th-, Pu-, U-системах являются интерметаллиды семейства Th₆Mg₂₃-*cF*116 с пр. группой *Fm*-3*m* [8], семейства Pu₃₁Rh₂₀- *tI*204 с пр. группой *I*4/*mcm* (140) [9, 10], и интерметаллид U₆₆Ni₉₆-*hR*162 с пр. группой *R*-3, не имеющий кристаллохимических аналогов [11].

В настоящей работе проведен геометрический и топологический анализ кристаллической структуры $U_{66}Ni_{96}$ -*hR*162. Рассмотрена самосборка кристаллической структуры с участием новых двухслойных кластеров-прекурсоров *K*44 = 0@8(U_2Ni_6)@36($U_{12}Ni_{24}$). Реконструирован симметрийный и топологический код процессов самосборки 3D структуры из кластеров-прекурсоров в виде: первичная цепь \rightarrow слой \rightarrow каркас.

Работа продолжает исследования [3, 4, 12, 13] в области моделирования процессов самоорганизации систем на супраполиэдрическом уровне и геометрического и топологического анализа кристаллических структур с применением современных компьютерных методов.

МЕТОДИКИ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ АНАЛИЗЕ

Геометрический и топологический анализ осуществляли с помощью комплекса программ ToposPro [14]. Данные о функциональной роли атомов при образовании кристаллической структуры получены расчетом координационных последовательностей, т.е. наборов чисел $\{N_k\}$, где N_k – число атомов в k-ой координационной сфере данного атома. Полученные значения координационных последовательностей атомов в 3D-сетках, приведены в табл. 2, в которой также даны число и типы соседних атомов в ближайшем окружении, т.е. в первой координационной сфере атома.

Алгоритм разложения в автоматическом режиме структуры интерметаллида, представленного в виде свернутого графа на кластерные единицы, приведен в работах [3, 4]. **Таблица 3.** Варианты кластерного представления кристаллической структуры $U_{66}Ni_{96}-hR162$. Указан центральный атом полиэдрического кластера, число его оболочек (в первой скобке) и количество атомов в каждой оболочке (во второй скобке). Кристаллографические позиции, соответствующие центрам пустот полиэдрических кластеров, обозначены ZA с указанием типа позиции

2 структурные единицы U1(1)(1@13) Ni3(1)(1@12) ZA2(3b)(1)(0@8) ZA1(3a)(2)(0@8@38) ZA2(3b)(2)(0@8@36) ZA1(3a)(2)(0@8@38) 3 структурные единицы ZA1(3a)(1)(0@8) U1(0)(1) Ni3(1)(1@12) ZA1(3a)(1)(0@8) U1(1)(1@13) Ni3(1)(1@12) ZA2(3b)(2)(0@8@36) ZA1(3a)(1)(0@8) U1(0)(1) ZA2(3b)(2)(0@8@36) ZA1(3a)(1)(0@8) U1(1)(1@13) ZA2(3b)(1)(0@8) ZA1(3a)(1)(0@8) Ni2(1)(1@12) ZA3(9e)(1)(0@8) ZA2(3b)(1)(0@8) ZA1(3a)(2)(0@8@38) ZA3(9e)(1)(0@8) ZA2(3b)(2)(0@8@36) ZA1(3a)(2)(0@8@38) ZA2(3b)(1)(0@8) U1(1)(1@13) Ni3(1)(1@12) ZA3(9e)(1)(0@8) ZA2(3b)(1)(0@8) Ni6(1)(1@12) 4 структурные единицы ZA2(3b)(1)(0@8) ZA1(3a)(1)(0@8) U1(0)(1) Ni3(1)(1@12) ZA2(3b)(1)(0@8) ZA1(3a)(1)(0@8) U1(1)(1@13) Ni3(1)(1@12) ZA3(9e)(1)(0@8) ZA2(3b)(2)(0@8@36) ZA1(3a)(1)(0@8) U1(0)(1) ZA3(9e)(1)(0@8) ZA2(3b)(1)(0@8) ZA1(3a)(1)(0@8) U1(1)(1@13) ZA3(9e)(1)(0@8) ZA2(3b)(2)(0@8@36) ZA1(3a)(1)(0@8) U1(1)(1@13) ZA3(9e)(1)(0@8) ZA2(3b)(1)(0@8) ZA1(3a)(1)(0@8) Ni6(1)(1@12)

САМОСБОРКА КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ U₆₆Ni₉₆-hR162

Использованный нами метод моделирования кристаллической структуры основан на определении иерархической последовательности ее самосборки в кристаллографическом пространстве. На первом уровне самоорганизации системы определяется механизм формирования первичной цепи структуры из нанокластеров 0-уровня, сформированных на темплатной стадии химической эволюции системы, далее – механизм самосборки из цепи микрослоя (2-ой уровень) и затем из микрослоя – трехмерного микрокаркаса структуры (3-й уровень).

Кристаллографические данные

Параметры ромбоэдрической ячейки в гексагональной установке: a = 11.778 Å, c = 20.748 Å, V = 2492.90 Å³, пр. группа *R*-3 (148). Элементы с точечной симметрией: g = -3 (3*a*, 3*b*), g = 3 (6*c*), -1 (9*d*, 9*e*). Порядок группы 18.

Локальное окружение атомов U и Ni и значения координационных последовательностей приведены в табл. 2. Определены значения КЧ (координационных чисел) ато-

Рис. 1. $U_{22}Ni_{32}$ -*hR*162. Кластеры *K*8 = 0@8(U_2Ni_6) (слева) и *K*5 = NiU₄ (справа).

мов Ni, равные 11 (один атом), и 12 (для пяти атомов с икосаэдрическим окружением) и атомов U-13, 15 (два атома), 16 (два атома).

Метод полного разложения 3D фактор-графа структуры на кластерные подструктуры был использован для определения каркас-образующих нанокластеров кристаллической структуры. Всего найдено 18 вариантов кластерного представления 3D атомной сетки с числом структурных единиц от 2 до 4 (табл. 3).

В результате установлены новые каркас-образующие нанокластеры K44, образующие 3D упаковку (табл. 3, рис. 1, 2). В элементарной ромбоэдрической ячейке центры кластеров K44 расположенные в вершинах ромбоэдра находятся на расстоянии 9.699 Å и острый угол ромбоэдра равен 74.77° (рис. 3).

Каркас-образующие нанокластеры $K44 = 0@8(U_2Ni_6)@36(U_{14}Ni_{24})$ характеризуются внутренним полиэдром из 8 атомов в виде гексагональной бипирамиды U_2Ni_6 и внешней оболочки виде дельтаэдра из 36 атомов $U_{14}Ni_{24}$. Центр кластера-прекурсора K44 находится в позиции 4b с точечной симметрией -43*m*.

Первичная цепь. Образование димера (первичной цепи S_3^1) из кластеров K44 + K44 происходит в направлении короткого вектора трансляций a_{rh} (рис. 4) с индексом связанности $P_{\text{лок}} = 13$. Расстояние между центрами кластеров K44 соответствует значению вектора трансляций $a_{rh} = 9.699$ Å. Центр димера находится в позиции 9e (1/6, 1/3, 1/3) с симметрией g = -1

Самосборка микрослоя. Образование тетрамера (микрослоя S_3^2) происходит при комплементарном связывании кластеров из соседних первичных цепей в плоскости ромбоэдра (рис. 5). На этой стадии самосборки происходит локализация кластеров K5, расположенные над и под плоскостью тетрамера.

Самосборка микрокаркаса. Октамер из 8 кластеров *K*44 формируется при связывании двух микрослоев со сдвигом (рис. 6). Центр супракластера находится в позиции 9*d* (1/2, 1/2, 1/2) с симметрией *g* = -1.

Рис. 2. U₂₂Ni₃₂-*hR*162. Кластер *K*44 (две проекции).

Рис. 3. U₂₂Ni₃₂-*hR*162. Базисная ромбоэдрическая сетка для кластеров *K*44. Приведено значение вектора трансляции ромбоэдрической ячейки.

Рис. 4. U₂₂Ni₃₂-*hR*162. Димер *K*44 + *K*44.

Рис. 5. U₂₂Ni₃₂-*hR*162. Тетрамер из кластеров *K*44. Показаны кластеры *K*5 расположенные над и под плос-костью тетрамера.

ЗАКЛЮЧЕНИЕ

С помощью компьютерных методов (пакета программ ToposPro) осуществлен геометрический и топологический анализ кристаллической структуры интерметаллида $U_{22}Ni_{32}-hR162$. Методом разложения 3D атомной сетки интерметаллида $U_{22}Ni_{32}-hR162$ на кластерные структуры установлены новые каркас-образующие нанокластеры $K44 = 0@8(U_2Ni_6)@36(U_{12}Ni_{24})$ симметрией -43*m*. Реконструирован симметрийный и топологический код процессов самосборки 3D структур из кластеров-прекурсоров K44 в виде: первичная цепь \rightarrow слой \rightarrow каркас. В пустотах каркаса расположены центрированные тетраэдры $K5 = NiU_4$ с симметрией 3.

Анализ самосборки кристаллической структуры выполнен при поддержке Минобрнауки РФ в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, нанокластерный анализ выполнен при поддержке

Рис. 6. U₂₂Ni₃₂-*hR*162. Октамер из кластеров *K*44.

Российского научного фонда (РНФ № 21-73-30019), топологический анализ выполнен при поддержке Минобрнауки РФ в рамках государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inorganic crystal structure database (ICSD). Fachinformationszentrum Karlsruhe (FIZ), Germany and US National Institute of Standard and Technology (NIST), USA.
- 2. *Villars P., Cenzual K.* Pearson's Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- Илюшин Г.Д. Интерметаллиды Na_kM_n (M Ag, Au, Pt, Pd, Ir, Rh): геометрический и топологический анализ, кластерные прекурсоры и самосборка кристаллических структур // Кристаллография. 2020. Т. 65. Вып. 4. С. 546–552.
- Ilyushin G.D. Intermetallic Compounds K_nM_m (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and Topological Analysis, Cluster Precursors, and Self-Assembly of Crystal Structures // Crystallography Reports. 2020. V. 65. № 7. P. 1095–1105.

- 5. Goldman A.I., Shapiro S.M., Cox D.E., Smith J.L., Fisk Z. Neutron-diffraction studies of U Be₁₃ and Th Be₁₃ // Phys. Rev. B: Condens. Matter Mater. Phys. 1985. V. 32. P. 6042–6044. 6. *Runnalls O.J.C.* The crystal structures of some intermetallic compounds of plutonium // Canadian
- J. Chemistry. 1956. V. № 34. P. 133–145.
- 7. Palenzona A., Cirafici S. The phase diagram of the U-Au system // J. Less-Common Metals. 1988. V. № 143. P. 167–171.
- 8. Florio J.V., Rundle R.E., Snow A.I. Compounds of thorium with transition metals. I. The thoriummanganese system // Acta Crystallographica. 1952. V. 5. P. 449-457.
- 9. Cromer D. T., Larson A.C. The crystal structure of Pu₃₁Pt₂₀ and Pu₃₁Rh₂₀ // Acta Crystallographica B. 1977. V. 33. P. 2620-2627.
- 10. Ganguli A.K., Guloy A.M., Leon-Escamilla E.A., Corbett J.D. Ca₃₁Sn₂₀ and related compounds: novel Zintl phases containing dimers and pentamers of tin or lead // Inorganic Chemistry. 1993. V. 32. P. 4349–4353.
- 11. Perricone A., Noel H. Crystal structure and magnetic properties of the binary uranium-nickel alloy U₁₁Ni₁₆ // J. Nucl. Mater. 2001. V. 299. P. 260–263.
- 12. Shevchenko V.Ya., Blatov V.A., Ilyushin G.D. Cluster Self-Organization of Intermetallic Systems: New Two-Layer Nanocluster Precursors $K64 = 0@8(Sn_4Ba_4)@56(Na_4Sn_{52})$ and $K47 = Na@Sn_{16}@Na_{30}$ in the Crystal Structure of Na₅₂Ba₄Sn₈₀-*cF*540 // Glass Physics and Chemistry. 2020. V. 46. P. 448–454.
- 13. Ilyushin G.D. Symmetry and Topology Code of Cluster Crystal Structure Self-Assembly for Metal *Bytamin* 0-3. Symmetry and topology Cole of Chaster Crystan bifuction Scinessenby for Netation Oxides: $Cs_{11}O_3$ -mP56, $Rb(Cs_{11}O_3)$ -oP30, $Cs(Cs_{11}O_3)$ -oP60, $Rb_3(Rb_4)$ $Cs_{11}O_3$)-oP84, $(Cs_4)(Cs_6)(Cs_{11}O_3)$ -*hP*24, Rb_9O_2 -mP22, $(Rb_3)(Rb_9O_2)$ -*hP*28, and $(Rb_2O)_3(Rb_{13})$ -*cF*176 // Russian Journal of Inorganic Chemistry. 2018. V. 63. № 12. P. 1590–1598.
- 14. Blatov V. A., Shevchenko A.P., Proserpio D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576–3585.