КРИСТАЛЛИЗАЦИЯ ЭВТЕКТИЧЕСКИХ СТРУКТУР В СИСТЕМЕ LaB₆-W₂B₅-NbB₂

© 2022 г. Д. Д. Несмелов^{1, *}, Е. С. Новоселов¹, С. В. Вихман¹

¹Санкт-Петербургский государственный технологический институт (технический университет), Московский пр., 26, Санкт-Петербург, 190013 Россия *e-mail: dnesmelov@vandex.ru

> Поступила в редакцию 14.05.2021 г. После доработки 05.10.2021 г. Принята к публикации 08.10.2021 г.

Плавлением в электродуговом разряде и быстрым охлаждением в потоке инертного газа (Ar) получены закристаллизованные сплавы в системе $LaB_6-W_2B_5-NbB_2$. Характерные эвтектические структуры ламеллярного и стержневого типа исследованы с помощью сканирующей электронной микроскопии. С помощью рентгенофазового и рентгеноструктурного анализа установлено, что фазовый состав закристаллизованных объектов представлен гексаборидом лантана, α -твердым раствором ($W_x Nb_{1-x}$) $_2B_5$ и β -твердым раствором ($Nb_x W_{1-x}$) B_2 . Сделано предположение о существовании тройной фазы в системе Nb–W–B, близкой к составу Nb_{0.5}W_{0.5}B₄. Методами рентгеноспектрального микроанализа и статистического анализа площади фазовых составляющих определены концентрации компонентов в эвтектических областях.

Ключевые слова: гексаборид лантана, пентаборид дивольфрама, диборид ниобия, твердый раствор, эвтектика, расплав, кристаллизация, керамика **DOI**: 10.31857/S0132665122010097

введение

Благодаря наличию жестких связей с выраженной ковалентной составляющей бориды металлов обладают уникальным комплексом ценных для практики свойств — тугоплавкости, высокой твердости, химической стойкости, высокой тепло- и электропроводности. Такой набор характеристик делает бориды перспективными кандидатами для создания материалов, работающих в экстремальных условиях эксплуатации — в элементах реактивных двигателей, тепловой защиты летательных аппаратов, установок для электролиза расплавов, систем защиты АЭС и др.

LaB₆ — один из наиболее широко распространенных в технике гексаборидов. Благодаря низкой работе выхода электронов и высокой плотности эмиссионного тока он широко применяется в термоэмиссионной технике от катодов-компенсаторов стационарных плазменных двигателей до микрокатодов растровых электронных микроскопов [1–8]. В последние десятилетия установлен важный с точки зрения оптики эффект "красного смещения" (red shift): сдвиг максимума поглощения в ближнюю инфракрасную область спектра электромагнитного излучения в нанодисперсных твердых растворах на основе LaB₆ [9–13]. Вместе с тем, одним из направлений развития материалов на основе LaB₆ является усложнение их химического и фазового состава, в частности – исследование эвтектических систем в квазибинарных системах LnB₆–MeB₂ (где Ln – лантаноиды, Me – переходные металлы IV–VI групп) [1–8, 14–19].

Квазибинарные системы LnB_6-MeB_2 [20–27] и близкие к ним системы $LnB_6-Me_2B_5$ [28, 29] описываются диаграммами состояния эвтектического типа с ограниченными (до 2–3 мол. %) областями существования твердых растворов. Следует отметить, что снижение температуры появления жидкой фазы по отношению к температуре плавления диборида достигает ~800°C в системах LaB_6-HfB_2 и LaB_6-ZrB_2 , а в системе LaB_6-NbB_2 составляет 570°C. Таким образом, становится возможной активация твердофазной диффузии при гомологической температуре ~0.8 $T_{пл}$, что в данном случае составляет около 2000°C. Этот факт позволяет активировать уплотнение при горячем прессовании [19, 30, 31] или электроимпульсном спекании (SPS) [32–35], а также реализовывать метод свободного спекания без приложения внешнего давления [36, 37] и осуществлять получение направленно закристаллизованных эвтектик [1–3, 14–18, 38–42].

Дальнейшее усложнение фазового состава композиционных материалов на основе LaB_6 предопределяет переход к исследованию эвтектических систем с числом компонентов n = 3. Ранее нами были исследованы квазитройные системы LaB_6 –SiC– W_2B_5 , $LaB_6-B_4C-W_2B_5$, $LaB_6-VB_2-W_2B_5$ [17–20]. Методами расчетной термодинамики в работах [43, 44] были исследованы системы $LaB_6-VB_2-W_2B_5$ и $LaB_6-NbB_2-W_2B_5$, оценен состав и температура тройной эвтектики. До сих пор не были экспериментально получены закристаллизованные эвтектики в системах тугоплавких боридов, структура которых представлена не только совокупностью областей различных двойных эвтектик, но и, собственно, трехфазными эвтектическими областями. В настоящей работе предпринята попытка экспериментального получения закристаллизованной тройной эвтектики в сраницах квазитройного сечения $LaB_6-NbB_2-W_2B_5$ (рис. 1) методом быстрой кристаллизации расплава, полученного электродуговым плавлением предварительно спеченных образцов. Представляет интерес исследование структуры эвтектических областей, определение концентрации компонентов в эвтектике и сравнение полученных значений с расчетными данными работы [44].

МЕТОДИКА ИССЛЕДОВАНИЯ

В работе использовали порошок NbB₂ (OAO "ДЗХР") с содержанием основной фазы 99 мас. % и средним размером частиц $d_{50} = 7$ мкм, порошок LaB₆ (99 мас. %, $d_{50} = 3$ мкм), полученный боротермическим восстановлением La₂O₃ (ЛАО-Д, 99.999 мас. %) в вакууме при 1650°С и порошок W₂B₅ (99.9 мас. %, $d_{50} = 15$ мкм), полученный взаимодействием металлического вольфрама (ПВ1, 99.986–99.987 мас. %) и аморфного бора (Б-99А, 99 мас. %) в вакууме при температуре 1600°С.

Порошки боридов смешивали в соотношении расчетной эвтектики по данным работы [44]: 13 мол. % LaB_6 , 29 мол. % NbB_2 и 58 мол. % W_2B_5 . Смешение и измельчение компонентов проводили в аттриторе Union Process HD-01 при частоте вращения вала 300 об./мин в течение 4 ч в среде высокоочищенного бензина БР-2 с использованием мелющих тел из SiC. За счет износа мелющих тел в смесь было внесено 0.3–0.5 мас. % примеси карбида кремния, что было определено по изменению массы мелющих тел после помола. Со всеми компонентами системы $LaB_6-NbB_2-W_2B_5$ карбид кремния образует эвтектики, однако с учетом низкой концентрации SiC влияние его примеси на свойства системы можно считать незначительным.

После измельчения средний размер частиц гетерофазной порошковой смеси составлял 0.8 мкм. Измельченный порошок пластифицировали парафином (1.5 мас. %) и гранулировали протиркой через сетку с размером ячейки 50 мкм. Из полученного пресс-порошка одноосным прессованием формовали таблетки диаметром 10 и высотой 10 мм. Отформованные заготовки спекали в вакуумной печи сопротивления

Рис. 1. Система La-Nb-W-B с выделенным квазитройным сечением LaB₆-NbB₂-W₂B₅.

СНВГ-1.2.1 в вакууме (давление остаточных газов $10-10^{-1}$ Па) с изотермической выдержкой при $T = 1900^{\circ}$ С в течение 1 ч.

Спеченные образцы плавили в электродуговом разряде в инертной среде аргона на водоохлаждаемой медной подложке. Благодаря резкому охлаждению расплава в потоке аргона происходила быстрая кристаллизация гетерофазного поликристалла. Закристаллизованные объекты полировали для последующего анализа структуры и состава.

Рентгенофазовый анализ полученных в результате синтеза порошков боридов LaB₆ и W₂B₅, а также закристаллизованных образцов в системе LaB₆–NbB₂–W₂B₅ проводили на многофункциональном порошковом дифрактометре Rigaku SmartLab 3 в диапазоне углов 20 20°–80° (Cu K_{α} -излучение, Ni-фильтр, шаг 0.01°). Анализ микроструктуры проводили с помощью СЭМ Tescan Vega 3SBH; микрорентгеноспектральный анализ химического состава осуществляли с помощью рентгеновского энергодисперсионного микроанализатора Aztec X-Act (Oxford Instruments). Элементный состав фаз вычисляли как среднее значение по не менее чем 10 однотипным участкам в различных частях образца.

Рис. 2. Общий вид сечения закристаллизованного образца с условно выделенными зонами кристаллизации *1*, *2* и *3* в порядке удаления от охлаждаемой подложки.

Объемную концентрацию компонентов в эвтектике определяли с помощью статистической обработки интегральной площади фаз на СЭМ-снимках эвтектических областей закристаллизованных образцов не менее чем по 10 снимкам. Измерение площади фаз проводили с помощью программного комплекса анализа изображений Thixomet Lite. Мольные проценты пересчитывали с использованием справочных данных о рентгеновской плотности фаз.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

После "импульсного" плавления в дуговом разряде расплав удерживался на поверхности медной водоохлаждаемой подложки за счет сил поверхностного натяжения. При отсутствии внешних воздействий стремление расплава сформировать поверхность с минимальной энергией приводило бы к формированию сферической поверхности с градиентом температуры, в каждой точке направленным к ней по нормали. Поскольку капля расплава под действием дугового разряда имела сложную неправильную форму, а поток аргона не являлся стационарным, то градиент температуры не имел преимущественного направления, за исключением областей капли, непосредственно контактировавших с медной подложкой. Условий для направленной кристаллизации эвтектики во всем объеме образца не создавалось, и его кристаллизация происходила в виде поликристалла (рис. 2), состоящего из первично закристаллизованных областей (условно выделенная зона 1 на рис. 2), и различно ориентированных эвтектических областей (зоны 2 и 3). В зоне 1, непосредственно контактировавшей с охлаждаемой подложкой, на фоне обширных полей кристаллизации W₂B₅ хорошо заметны эвтектические колонии грубого конгломерата и дендриты LaB₆. При переходе к зоне 2 площадь полей кристаллизации W₂B₅ постепенно снижается, что сопровождается уменьшением размеров структурных элементов эвтектики и дендритов. Наконец, типично эвтектическая структура наблюдается в зоне 3. Этот фрагмент образца был использован для дальнейшего анализа структуры и морфологии закристаллизованных эвтектик в системе $LaB_6-NbB_2-W_2B_5$ (рис. 3).

Между эвтектическими областями (характерная квазитройная эвтектическая область выделена окружностью Е на рис. 3δ) хорошо заметны крупные, до нескольких сотен микрометров в длину, скелетные дендриты LaB₆ (рис. 3a, c).

Наличие дендритов в структуре может быть связано как с избыточной концентрацией гексаборида лантана в опытном составе, так и с различными относительными

Рис. 3. SEM-фотографии образцов в системе LaB₆–NbB₂–W₂B₅ после кристаллизации: общий вид микроструктуры (*a*), область между дендритами LaB₆ (*б*), область квазитройной эвтектики (*в*), дендрит LaB₆ и локальные области квазибинарной эвтектики "т-фаза– α -твердый раствор" (*г*), локальная область квазибинарной эвтектики "LaB₆– β -твердый раствор" (*д*, *е*).

Рис. 4. Дифрактограммы порошковой смеси LaB₆–NbB₂–W₂B₅ (*a*), спеченной керамики (*б*) и взаимно перпендикулярных сечений закристаллизованного образца (*в*, *г*).

скоростями кристаллизации фаз, т.е. высокой скоростью роста кристаллов дендритов LaB₆ по одной оси. Трехфазные эвтектические области по структуре можно отнести к ламеллярному типу (рис. 36, e). Локальные области с ламеллярной бинарной эвтектической структурой расположены между параллельными пластинами крупных скелетных кристаллов LaB₆ (рис. 3e). В данных областях заметны включения третьей фазы, т.е. эти области фактически не являются двухфазными вследствие взаимодействия между компонентами, что будет обсуждено ниже.

В структуре локально присутствуют эвтектические области LaB_6 -NbB₂ стержневого типа со средним диаметром стержней (нитевидных кристаллов NbB₂) около 300-500 нм (рис. 3 ∂ , *e*).

Наличие двойных эвтектик может быть связано как с отклонениями от гомогенного распределения компонентов на стадии подготовки образца, так и с неравновесными условиями кристаллизации. Быстрый рост первичных кристаллов LaB₆ может приводить к обогащению расплава боридами ниобия и вольфрама и последующей их кристаллизации в виде псевдобинарной эвтектики.

Фазовый состав как двойных, так и тройных эвтектических областей существенно отличался от состава исходной порошковой смеси и спеченной керамики (рис. 4). По данным рентгенофазового анализа, единственной фазой, в кристаллической решетке которой межплоскостные расстояния практически не изменились после спекания и последующего плавления, был гексаборид лантана.

Несмотря на то, что бориды вольфрама и ниобия имеют различный тип гексагональной кристаллической решетки (пространственные группы *P*63/*mmc* и *P*6/*mmn*), они обладают достаточно близкими значениями параметра *a* элементарной ячейки ($a_{\rm W} = 2.9856$, $a_{\rm Nb} = 3.1113$ Å) и практически одинаковыми атомными радиусами металлов ($r_{\rm W} = 210$ пм, $r_{\rm Nb} = 207$ пм). Это создает условия для формирования заметных областей взаимной растворимости в системе NbB₂–W₂B₅ в твердом состоянии при высоких температурах.

Смещение по оси 20 дифракционных максимумов W_2B_5 и, в особенности, NbB₂, наблюдается уже в спектре спеченного образца (рис. 4 δ), что говорит о начале формирования твердого раствора. В спектрах закристаллизованных образцов смещение пиков выражено значительно сильнее. Форма пиков W_2B_5 и NbB₂ также претерпевает изменения: после плавления и кристаллизации увеличивается ширина пиков и снижает-

Метол	Концентрация фаз в эвтектике, Х _{эвт} , мол. %										
определения	LaB ₆		β-твердый раствор (Nb _x W _{1-x})B ₂			$ au$ -фаза $Nb_{0.5}W_{0.5}B_4$			α -твердый раствор $(W_x Nb_{1-x})_2 B_5$		
По площади фаз	29.0 ± 1.7		23.5 ± 2.9						47.5 ± 2.2		
По данным МРСА	28.2	± 0.8	30.2 ± 1.7						41.6 ± 1.3		
	Элементный состав фазы, вес.% ±0.5*										
	La	В	Nb	W	В	Nb	W	В	W	Nb	В
	31.0	69.0	67.7	14.8	17.5	28.7	46.4	24.9	84.6	2.3	13.1

Таблица 1. Фазовый и элементный состав закристаллизованных образцов

* Для атомной концентрации бора во всех фазах, кроме τ -фазы погрешность ±3 вес. %; для τ -фазы ±20 вес. %.

ся степень расщепления дублетов $K\alpha_1$ и $K\alpha_2$, что может указывать на незавершенное формирование твердых растворов. Смещение максимумов NbB_2 по оси 20 на различный угол при съемке с взаимно перпендикулярных плоскостей говорит о фактической перестройке кристаллической структуры с непропорциональным изменением параметров *a* и *c* элементарной ячейки. На дифрактограмме закристаллизованного образца присутствуют рефлексы, которые нельзя отнести ни к одной из фаз системы, или объяснить смещением пиков в результате образования твердых растворов (показаны стрелками на рис. 4*г*). Перечисленные факты позволяют сделать предположение не только о существовании заметных областей твердых растворов на основе NbB_2 и W_2B_5 , но и об образовании новых фаз в процессе плавления и кристаллизации.

Помимо смещения пиков, наблюдается эффект текстуризации W_2B_5 . Непропорциональный рост интенсивности рефлексов, соответствующих различным семействам атомных плоскостей, свидетельствует о формировании анизотропной структуры, что подтверждается снимками микроструктуры (рис. 3).

Состав эвтектических областей и отдельных фазовых составляющих представлен в табл. 1.

Учитывая результаты анализа микроструктуры и данные РФА нельзя однозначно описать равновесный состав квазитройной эвтектики в системе LaB₆-W₂B₅-NbB₂. Во всех исследованных характерных областях тройной эвтектики в качестве компонентов присутствуют гексаборид лантана и α -твердый раствор на основе W_2B_5 . Однако в качестве третьего компонента локально зафиксированы β-твердый раствор на основе NbB₂ и тройная фаза (τ -фаза), элементный состав которой соответствует формуле $Nb_{0.5}W_{0.5}B_4$. В ряде областей наблюдалось одновременное присутствие в структуре эвтектики как β-твердого раствора, так и τ-фазы. Можно предположить, что вариации состава третьего компонента эвтектики связаны с протеканием двух процессов. Первый заключается в образовании β-твердого раствора замещения на базе решетки NbB₂, что было зафиксировано еще на стадии спекания. Второй связан с высокотемпературным химическим взаимодействием в расплаве между боридами ниобия и вольфрама, которое в условиях быстрого цикла плавления-кристаллизации в дуговом разряде было ограничено кинетически и не приводило к образованию равновесного состава, в результате чего фиксировали присутствие как "промежуточного" β-твердого раствора на основе NbB₂, так и богатой бором тройной фазы. Это предположение не объясняет отсутствия обедненной бором фазы, которая должна была также образоваться в подобных условиях. Следует отметить, что в равновесных условиях NbB₂ и W₂B₅, согласно справочным данным, плавятся без разложения, но характер их плавления в условиях дугового разряда специально не изучался.

Еще один аспект определения элементного состава τ -фазы методом рентгеноспектрального микроанализа связан с относительно небольшой площадью ее областей кристаллизации (менее 3–5 мкм). Объекты такого размера не позволяют с высокой точностью определить концентрацию легких элементов, и в частности бора. В связи с этим достоверно измеренным можно считать только эквиатомное соотношение Nb и W в τ -фазе.

Состав характерных областей тройной эвтектики (рис. 36, выделена окружностью E; рис. 3e), определенный по интегральной площади фаз, несколько отличается от состава, полученного с помощью рентгеноспектрального микроанализа. Незначительное различие концентраций LaB₆ можно объяснить погрешностью измерения, тогда как более заметное несовпадение концентраций всех остальных фаз вызвано методической погрешностью анализа по площади фаз, связанной с отсутствием справочных данных о плотности твердых растворов и т-фазы. Состав тройной эвтектики закономерно обогащен наиболее легкоплавким компонентом – W_2B_5 , его содержание (41.6 ± 1.3 мол. % по данным MPCA) значительно ниже, чем в исходном составе (58 мол. %), подготовленном в соотношении расчетной эвтектики. Этот факт объясняется первичной кристаллизацией избыточного W_2B_5 в зоне, контактировавшей с охлаждаемой подложкой (зона 1 на рис. 2). Пропорционально снижению концентрации W_2B_5 наблюдается повышение экспериментального значения концентрации LaB_6 в областях тройной эвтектики (28.2 ± 0.8 мол. %) по отношению к его содержанию в исходном составе (13 мол. %).

ЗАКЛЮЧЕНИЕ

Плавлением спеченной керамики в системе $LaB_6-W_2B_5-NbB_2$ в электродуговом разряде и быстрым охлаждением в потоке аргона получены закристаллизованные эвтектические структуры. Структура трехфазных областей относится к ламеллярному типу. Локально вследствие расшихтовки и несоответствия скоростей кристаллизации фаз наблюдаются двойные эвтектики стержневого и ламеллярного типа. Фазовый состав областей тройной эвтектики представлен гексаборидом лантана, α -твердым раствором ($W_x Nb_{1-x}$) $_2B_5$, β -твердым раствором ($Nb_x W_{1-x}$) B_2 и, предположительно, тройной фазой в системе Nb–W–B, состав которой наиболее близко соответствует формуле $Nb_{0.5}W_{0.5}B_4$. Состав тройной эвтектики закономерно обогащен наиболее легкоплавким компонентом – W_2B_5 , однако его содержание значительно ниже, чем в исходном составе, подготовленном в соотношении расчетной эвтектики. Этот факт объясняется первичной кристаллизацией избыточного W_2B_5 в зоне, контактировавшей с охлаждаемой подложкой (зона *1* на рис. 2).

Работа выполнена при финансовой поддержке гранта РНФ № 19-73-10180.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Taran A., Voronovich D., Oranskaya D., Filipov V., Podshyvalova O.* Thermionic emission of LaB₆–ZrB₂ quasi binary eutectic alloy with different ZrB₂ fibers orientation // Functional materials. 2013. T. 20. №. 4. C. 485–488.
- 2. *Paderno Yu.B., Taran A.A., Voronovich D.A., Paderno V.N., Filipov V.B.* Thermionic properties of LaB₆-(Ti_{0.6}Zr_{0.4})B₂ material // Functional Materials. 2008. V. 15. № 1. P. 63.
- 3. Berger M.H., Back T.C., Soukiassian P., Martinotti D., Douillard L., Fairchild S.B., Boeckl J.J., Filipov V., Sayir A. Local investigation of the emissive properties of LaB₆–ZrB₂ eutectics // J. Materials Science. 2017. V. 52. № 10. P. 5537–5543.
- 4. *Storms E.K.* Thermionic emission and vaporization behavior of the ternary systems of lanthanum hexaboride containing molybdenum boride, molybdenum diboride, zirconium diboride, gadolinium hexaboride, and neodymium hexaboride // J. Applied Physics. 1983. V. 54. № 2. P. 1076–1081.

- 5. Back T.C., Schimd A.K., Fairchild S.B., Boeckl J.J., Cahay M., Derkink F., Gong C., Sayir A. Work function characterization of directionally solidified LaB₆–VB₂ eutectic // Ultramicroscopy. 2017. V. 183. P. 67–71.
- 6. Yang X., Wang P., Zhenghong W., Hu K., Cheng H., Lo Z., Zhang J. Microstructure, mechanical and thermionic emission properties of a directionally solidified LaB₆–VB₂ eutectic composite // Materials & Design. 2017. V. 133. P. 299-306.
- Hasan M.M., Cuskelly D., Sugo H., Kisi E.H. Low temperature synthesis of low thermionic work function (La_xBa_{1-x})B₆// J. Alloys and Compounds. 2015. V. 636. P. 67–72.
 Voronovich D.A., Taran A.A., Shitsevalova N.Yu., Levchenko G.V., Filipov V.B. Thermionic proper-
- ties of lutetium borides single crystals // Functional materials. 2014. V. 3. P. 266–273.
- 9. Xiao L., Su Y., Zhou X., Chen H., Tan J., Hu T., Yan J., Peng P. Origins of high visible light transparency and solar heat-shielding performance in LaB_6 // Applied Physics Letters. 2012. V. 101. № 4. P. 041913.
- 10. Yoshio S., Maki K., Adachi K. Optical properties of group-3 metal hexaboride nanoparticles by firstprinciples calculations // J. Chemical Physics. 2016. V. 144. № 23. P. 234702.
- 11. Mattox T. M., Coffman D.K., Roh I., Sims C., Urban J.J. Moving the Plasmon of LaB₆ from IR to Near-IR via Eu-Doping // Materials. 2018. V. 11. № 2. P. 226.
- 12. Qi X., Bao L., Chao L., Tegus O. Experimental and theoretical investigation on tunable optical property of nanocrystalline Ca-doped CeB₆ // Physica B: Condensed Matter. 2018. V. 530. P. 312–316.
- 13. Sani E., Mercatelli L., Zoli L., Sciti D. Lanthanum hexaboride for solar energy applications // Scientific Reports. 2017. V. 7. № 1. P. 718.
- 14. Deng H., Dickey E.C., Paderno Y., Paderno V., Filipov V., Sayir A. Crystallographic characterization and indentation mechanical properties of LaB₆-ZrB₂ directionally solidified eutectics // J. Materials Science. 2004. V. 39. № 19. P. 5987–5994.
- 15. Bogomol I., Nishimura T., Vasylkiv O., Sakka Y., Loboda P. High-temperature strength of directionally reinforced LaB₆−TiB₂ composite // J. Alloys and Compounds. 2010. V. 505. № 1. P. 130–134.
- 16. Volkova H., Filipov V., Podrezov Y. The influence of Ti addition on fracture toughness and failure of directionally solidified LaB₆–ZrB₂ eutectic composite with monocrystalline matrix // J. European Ceramic Society. 2014. V. 34. Nº 14. P. 3399–3405.
- 17. Bogomol I., Nishimura T., Nesterenko Yu., Vasylkiv O., Sakka Y., Loboda P. The bending strength temperature dependence of the directionally solidified eutectic LaB_6 -ZrB₂ composite // J. Alloys and Compounds. 2011. V. 509. № 20. P. 6123-6129.
- 18. Paderno Y.B. A New Class of "In-Situ" Fiber Reinforced Boride Composite Ceramic Materials // Advanced Multilayered and Fibre-Reinforced Composites. Springer Netherlands. 1998. P. 353-369.
- Min G.H., Gao R., Yu S.H., Han J. Mechanical properties of LaB₆-ZrB₂ composites // Key Engineering Materials. Trans Tech Publications. 2005. V. 297. P. 1630–1638.
- 20. Орданьян С.С. О закономерностях взаимодействия в системах LaB₆-Me^{IV-VI}B₂ // Неорганические материалы. 1988. Т. 24. № 2. С. 235-238.
- 21. Kondrashov A.I. Reactions of lanthanum hexaboride with carbides and borides of refractory metals // Soviet Powder Metallurgy and Metal Ceramics. 1974. T. 13. № 11. C. 911–913.
- 22. Ordan'yan S.S., Paderno Yu. B., Khoroshilova I.K., Nikolaeva E.E., Maksimova E.V. Interaction in the LaB₆-ZrB₂ system // Powder Metallurgy and Metal Ceramics. 1983. V. 22. № 11. P. 946–948.
- 23. Ordan'yan S.S., Paderno Yu.B., Khoroshilova I.K., Nikolaeva E.E. Interaction in the LaB₆-HfB₂ system // Soviet Powder Metallurgy and Metal Ceramics. 1984. V. 23. № 2. P. 157–159.
- 24. Ordan'yan S.S., Paderno Yu.B., Nikolaeva E.E., Khoroshilova I.K. Interaction in the LaB₆-CrB₂ system // Powder Metallurgy and Metal Ceramics. 1984. V. 23. № 5. P. 387–389.
- 25. Loboda P.I., Kisla G.P., Bogomol I.I., Sysoev M.A., Karasevskaya O.P. Phase relations in the LaB₆-MoB₂ system // Inorganic Materials. 2009. V. 45. № 3. P. 246–249.
- 26. Kysla G., Loboda P. Ceramic materials of the quasi-binary LaB₆-MoB₂ system // Processing and Application of Ceramics. 2007. V. 1. № 1–2. P. 19–22.
- 27. *Kysla G.P., Loboda P.I., Geshmati L.* Structure of the eutectic in the LaB₆–ScB₂ system // Powder Metallurgy and Metal Ceramics. 2014. V. 53. № 7–8. P. 479–484.
- 28. Лобода П.І., Кисла Г.П., Сисоєв М.О., Богомол Ю.І. Евтектичні сплави систем LaB₆-Me₂B₅// Металознавство та обробка металів. 2010. № 3. С. 29.
- Ordan'yan S.S., Nesmelov D.D., Vikhman S.V. Phase relations in the LaB₆-W₂B₅ system // Inorganic Materials. 2009. V. 45. № 7. P. 754–757.
- 30. *Gao R., Min G., Yu H., Zheng S., Lu Q., Han J., Wang W.* Fabrication and oxidation behavior of LaB₆–ZrB₂ composites // Ceramics International. 2005. V. 31. № 1. P. 15–19.
- 31. Chen C.M., Zhang L.T., Zhou W.C., Hao Z.Z., Jiang Y.J., Yang S.L. Microstructure, mechanical performance and oxidation mechanism of boride in situ composites // Composites Science and Technology. 2001. V. 61. № 7. P. 971–975.
- 32. Wang X., Zhang J.X., Yang X.Y., Hu K., Zhang J.W. Spark plasma sintering of LaB₆-(Ti,Zr)B₂ composites // Advances in Applied Ceramics. 2017. V. 116. № 3. P. 132–137.

- Yang X., Wang X., Wang P., Hu K., Li Z., Zhang J. Spark plasma sintering of SiC–LaB₆ composite // J. Alloys and Compounds. 2017. V. 704. P. 329–335.
- 34. Demirskyi D., Sakka Y. Fabrication, microstructure and properties of in situ synthesized B₄C− NbB₂ eutectic composites by spark plasma sintering // J. Ceramic Society of Japan. 2015. V. 123. № 1433. P. 33–37.
- 35. *Demirskyi D., Vasylkiv O.* Mechanical properties of SiC–NbB₂ eutectic composites by in situ spark plasma sintering // Ceramics International. 2016. V. 42. № 16. P. 19372–19385.
- Ordanyan S.S., Vikhman S.V., Nesmelov D.D., Danilovich D.P., Panteleev I.B. Nonoxide High-Melting Point Compounds as Materials for Extreme Conditions // Advances in Science and Technology. 2014. V. 89. P. 47–56.
- 37. Орданьян С.С., Несмелов Д.Д. Рост зерен при свободном спекании керамик на основе тугоплавких боридов LaB₆, TiB₂ и W₂B₅ // Огнеупоры и техническая керамика. 2014. № 3. С. 24–31.
- 38. Chen C.M., Zhang L.T., Zhou W.C. Characterization of LaB₆–ZrB₂ eutectic composite grown by the floating zone method // J. Crystal Growth. 1998. V. 191. № 4. P. 873–878.
- 39. Chen W.T., White R.M., Goto T., Dickey E.C. Directionally Solidified Boride and Carbide Eutectic Ceramics // J. American Ceramic Society. 2016. V. 99. № 6. P. 1837–1851.
- 40. *Paderno Yu.B., Paderno V.N., Filipov V.B.* Directionally Crystallized Ceramicfiber-Reinforced Boride Composites // Refractories and Industrial Ceramics. 2000. V. 41. № 11. P. 373–378.
- Bogomol I., Loboda P. Directionally Solidified Ceramic Eutectics for High-Temperature Applications // MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments. 2013. P. 303.
- 42. Deng H., Dickey E.C., Paderno Y., Paderno V., Filipov V. Interface Crystallography and Structure in LaB₆–ZrB₂ Directionally Solidified Eutectics // J. American Ceramic Society. 2007. V. 90. № 8. P. 2603–2609.
- 43. Новоселов Е.С., Удалов Ю.П., Несмелов Д.Д., Орданьян С.С. Моделирование поверхности ликвидус в системе LaB₆-W₂B₅-VB₂ // Огнеупоры и техническая керамика. 2018. № 10. С. 32-35.
- 44. Новоселов Е.С., Удалов Ю.П., Орданьян С.С., Шевчик А.П. Моделирование поверхности ликвидус в системе LaB₆–W₂B₅–NbB₂ // Огнеупоры и техническая керамика. 2019. № 6. С. 3–6.